One-Dimensional Topological Photonic Crystal Mirror Heterostructure for Sensing
Abstract
:1. Introduction
2. Structure and Theory
3. Results and Analysis
3.1. Topological and Topological Mirror Edge States
3.2. Sensing Performance of Topological PhC Mirror
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lu, L.; Joannopoulos, J.D.; Soljačić, M. Topological photonics. Nat. Photonics 2014, 8, 821–829. [Google Scholar] [CrossRef] [Green Version]
- Ling, C.W.; Xiao, M.; Chan, C.T.; Yu, S.F.; Fung, K.H. Topological edge plasmon modes between diatomic chains of plasmonic nanoparticles. Opt. Express 2015, 23, 2021–2031. [Google Scholar] [CrossRef]
- Cheng, Q.; Pan, Y.; Wang, Q.; Li, T.; Zhu, S. Topologically protected interface mode in plasmonic waveguide arrays. Laser Photonics Rev. 2015, 9, 392–398. [Google Scholar] [CrossRef]
- Xiao, M.; Zhang, Z.Q.; Chan, C.T. Surface Impedance and Bulk Band Geometric Phases in One-Dimensional Systems. Phys. Rev. X 2014, 4, 021017. [Google Scholar] [CrossRef] [Green Version]
- Gao, W.; Hu, X.; Li, C.; Yang, J.; Chai, Z.; Xie, J.; Gong, Q. Fano-resonance in one-dimensional topological photonic crystal heterostructure. Opt. Express 2018, 26, 8634–8644. [Google Scholar] [CrossRef]
- Ahmed, A.M.; Mehaney, A. Ultra-high sensitive 1D porous silicon photonic crystal sensor based on the coupling of Tamm/Fano resonances in the mid-infrared region. Sci. Rep. 2019, 9, 6973. [Google Scholar] [CrossRef] [Green Version]
- Ming Qing, Y.; Feng Ma, H.; Wei Wu, L.; Jun Cui, T. Manipulating the light-matter interaction in a topological photonic crystal heterostructure. Opt. Express 2020, 28, 34904–34915. [Google Scholar] [CrossRef] [PubMed]
- Dong, J.-W.; Chang, M.-L.; Huang, X.-Q.; Hang, Z.H.; Zhong, Z.-C.; Chen, W.-J.; Huang, Z.-Y.; Chan, C.T. Conical Dispersion and Effective Zero Refractive Index in Photonic Quasicrystals. Phys. Rev. Lett. 2015, 114, 163901. [Google Scholar] [CrossRef] [Green Version]
- Xu, L.; Wang, H.-X.; Xu, Y.-D.; Chen, H.-Y.; Jiang, J.-H. Accidental degeneracy in photonic bands and topological phase transitions in two-dimensional core-shell dielectric photonic crystals. Opt. Express 2016, 24, 18059–18071. [Google Scholar] [CrossRef] [PubMed]
- Lu, L.; Fang, C.; Fu, L.; Johnson, S.G.; Joannopoulos, J.D.; Soljačić, M. Symmetry-protected topological photonic crystal in three dimensions. Nat. Phys. 2016, 12, 337–340. [Google Scholar] [CrossRef] [Green Version]
- Lu, L.; Fu, L.; Joannopoulos, J.D.; Soljačić, M. Weyl points and line nodes in gyroid photonic crystals. Nat. Photonics 2013, 7, 294–299. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Liang, Y.; Wu, L.; Guo, J.; Dai, X.; Xiang, Y. Multi-channel perfect absorber based on a one-dimensional topological photonic crystal heterostructure with graphene. Opt. Lett. 2018, 43, 4256–4259. [Google Scholar] [CrossRef] [PubMed]
- Elshahat, S.; Abood, I.; Liang, Z.; Pei, J.; Ouyang, Z. Elongated-Hexagonal Photonic Crystal for Buffering, Sensing, and Modulation. Nanomaterials 2021, 11, 809. [Google Scholar] [CrossRef]
- Xu, X.; Pan, Z.; Chung, C.; Chang, C.; Yan, H.; Chen, R.T. Subwavelength Grating Metamaterial Racetrack Resonator for Sensing and Modulation. IEEE J. Sel. Top. Quantum Electron. 2019, 25, 1–8. [Google Scholar] [CrossRef]
