Ultra-Narrow Metallic Nano-Trenches Realized by Wet Etching and Critical Point Drying
Abstract
1. Introduction
2. Materials and Methods
3. Results
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Seo, M.A.; Park, H.R.; Koo, S.M.; Park, D.J.; Kang, J.H.; Suwal, O.K.; Choi, S.S.; Planken, P.C.M.; Park, G.S.; Park, N.K.; et al. Terahertz Field Enhancement by a Metallic Nano Slit Operating beyond the Skin-Depth Limit. Nat. Photonics 2009, 3, 152–156. [Google Scholar] [CrossRef]
- Ward, D.R.; Hüser, F.; Pauly, F.; Cuevas, J.C.; Natelson, D. Optical Rectification and Field Enhancement in a Plasmonic Nanogap. Nat. Nanotechnol. 2010, 5, 732. [Google Scholar] [CrossRef]
- Wang, Z.; Dong, Z.; Gu, Y.; Chang, Y.-H.; Zhang, L.; Li, L.-J.; Zhao, W.; Eda, G.; Zhang, W.; Grinblat, G.; et al. Giant Photoluminescence Enhancement in Tungsten-Diselenide–Gold Plasmonic Hybrid Structures. Nat. Commun. 2016, 7, 11283. [Google Scholar] [CrossRef]
- Kleemann, M.E.; Chikkaraddy, R.; Alexeev, E.M.; Kos, D.; Carnegie, C.; Deacon, W.; de Pury, A.C.; Große, C.; de Nijs, B.; Mertens, J.; et al. Strong-Coupling of WSe2 in Ultra-Compact Plasmonic Nanocavities at Room Temperature. Nat. Commun. 2017, 8, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Santhosh, K.; Bitton, O.; Chuntonov, L.; Haran, G. Vacuum Rabi Splitting in a Plasmonic Cavity at the Single Quantum Emitter Limit. Nat. Commun. 2016, 7, 11823. [Google Scholar] [CrossRef] [PubMed]
- Park, H.R.; Ahn, K.J.; Han, S.; Bahk, Y.M.; Park, N.; Kim, D.S. Colossal Absorption of Molecules inside Single Terahertz Nanoantennas. Nano Lett. 2013, 13, 1782–1786. [Google Scholar] [CrossRef]
- Seo, M.; Park, H.R. Terahertz Biochemical Molecule-Specific Sensors. Adv. Opt. Mater. 2020, 8, 1900662. [Google Scholar] [CrossRef]
- Choi, G.; Shahzad, F.; Bahk, Y.M.; Jhon, Y.M.; Park, H.; Alhabeb, M.; Anasori, B.; Kim, D.S.; Koo, C.M.; Gogotsi, Y.; et al. Enhanced Terahertz Shielding of MXenes with Nano-Metamaterials. Adv. Opt. Mater. 2018, 6, 1701076. [Google Scholar] [CrossRef]
- Park, H.R.; Namgung, S.; Chen, X.; Lindquist, N.C.; Giannini, V.; Francescato, Y.; Maier, S.A.; Oh, S.H. Perfect Extinction of Terahertz Waves in Monolayer Graphene over 2-Nm-Wide Metallic Apertures. Adv. Opt. Mater. 2015. [Google Scholar] [CrossRef]
- Seo, M.; Kyoung, J.; Park, H.; Koo, S.; Kim, H.S.; Bernien, H.; Kim, B.J.; Choe, J.H.; Ahn, Y.H.; Kim, H.T.; et al. Active Terahertz Nanoantennas Based on VO2 Phase Transition. Nano Lett. 2010, 10, 2064–2068. [Google Scholar] [CrossRef] [PubMed]
- Jeong, Y.-G.; Bernien, H.; Kyoung, J.-S.; Park, H.-R.; Kim, H.-S.; Choi, J.-W.; Kim, B.-J.; Kim, H.-T.; Ahn, K.J.; Kim, D.-S. Electrical Control of Terahertz Nano Antennas on VO2 Thin Film. Opt. Express 2011, 19, 21211–21215. [Google Scholar] [CrossRef]
- Choi, G.; Bahk, Y.M.; Kang, T.; Lee, Y.; Son, B.H.; Ahn, Y.H.; Seo, M.; Kim, D.S. Terahertz Nanoprobing of Semiconductor Surface Dynamics. Nano Lett. 2017, 17, 6397–6401. [Google Scholar] [CrossRef] [PubMed]
- Choi, G.; Kang, T.; Seo, M.; Kim, D.S.; Bahk, Y.M. Enhanced Surface Carrier Response by Field Overlapping in Metal Nanopatterned Semiconductor. ACS Photonics 2018, 5, 4739–4744. [Google Scholar] [CrossRef]
