Analysis of Excitability in Resonant Tunneling Diode-Photodetectors
Abstract
:1. Introduction
2. RTD-PD Devices and Experimental Setup
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pfenning, A.; Hartmann, F.; Langer, F.; Höfling, S.; Kamp, M.; Worschech, L. Cavity-enhanced resonant tunneling photodetector at telecommunication wavelengths. Appl. Phys. Lett. 2014, 104, 101109. [Google Scholar] [CrossRef] [Green Version]
- Zhang, W.; Watson, S.; Wang, J.; Figueiredo, J.; Wasige, E.; Kelly, A.E. Optical Characteristics Analysis of Resonant Tunneling Diode Photodiode Based Oscillators. In Proceedings of the 2018 IEEE 87th Vehicular Technology Conference (VTC Spring), Porto, Portugal, 3–6 June 2018; IEEE: New York, NY, USA; pp. 1–6. [Google Scholar]
- Romeira, B.; Pessoa, L.M.; Salgado, H.M.; Ironside, C.N.; Figueiredo, J.M. Photo-detectors integrated with resonant tunneling diodes. Sensors 2016, 13, 9464–9482. [Google Scholar] [CrossRef] [PubMed]
- Aleshkin, V.Y.; Lyubchenko, V.; Figueiredo, J.; Ironside, C.; Stanley, C. Superhigh-frequency characteristics of optical modulators on the basis of InGaAlAs resonance-tunnel heterostructures. J. Commun. Technol. Electron. 2000, 45, 911–914. [Google Scholar]
- Romeira, B.; Javaloyes, J.; Ironside, C.N.; Figueiredo, J.M.; Balle, S.; Piro, O. Excitability and optical pulse generation in semiconductor lasers driven by resonant tunneling diode photo-detectors. Opt. Express 2013, 21, 20931–20940. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Romeira, B.; Avó, R.; Javaloyes, J.; Balle, S.; Ironside, C.N.; Figueiredo, J.M. Stochastic induced dynamics in neuromorphic optoelectronic oscillators. Opt. Quantum Electron. 2014, 46, 1391–1396. [Google Scholar] [CrossRef] [Green Version]
- Romeira, B.; Figueiredo, J.M.; Slight, T.J.; Wang, L.; Wasige, E.; Ironside, C.N.; Kelly, A.E.; Green, R. Nonlinear dynamics of resonant tunneling optoelectronic circuits for wireless/optical interfaces. IEEE J. Quantum Electron. 2009, 45, 1436–1445. [Google Scholar] [CrossRef]
- Pessoa, L.; Peng, B.; Wang, J.; Sanchez, L.; Al-Khalidi, A.; Wasige, E.; Liu, A.; Cantu, H.; Oxtoby, I.; Napier, B.; et al. iBROW–innovative ultra-BROadband ubiquitous wireless communications through terahertz transceivers. IEEE COMSOC MMTC Commun. Front. 2016, 11, 12–17. [Google Scholar]
- Izumi, R.; Suzuki, S.; Asada, M. 1.98 THz resonant-tunneling-diode oscillator with reduced conduction loss by thick antenna electrode. In Proceedings of the 2017 42nd International Conference on Infrared, Millimeter, and Terahertz Waves (IRMMW-THz), Cancun, Mexico, 27 August–1 September 2017; IEEE: New York, NY, USA; pp. 1–2. [Google Scholar]
- Wang, J.; Rodrigues, G.; Al-Khalidi, A.; Figueiredo, J.M.; Wasige, E. Resonant tunnelling diode based high speed optoelectronic transmitters. In Proceedings of the Third International Conference on Applications of Optics and Photonics, Faro, Portugal, 8–12 May 2017; International Society for Optics and Photonics: Bellingham, DC, USA; Volume 10453, p. 104532Y. [Google Scholar]
- Zhang, W.; Watson, S.; Figueiredo, J.; Wang, J.; Cantú, H.I.; Tavares, J.; Pessoa, L.; Al-Khalidi, A.; Salgado, H.; Wasige, E.; et al. Optical direct intensity modulation of a 79 GHz resonant tunneling diode-photodetector oscillator. Opt. Express 2019, 27, 16791–16797. [Google Scholar] [CrossRef] [PubMed]
- Al-Khalidi, A.; Alharbi, K.; Wang, J.; Wasige, E. THz electronics for data centre wireless links—The TERAPOD project. In Proceedings of the 2017 9th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), Munich, Germany, 6–8 November 2017; IEEE: New York, NY, USA; pp. 445–448. [Google Scholar]
- Wasige, E.; Alharbi, K.H.; Al-Khalidi, A.; Wang, J.; Khalid, A.; Rodrigues, G.C.; Figueiredo, J. Resonant tunnelling diode terahertz sources for broadband wireless communications. Terahertz, RF, Millimeter, and Submillimeter-Wave Technology and Applications X. In Proceedings of the SPIE, San Diego, CA, USA, 6–10 August 2017; International Society for Optics and Photonics: Bellingham, DC, USA, 2017; Volume 10103, p. 101031J. [Google Scholar]
- Oshima, N.; Hashimoto, K.; Suzuki, S.; Asada, M. Wireless data transmission of 34 Gbit/s at a 500-GHz range using resonant-tunnelling-diode terahertz oscillator. Electron. Lett. 2016, 52, 1897–1898. [Google Scholar] [CrossRef]
