The Cognitive Profile of Gifted Children Compared to Those of Their Parents: A Descriptive Study Using the Wechsler Scales
Abstract
:1. Introduction
1.1. The Evaluation of Giftedness in Children
1.2. Children’s Giftedness and Parents’ Cognitive Abilities
1.3. The Present Study
2. Materials and Methods
2.1. Participants
2.2. Instruments
2.3. Data Analysis
3. Results
3.1. The Cognitive Profile of Gifted Children
3.2. The Cognitive Profile of Parents of Moderately Gifted or Gifted Children
3.3. Similarities and Differences in the Cognitive Profile of Parents and Children
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Anger, Sike, and Guido Heineck. 2010. Do smart parents raise smart children? The intergenerational transmission of cognitive abilities. Journal of Population Economics 23: 1105–32. [Google Scholar] [CrossRef] [Green Version]
- Bouchard, Thomas J., and Matthew McGue. 1981. Familial Studies of Intelligence: A Review. Science 212: 1055–59. [Google Scholar] [CrossRef] [PubMed]
- Calderon, Maria Cecilia, and John Hoddinott. 2010. The Inter-Generational Transmission of Cognitive Abilities in Guatemala, Retrieved August 6, 2010 from SSRN Electronic Journal. [CrossRef] [Green Version]
- Cao, Thuy Hong, Jae Yup Jung, and Jihvun Lee. 2017. Assessment in Gifted Education: A Review of the Literature From 2005 to 2016. Journal of Advanced Academics 28: 163–203. [Google Scholar] [CrossRef]
- Carman, Carol A. 2013. Comparing Apples and Oranges. Journal of Advanced Academics 24: 52–70. [Google Scholar] [CrossRef]
- Crabtree, Lenora M., Sonyia C. Richardson, and Chance W. Lewis. 2019. The Gifted Gap, STEM Education, and Economic Immobility. Journal of Advanced Academics 30: 203–31. [Google Scholar] [CrossRef]
- Deary, Ian J., Frank M. Spinath, and Timothy C. Bates. 2006. Genetics of intelligence. European Journal of Human Genetics 14: 690–700. [Google Scholar] [CrossRef] [Green Version]
- Deary, Ian J., Wendy Johnson, and Lorna M. Houlihan. 2009. Genetic foundations of human intelligence. Human Genetics 126: 215–32. [Google Scholar] [CrossRef] [Green Version]
- Demange, Perline A., Jouke Jan Hottenga, Abdel Abdellaoui, Espen M. Eilertsen, Margherita Malanchini, Benjamin W. Domingue, Emma Armstrong-Carter, Eveline L. de Zeeuw, Kaili Rimfeld, Dorret I. Boomsma, and et al. 2022. Estimating effects of parents’ cognitive and non-cognitive skills on offspring education using polygenic scores. Nature Communications 13: 4801. [Google Scholar] [CrossRef]
- Grönqvist, Erik, Bjorn Ockert, and Jonas Vlachos. 2010. The Intergenerational Transmission of Cognitive and Non-Cognitive Abilities, Retrieved June 21, 2010 from SSRN Electronic Journal. [CrossRef]
- Guez, Ava, Hugo Peyre, Camille Williams, Ghislaine Labouret, and Franck Ramus. 2021. The epidemiology of cognitive development. Cognition 213: 104690. [Google Scholar] [CrossRef]
- Hagmann-von Arx, Priska, Christine Sandra Meyer, and Alexander Grob. 2008. Assessing Intellectual Giftedness with the WISC-IV and the IDS. Zeitschrift Für Psychologie/Journal of Psychology 216: 172–79. [Google Scholar] [CrossRef]
- Kaufman, Alan S., Dawn P. Flanagan, Vincent C. Alfonso, and Jennifer T. Mascolo. 2006. Test Review: Wechsler Intelligence Scale for Children, Fourth Edition (WISC-IV). Journal of Psychoeducational Assessment 24: 278–95. [Google Scholar] [CrossRef]