- Maache, M.; Fazea, Y.; Bile Hassan, I.; Alkahtani, A.A.; Ud Din, I. High-Sensitivity Capsule-Shaped Sensor Based on 2D Photonic Crystals. Symmetry 2020, 12, 1480. [Google Scholar] [CrossRef]
- Elshahat, S.; Abood, I.; Liang, Z.; Pei, J.; Ouyang, Z. Dispersion engineering of W2 steeple-house-defect waveguide photonic crystal. Results Phys. 2020, 19, 103547. [Google Scholar] [CrossRef]
- Joannopoulos, S.G.J.J.D.; Winn, J.N.; Meade, R.D. Photonic Crystals: Molding the Flow of Light; Princeton University Press: Princeton, NJ, USA, 2008. [Google Scholar]
- Dal Lago, V.; Atala, M.; Foa Torres, L.E.F. Floquet topological transitions in a driven one-dimensional topological insulator. Phys. Rev. A 2015, 92, 023624. [Google Scholar] [CrossRef] [Green Version]
- Clark, J.; Lanzani, G. Organic photonics for communications. Nat. Photonics 2010, 4, 438–446. [Google Scholar] [CrossRef]
- Abood, I.; Elshahat, S.; Ouyang, Z. High buffering capability of silicon-polymer photonic-crystal coupled cavity waveguide. Waves Random Complex. Media 2021, 1–16. [Google Scholar] [CrossRef]
- Abood, I.; Elshahat, S.; Ouyang, Z. High Figure of Merit Optical Buffering in Coupled-Slot Slab Photonic Crystal Waveguide with Ionic Liquid. Nanomaterials 2020, 10, 1742. [Google Scholar] [CrossRef]
- Lindsay, G.A.; Zarras, P.; Stenger-Smith, J.D. Electro-Optic Polymers with Tunable Refractive Index for Optical Waveguides. U.S. Patents 707,126,8B1, 4 July 2006. [Google Scholar]
- Hu, J.; Sun, X.; Agarwal, A.; Kimerling, L.C. Design guidelines for optical resonator biochemical sensors. J. Opt. Soc. Am. B 2009, 26, 1032–1041. [Google Scholar] [CrossRef]
Transmittance % | ||||
---|---|---|---|---|
4 | 1580.34352 | 0.03111 | 100 | |
5 | 1578.49427 | 0.00106 | 99.98 | |
6 | 1578.14266 | 99.98 | ||
7 | 1578.07699 | 99.97 | ||
8 | 1578.06476 | 99.95 |
Transmittance % | |||||
---|---|---|---|---|---|
1.59 | 1531.75 | 0.1268 | 100 | 12,080.05 | 4858.04 |
1.60 | 1537.53 | 0.0742 | 100 | 20,721.43 | 8301.88 |
1.61 | 1543.56 | 0.0476 | 100 | 32,427.73 | 12,941.17 |
1.62 | 1549.72 | 0.0330 | 99.98 | 46,961.21 | 18,666.67 |
1.63 | 1555.95 | 0.0242 | 100 | 64,295.45 | 25,454.55 |
1.64 | 1562.21 | 0.0187 | 100 | 83,540.64 | 32,941.18 |
1.65 | 1568.49 | 0.0150 | 99.89 | 104,566.00 | 41,066.67 |
1.66 | 1574.75 | 0.0124 | 99.91 | 126,995.97 | 49,677.42 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Elshahat, S.; Abood, I.; Esmail, M.S.M.; Ouyang, Z.; Lu, C. One-Dimensional Topological Photonic Crystal Mirror Heterostructure for Sensing. Nanomaterials 2021, 11, 1940. https://doi.org/10.3390/nano11081940
Elshahat S, Abood I, Esmail MSM, Ouyang Z, Lu C. One-Dimensional Topological Photonic Crystal Mirror Heterostructure for Sensing. Nanomaterials. 2021; 11(8):1940. https://doi.org/10.3390/nano11081940
Chicago/Turabian StyleElshahat, Sayed, Israa Abood, Mohamed Saleh M. Esmail, Zhengbiao Ouyang, and Cuicui Lu. 2021. "One-Dimensional Topological Photonic Crystal Mirror Heterostructure for Sensing" Nanomaterials 11, no. 8: 1940. https://doi.org/10.3390/nano11081940
APA StyleElshahat, S., Abood, I., Esmail, M. S. M., Ouyang, Z., & Lu, C. (2021). One-Dimensional Topological Photonic Crystal Mirror Heterostructure for Sensing. Nanomaterials, 11(8), 1940. https://doi.org/10.3390/nano11081940