- Shastri, B.J.; Tait, A.N.; de Lima, T.F.; Pernice, W.H.; Bhaskaran, H.; Wright, C.D.; Prucnal, P.R. Photonics for artificial intelligence and neuromorphic computing. Nat. Photonics 2021, 15, 102–114. [Google Scholar] [CrossRef]
- Shastri, B.J.; Nahmias, M.A.; Tait, A.N.; de Lima, T.F.; Peng, H.-T.; Prucnal, P.R. Integrated neuromorphic photonics. Active Photonic Platforms X. In Proceedings of the SPIE, San Diego, CA, USA, 19–23 August 2018; International Society for Optics and Photonics: Bellingham, DC, USA, 2018; Volume 10721, p. 107211M. [Google Scholar]
- Ortega-Piwonka, I.; Piro, O.; Figueiredo, J.; Romeira, B.; Javaloyes, J. Bursting and excitability in neuromorphic resonant tunneling diodes. Phys. Rev. Appl. 2021, 15, 034017. [Google Scholar] [CrossRef]
- Izhikevich, E.M. Dynamical Systems in Neuroscience; MIT Press: Cambridge, MA, USA, 2007. [Google Scholar]
- Indiveri, G.; Douglas, R.; Lyshevski, S.J.N.; Handbook, M.E. Neuromorphic Networks of Spiking Neurons. In Nano and Molecular Electronics Handbook; CRC Press: Boca Raton, FL, USA, 2018; Volume 10, p. 10-1. [Google Scholar]
- Shastri, B.J.; Tait, A.N.; de Lima, T.F.; Nahmias, M.A.; Peng, H.-T.; Prucnal, P.R. Principles of Neuromorphic Photonics. arXiv 2017, arXiv:1801.00016. [Google Scholar]
- Prucnal, P.R.; Shastri, B.J.; Teich, M.C. Neuromorphic Photonics; CRC Press: Boca Raton, FL, USA, 2017; p. 412. [Google Scholar]
- Peng, H.-T.; Nahmias, M.A.; de Lima, T.F.; Tait, A.N.; Shastri, B.J. Neuromorphic Photonic Integrated Circuits. IEEE J. Sel. Top. Quantum Electron. 2018, 24, 1–15. [Google Scholar] [CrossRef]
- Prucnal, P.R.; Shastri, B.J.; de Lima, T.F.; Nahmias, M.A.; Tait, A.N. Recent progress in semiconductor excitable lasers for photonic spike processing. Adv. Opt. Photonics 2016, 8, 228–299. [Google Scholar] [CrossRef]
- Hartmann, F.; Forchel, A.; Neri, I.; Gammaitoni, L.; Worschech, L. Nanowatt logic stochastic resonance in branched resonant tunneling diodes. Appl. Phys. Lett. 2011, 98, 032110. [Google Scholar] [CrossRef]
- Hartmann, F.; Gammaitoni, L.; Höfling, S.; Forchel, A.; Worschech, L. Light-induced stochastic resonance in a nanoscale resonant-tunneling diode. Appl. Phys. Lett. 2011, 98, 242109. [Google Scholar] [CrossRef]
- Wang, J. Monolithic Microwave/Millimetrewave Integrated Circuit Resonant Tunnelling Diode Dources with around a Milliwatt Output Power. Ph.D. Thesis, University of Glasgow, Glasgow, UK, 2014. [Google Scholar]
- Mizuta, H.; Tanoue, T. The Physics and Applications of Resonant Tunnelling Diodes (No. 2); Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- Wang, J.; Alharbi, K.; Ofiare, A.; Zhou, H.; Khalid, A.; Cumming, D.; Wasige, E. High performance resonant tunneling diode oscillators for THz applications. In Proceedings of the 2015 IEEE Compound Semiconductor Integrated Circuit Symposium (CSICS), New Orleans, LA, USA, 11–14 October 2015; IEEE: New York, NY, USA, 2015; pp. 1–4. [Google Scholar]
- Corning. Corning SMF-28 Ultra Optical Fiber. 2014. Available online: https://www.corning.com/media/worldwide/coc/documents/Fiber/SMF-28%20Ultra.pdf (accessed on 4 June 2021).
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, W.; Al-Khalidi, A.; Figueiredo, J.; Al-Taai, Q.R.A.; Wasige, E.; Hadfield, R.H. Analysis of Excitability in Resonant Tunneling Diode-Photodetectors. Nanomaterials 2021, 11, 1590. https://doi.org/10.3390/nano11061590
Zhang W, Al-Khalidi A, Figueiredo J, Al-Taai QRA, Wasige E, Hadfield RH. Analysis of Excitability in Resonant Tunneling Diode-Photodetectors. Nanomaterials. 2021; 11(6):1590. https://doi.org/10.3390/nano11061590
Chicago/Turabian StyleZhang, Weikang, Abdullah Al-Khalidi, José Figueiredo, Qusay Raghib Ali Al-Taai, Edward Wasige, and Robert H. Hadfield. 2021. "Analysis of Excitability in Resonant Tunneling Diode-Photodetectors" Nanomaterials 11, no. 6: 1590. https://doi.org/10.3390/nano11061590
APA StyleZhang, W., Al-Khalidi, A., Figueiredo, J., Al-Taai, Q. R. A., Wasige, E., & Hadfield, R. H. (2021). Analysis of Excitability in Resonant Tunneling Diode-Photodetectors. Nanomaterials, 11(6), 1590. https://doi.org/10.3390/nano11061590