- Keating, Daniel P. 2009. Developmental science and giftedness: An integrated life-span framework. In The development of Giftedness and Talent across the Life Span. Edited by Frances Degen, Ed Horowitz, Rena F. Subotnik and Dona J. Matthews. Washington, DC: American Psychological Association, pp. 189–208. [Google Scholar] [CrossRef]
- Kong, Feng, Zhencai Chen, Song Xue, Xu Wang, and Jia Liu. 2015. Mother’s but not father’s education predicts general fluid intelligence in emerging adulthood: Behavioral and neuroanatomical evidence. Human Brain Mapping 36: 4582–91. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lang, Margherita, Michael Matta, Laura Parolin, Cristina Morrone, and Lina Pezzuti. 2019. Cognitive Profile of Intellectually Gifted Adults: Analyzing the Wechsler Adult Intelligence Scale. Assessment 26: 929–43. [Google Scholar] [CrossRef] [PubMed]
- Liratni, Medhi, and René Pry. 2007. Psychométrie et WISC IV: Quel avenir pour l’identification des enfants à haut potentiel intellectuel? Neuropsychiatrie de l’Enfance et de l’Adolescence 55: 214–19. [Google Scholar] [CrossRef]
- Liratni, Medhi, and René Pry. 2012. Profils psychométriques de 60 enfants à haut potentiel au WISC IV. Pratiques Psychologiques 18: 63–74. [Google Scholar] [CrossRef]
- Morrone, Cristina, Lina Pezzuti, Margherita Lang, and Maria Assunta Zanetti. 2019. Analisi del profilo WISC-IV in un campione italiano di bambini e adolescenti intellettualmente gifted. Psicologia Clinica Dello Sviluppo 1: 71–96. [Google Scholar]
- Orsini, Arturo, and Lina Pezzuti. 2013. WAIS-IV: Contributo alla taratura Italiana (WAIS-IV Italian ed.). Florence: Giunti O.S. [Google Scholar]
- Orsini, Arturo, Lina Pezzuti, and Laura Picone. 2012. WISC-IV: Contributo alla taratura Italiana (WISC-IV Italian ed.). Florence: Giunti O.S. [Google Scholar]
- Pezzuti, Lina, Clara Michelotti, James Dawe, and Margherita Lang. 2022. Intellectual giftedness in elderly people assessed by Wechsler Adult Intelligence Scale–Fourth Edition: What specific features? Educational Gerontology, 1–11. [Google Scholar] [CrossRef]
- Pfeiffer, Steven I. 2012. Serving the Gifted. London: Routledge. [Google Scholar] [CrossRef]
- Plomin, Robert, and Ian J. Deary. 2015. Genetics and intelligence differences: Five special findings. Molecular Psychiatry 20: 98–108. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plomin, Robert, and Frank M. Spinath. 2004. Intelligence: Genetics, Genes, and Genomics. Journal of Personality and Social Psychology 86: 112–29. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Plomin, Robert, and Sophie von Stumm. 2018. The new genetics of intelligence. Nature Reviews Genetics 19: 148–59. [Google Scholar] [CrossRef]
- Rimm, Sylvia, Barbara J. Gilman, and Linda K. Silverman. 2008. Nontraditional Applications of Traditional Testing. In Alternative Assessments with Gifted and Talented Students. Edited by Joyce Van Tassel-Baska. Austin: Prufrock Press, pp. 175–202. [Google Scholar]
- Rowe, Ellen W., Jessica Dandridge, Alexandra Pawlush, Dawna F. Thompson, and David E. Ferrier. 2014. Exploratory and confirmatory factor analyses of the WISC-IV with gifted students. School Psychology Quarterly 29: 536–52. [Google Scholar] [CrossRef] [PubMed]