- Kang, T.; Kim, R.H.J.Y.; Choi, G.; Lee, J.; Park, H.; Jeon, H.; Park, C.H.; Kim, D.S. Terahertz Rectification in Ring-Shaped Quantum Barriers. Nat. Commun. 2018, 9, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.Y.; Kang, B.J.; Park, J.; Bahk, Y.M.; Kim, W.T.; Rhie, J.; Jeon, H.; Rotermund, F.; Kim, D.S. Terahertz Quantum Plasmonics of Nanoslot Antennas in Nonlinear Regime. Nano Lett. 2015, 15, 6683–6688. [Google Scholar] [CrossRef]
- Fumagalli, L.; Esfandiar, A.; Fabregas, R.; Hu, S.; Ares, P.; Janardanan, A.; Yang, Q.; Radha, B.; Taniguchi, T.; Watanabe, K.; et al. Anomalously Low Dielectric Constant of Confined Water. Science 2018, 360, 1339–1342. [Google Scholar] [CrossRef] [PubMed]
- Chen, X.; Park, H.-R.; Pelton, M.; Piao, X.; Lindquist, N.C.; Im, H.; Kim, Y.J.; Ahn, J.S.; Ahn, K.J.; Park, N.; et al. Atomic Layer Lithography of Wafer-Scale Nanogap Arrays for Extreme Confinement of Electromagnetic Waves. Nat. Commun. 2013, 4, 2361. [Google Scholar] [CrossRef] [PubMed]
- Jeong, J.; Yun, H.S.; Kim, D.; Lee, K.S.; Choi, H.-K.; Kim, Z.H.; Lee, S.W.; Kim, D.-S. High Contrast Detection of Water-Filled Terahertz Nanotrenches. Adv. Opt. Mater. 2018, 6, 1800582. [Google Scholar] [CrossRef]
- Yun, H.S.; Jeong, J.; Kim, D.; Kim, D.-S. Active Thermal Control of 5 Nm Gap Terahertz Antennas. Adv. Opt. Mater. 2019, 7, 1800856. [Google Scholar] [CrossRef]
- Kim, I.; Mun, J.; Hwang, W.; Yang, Y.; Rho, J. Capillary-Force-Induced Collapse Lithography for Controlled Plasmonic Nanogap Structures. Microsyst. Nanoeng. 2020, 6, 65. [Google Scholar] [CrossRef]
- Mulhern, G.T.; Soane, D.S.; Howe, R.T. Supercritical Carbon Dioxide Drying of Microstructures. In Proceedings of the 7th International Conference on Solid-State Sensors and Actuators, Yokohama, Japan, 7–10 June 1993; pp. 296–299. [Google Scholar]
- Mastrangelo, C.H.; Hsu, C.H. Mechanical Stability and Adhesion of Microstructures under Capillary Forces. I. Basic Theory. J. Microelectromech. Syst. 1993, 2, 33–43. [Google Scholar] [CrossRef]
- Mastrangelo, C.H.; Hsu, C.H. Mechanical Stability and Adhesion of Microstructures under Capillary Forces. II. Experiments. J. Microelectromech. Syst. 1993, 2, 44–55. [Google Scholar] [CrossRef]
- Goldfarb, D.L.; de Pablo, J.J.; Nealey, P.F.; Simons, J.P.; Moreau, W.M.; Angelopoulos, M. Aqueous-Based Photoresist Drying Using Supercritical Carbon Dioxide to Prevent Pattern Collapse. J. Vac. Sci. Technol. B Microelectron. Nanometer Struct. Process. Meas. Phenom. 2000, 18, 3313–3317. [Google Scholar] [CrossRef]
- Chen, Y.M.; He, S.M.; Huang, C.H.; Huang, C.C.; Shih, W.P.; Chu, C.L.; Kong, J.; Li, J.; Su, C.Y. Ultra-Large Suspended Graphene as a Highly Elastic Membrane for Capacitive Pressure Sensors. Nanoscale 2016, 8, 3555–3564. [Google Scholar] [CrossRef]
- Jung, I.; Chung, J.H.; Piner, R.; Suk, J.W.; Ruoff, R.S. Fabrication and Measurement of Suspended Silicon Carbide Nanowire Devices and Deflection. Nano 2009, 4, 351–358. [Google Scholar] [CrossRef]
