Paper Functionalized with Nanostructured TiO2/AgBr: Photocatalytic Degradation of 2–Propanol under Solar Light Irradiation and Antibacterial Activity
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Synthesis of Paper–TiO2–AgBr
2.3. Characterization
2.4. Photoactivity Experiments
2.5. Bacteria Preparation and Antibacterial Activity Tests
3. Results and Discussion
3.1. Raman Spectroscopy
3.2. SEM Observation
3.3. XRD Characterization
3.4. UV-Vis Characterization
3.5. Thermogravimetric Analysis (TGA)
3.6. Photocatalytic Activity
3.7. Mechanism of Transfer and Separation of Photogenerated Charges
3.8. Antibacterial Properties
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vicente, A.T.; Araújo, A.; Mendes, M.J.; Nunes, D.; Oliveira, M.J.; Sobradon, O.M.; Ferreira, M.P.; Águas, H.; Fortunato, E.; Martins, R. Multifunctional cellulose-paper for light harvesting and smart sensing applications. J. Mater. Chem. C 2018, 6, 3143–3181. [Google Scholar] [CrossRef]
- Ngo, Y.H.; Li, D.; Simon, G.P.; Garnier, G. Paper surfaces functionalized by nanoparticles. Adv. Colloid Interface Sci. 2011, 163, 23–38. [Google Scholar] [CrossRef] [PubMed]
- Barr, M.C.; Rowehl, J.A.; Lunt, R.R.; Xu, J.J.; Wang, A.N.; Boyce, C.M.; Im, S.G.; Bulovic, V.; Gleason, K.K. Direct monolithic integration of organic photovoltaic circuits on unmodified paper. Adv. Mater. 2011, 23, 3500–3505. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Xiao, Z.; Liu, D.; Li, Y.; Weadock, N.J.; Fang, Z.; Huang, J.; Hu, L. Biodegradable transparent substrates for flexible organic-light-emitting diodes. Energy Environ. Sci. 2013, 6, 2105–2111. [Google Scholar] [CrossRef]
- Matsubara, H.; Takada, M.; Koyama, S.; Hashimoto, K.; Fujishima, A. Photoactive TiO2 containing paper: Preparation and its photocatalytic activity under weak UV light illumination. Chem. Lett. 1995, 24, 767–768. [Google Scholar] [CrossRef]
- Pelton, R.; Geng, X.; Brook, M. Photocatalytic paper from colloidal TiO2—Factor fantasy. Adv. Colloid Interface Sci. 2006, 127, 43–53. [Google Scholar] [CrossRef]
- Chauhan, I.; Aggrawal, S.; Chandravati, C.; Mohanty, P. Metal oxide nanostructures incorporated/immobilized paper matrices and their applications: A review. RSC Adv. 2015, 5, 83036–83055. [Google Scholar] [CrossRef]
- Garusinghe, U.M.; Raghuwanshi, V.S.; Batchelor, W.; Garnier, G. Water Resistant Cellulose-Titanium Dioxide Composites for Photocatalysis. Sci. Rep. 2018, 8, 2306–2328. [Google Scholar] [CrossRef] [Green Version]
- Japan Echo Inc. Air-Purifying Paper. 2008. Available online: https://web-japan.org/trends/07_sci-tech/sci080131.html (accessed on 31 January 2008).
- Sboui, M.; Bouattour, S.; Liotta, L.F.; Marcì, G.; Boufi, S. Paper–TiO2 composite: An effective photocatalyst for 2–propanol degradation in gas phase. J. Photoch. Photobio. A 2018, 350, 142–151. [Google Scholar] [CrossRef]
- Sboui, M.; Bouattour, S.; Gruttadauria, M.; La Parola, V.; Boufi, S. Hybrid paper–TiO2 coupled with a Cu2O heterojunction: An efficient photocatalyst under sun-light irradiation. RSC Adv. 2016, 6, 86918–86929. [Google Scholar] [CrossRef]
- Hu, C.; Lan, Y.; Qu, J.; Hu, X.; Wang, A. Ag/AgBr/TiO2 Visible Light Photocatalyst for Destruction of Azodyes and Bacteria. J. Phys. Chem. B 2006, 110, 4066–4072. [Google Scholar] [CrossRef] [PubMed]
- Qi, L.F.; Yu, J.G.; Liu, G.; Wong, K. Synthesis and photocatalytic activity of plasmonicAg@AgCl composite immobilized on titanate nanowire films. Catal. Today 2014, 224, 193–199. [Google Scholar] [CrossRef]
- Wang, P.; Huang, B.; Qin, X.; Zhang, X.; Dai, Y.; Wei, J.; Whangbo, M.-H. Ag@AgCl: A highly efficient and stable photocatalyst active under visible light. Angew. Chem. Int. Ed. Engl. 2008, 47, 7931–7933. [Google Scholar] [CrossRef] [PubMed]