- Rhie, J.; Lee, D.; Bahk, Y.-M.; Jeong, J.; Choi, G.; Lee, Y.; Kim, S.; Hong, S.; Kim, D.-S. Control of Optical Nanometer Gap Shapes Made via Standard Lithography Using Atomic Layer Deposition. J. Micro/Nanolithogr. MEMS MOEMS 2018, 17, 1–13. [Google Scholar] [CrossRef]
- Park, H.-R.; Bahk, Y.-M.; Choe, J.H.; Han, S.; Choi, S.S.; Ahn, K.J.; Park, N.; Park, Q.-H.; Kim, D.-S. Terahertz Pinch Harmonics Enabled by Single Nano Rods. Opt. Express 2011, 19, 24775–24781. [Google Scholar] [CrossRef] [PubMed]
- Park, H.R.; Bahk, Y.M.; Ahn, K.J.; Park, Q.H.; Kim, D.S.; Martín-Moreno, L.; García-Vidal, F.J.; Bravo-Abad, J. Controlling Terahertz Radiation with Nanoscale Metal Barriers Embedded in Nano Slot Antennas. ACS Nano 2011, 5, 8340–8345. [Google Scholar] [CrossRef]
- Kyoung, J.S.; Seo, M.A.; Park, H.R.; Ahn, K.J.; Kim, D.S. Far Field Detection of Terahertz near Field Enhancement of Sub-Wavelength Slits Using Kirchhoff Integral Formalism. Opt. Commun. 2010, 283, 4907–4910. [Google Scholar] [CrossRef]
- García-Vidal, F.J.; Moreno, E.; Porto, J.A.; Martín-Moreno, L. Transmission of Light through a Single Rectangular Hole. Phys. Rev. Lett. 2005, 95, 103901. [Google Scholar] [CrossRef]
- García-Vidal, F.J.; Martín-Moreno, L.; Moreno, E.; Kumar, L.K.S.; Gordon, R. Transmission of Light through a Single Rectangular Hole in a Real Metal. Phys. Rev. B Condens. Matter Mater. Phys. 2006, 74, 153411. [Google Scholar] [CrossRef]
- Jeong, J.; Kim, D.; Park, H.R.; Kang, T.; Lee, D.; Kim, S.; Bahk, Y.M.; Kim, D.S. Anomalous Extinction in Index-Matched Terahertz Nanogaps. Nanophotonics 2018, 7, 347–354. [Google Scholar] [CrossRef]
- Kim, D.; Jeong, J.; Choi, G.; Bahk, Y.M.; Kang, T.; Lee, D.; Thusa, B.; Kim, D.S. Giant Field Enhancements in Ultrathin Nanoslots above 1 Terahertz. ACS Photonics 2018, 5, 1885–1890. [Google Scholar] [CrossRef]
- Jeong, J.; Kim, D.; Seo, M.; Kim, D.-S. Strongly Localized Ohmic Absorption of Terahertz Radiation in Nanoslot Antennas. Nano Lett. 2019, 19, 9062–9068. [Google Scholar] [CrossRef] [PubMed]
- Gordon, R.; Choudhury, A.I.K.; Lu, T. Gap Plasmon Mode of Eccentric Coaxial Metal Waveguide. Opt. Express 2009, 17, 5311–5320. [Google Scholar] [CrossRef]
- Williams, K.R.; Gupta, K.; Wasilik, M. Etch Rates for Micromachining Processing-Part II. J. Microelectromech. Syst. 2003, 12, 761–778. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jeong, J.; Yang, H.; Park, S.; Park, Y.D.; Kim, D.-S. Ultra-Narrow Metallic Nano-Trenches Realized by Wet Etching and Critical Point Drying. Nanomaterials 2021, 11, 783. https://doi.org/10.3390/nano11030783
Jeong J, Yang H, Park S, Park YD, Kim D-S. Ultra-Narrow Metallic Nano-Trenches Realized by Wet Etching and Critical Point Drying. Nanomaterials. 2021; 11(3):783. https://doi.org/10.3390/nano11030783
Chicago/Turabian StyleJeong, Jeeyoon, Hyosim Yang, Seondo Park, Yun Daniel Park, and Dai-Sik Kim. 2021. "Ultra-Narrow Metallic Nano-Trenches Realized by Wet Etching and Critical Point Drying" Nanomaterials 11, no. 3: 783. https://doi.org/10.3390/nano11030783
APA StyleJeong, J., Yang, H., Park, S., Park, Y. D., & Kim, D.-S. (2021). Ultra-Narrow Metallic Nano-Trenches Realized by Wet Etching and Critical Point Drying. Nanomaterials, 11(3), 783. https://doi.org/10.3390/nano11030783