- Barry, A.L.; Coyle, M.B.; Thornsberry, C.; Gerlach, E.H.; Hawkinson, R.W. Methods of measuring zones of inhibition with the Bauer-Kirby disk susceptibility test. J. Clin. Microbiol. 1979, 10, 885–889. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ohsaka, T.; Izumi, F.; Fujiki, Y. Raman spectrum of anatase, TiO2. J. Raman Spectrosc. 1978, 7, 321–324. [Google Scholar] [CrossRef]
- Liu, Y. Vibrational spectroscopic investigation of Australian cotton cellulose fibres Part 1. A Fourier transform Raman study. Analyst 1998, 123, 633–636. [Google Scholar] [CrossRef]
- Li, H.X.; Bian, Z.F.; Zhu, J.; Huo, Y.N.; Li, H.; Lu, Y.F. Mesoporous Au/TiO2 Nanocomposites with Enhanced Photocatalytic Activity. J. Am. Chem. Soc. 2007, 129, 4538–4539. [Google Scholar] [CrossRef]
- Hou, Y.; Li, X.Y.; Zhao, Q.D.; Quan, X.; Chen, G.H. TiO2 nanotube/Ag–AgBr three-component nanojunction for efficient photoconversion. J. Mater. Chem. 2011, 21, 18067–18076. [Google Scholar] [CrossRef]
- Bottger, G.L.; Damsgard, C.V. Second order Raman spectra of AgCl and AgBr crystals. Solid State Commun. 1971, 9, 1277–1280. [Google Scholar] [CrossRef]
- French, A.D. Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 2014, 21, 885–896. [Google Scholar] [CrossRef]
- Zhang, Y.; Tang, Z.-R.; Fu, X.-Z.; Xu, Y.-J. Nanocomposite of Ag–AgBr–TiO2 as a photoactive and durable catalyst for degradation of volatile organic compounds in the gas phase. Appl. Catal. B Environ. 2011, 106, 445–452. [Google Scholar] [CrossRef]
- Reidy, B.; Haase, A.; Luch, A.; Dawson, K.A.; Lynch, I. Mechanisms of Silver Nanoparticle Release, Transformation and Toxicity: A Critical Review of Current Knowledge and Recommendations for Future Studies and Applications. Materials 2013, 6, 2295–2350. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Li, M.H.; Noriega-Trevino, M.E.; Nino-Martine, N.; Marambio-Jones, C.; Wang, J.W.; Damoiseaux, R.; Ruiz, F.; Hoek, E.M.V. Synergistic Bactericidal Activity of Ag–TiO2 Nanoparticles in Both Light and Dark Conditions. Environ. Sci. Technol. 2011, 45, 8989–8995. [Google Scholar] [CrossRef]
- Béguin, P.; Aubert, J.P. The biological degradation of cellulose. FEMS. Microbial. Rev. 1994, 13, 25–58. [Google Scholar] [CrossRef]
Photocatalysts | Initial Reaction Rate (mol. s−1) |
---|---|
paper−TiO2 | 1.7 × 10−8 |
paper−TiO2−AgBr | 2.1 × 10−8 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sboui, M.; Bouattour, S.; Gruttadauria, M.; Marcì, G.; Liotta, L.F.; Boufi, S. Paper Functionalized with Nanostructured TiO2/AgBr: Photocatalytic Degradation of 2–Propanol under Solar Light Irradiation and Antibacterial Activity. Nanomaterials 2020, 10, 470. https://doi.org/10.3390/nano10030470
Sboui M, Bouattour S, Gruttadauria M, Marcì G, Liotta LF, Boufi S. Paper Functionalized with Nanostructured TiO2/AgBr: Photocatalytic Degradation of 2–Propanol under Solar Light Irradiation and Antibacterial Activity. Nanomaterials. 2020; 10(3):470. https://doi.org/10.3390/nano10030470
Chicago/Turabian StyleSboui, Mouheb, Soraa Bouattour, Michelangelo Gruttadauria, Giuseppe Marcì, Leonarda Francesca Liotta, and Sami Boufi. 2020. "Paper Functionalized with Nanostructured TiO2/AgBr: Photocatalytic Degradation of 2–Propanol under Solar Light Irradiation and Antibacterial Activity" Nanomaterials 10, no. 3: 470. https://doi.org/10.3390/nano10030470
APA StyleSboui, M., Bouattour, S., Gruttadauria, M., Marcì, G., Liotta, L. F., & Boufi, S. (2020). Paper Functionalized with Nanostructured TiO2/AgBr: Photocatalytic Degradation of 2–Propanol under Solar Light Irradiation and Antibacterial Activity. Nanomaterials, 10(3), 470. https://doi.org/10.3390/nano10030470