- Ruf, Debora L. 2005. Losing Our Minds: Gifted Children Left Behind. Tucson: Great Potential Press Inc. [Google Scholar]
- Sartori, Laura. 2019. Plusdotazione, giftedness, alto potenziale cognitivo, talento. In Gifted. Conoscere e Valorizzare i Giovani Plusdotati e di Talento Dentro e Fuori la Scuola. Edited by Laura Sartori and Maria Cinque. Rome: Edizioni Magi, pp. 31–42. [Google Scholar]
- Sauce, Bruno, and Louis D. Matzel. 2018. The paradox of intelligence: Heritability and malleability coexist in hidden gene-environment interplay. Psychological Bulletin 144: 26–47. [Google Scholar] [CrossRef] [PubMed]
- Silverman, Linda Kreger. 2009. The Measurement of Giftedness. In International Handbook on Giftedness. Edited by Larisa V. Shavinia. Dordrecht: Springer Netherlands, pp. 947–70. [Google Scholar] [CrossRef]
- Silverman, L. K. 2018. Assessment of giftedness. In Handbook of Giftedness in Children: Educational Theory, Research, and Best Practices, 2nd ed. Edited by Steven I. Pfeiffer. New York: Springer Science, pp. 183–207. [Google Scholar] [CrossRef]
- Sparrow, Sara S., Tina M. Newman, and Steven I. Pfeiffer. 2005. Assessment of Children Who Are Gifted with the WISC-IV. In WISC-IV Clinical Use and Interpretation. Edited by Aurelio Prifitera, Donald H. Saklofske and Lawrence G. Weiss. Amsterdam: Elsevier, pp. 281–98. [Google Scholar] [CrossRef]
- Toffalini, Enrico, Lina Pezzuti, and Cesare Cornoldi. 2017. Einstein and dyslexia: Is giftedness more frequent in children with a specific learning disorder than in typically developing children? Intelligence 62: 175–79. [Google Scholar] [CrossRef]
- Wasserman, John D. 2013. Identification of gifted learners: Traditional assessment models. In Off the Charts: Asynchrony and the Gifted Child. Edited by Christine S. Neville, Michael M. Piechowski and Stephanie S. Tolan. Unionville: Royal Fireworks Press, pp. 292–346. [Google Scholar]
- Watkins, Marley W., Sharise M. Wilson, Kasey M. Kotz, Maria C. Carbone, and Teresa Babula. 2006. Factor Structure of the Wechsler Intelligence Scale for Children–Fourth Edition Among Referred Students. Educational and Psychological Measurement 66: 975–83. [Google Scholar] [CrossRef]
- Wechsler, David. 2003. Wechsler Intelligence Scale for Children–Fourth Edition (WISC-IV). Technical and Interpretive Manual. San Antonio: The psychological Corporation. [Google Scholar]
- Worrell, Franck C., and Jesse O. Erwin. 2011. Best Practices in Identifying Students for Gifted and Talented Education Programs. Journal of Applied School Psychology 27: 319–40. [Google Scholar] [CrossRef]
- Zanetti, Maria Assunta. 2017. Alto potenziale. In Bambini e Ragazzi ad Alto Potenziale: Una Guida per Educatori e Famiglie. Edited by Maria Assunta Zanetti. Rome: Carocci, pp. 19–69. [Google Scholar]
Mothers | Fathers | |||
---|---|---|---|---|
Educational Qualification | n | % | n | % |
Junior high school | - | - | 5 | 9.1 |
High school | 10 | 18.8 | 24 | 43.6 |
Degree | 25 | 47.2 | 23 | 41.8 |
Post-graduate | 18 | 34.0 | 3 | 5.5 |
PhD | 4 | 7.5 | 1 | 1.8 |
Master | 9 | 17.0 | 1 | 1.8 |
Master + PhD | 4 | 7.5 | - | - |
Other qualifications | 1 | 19.0 | 1 | 1.8% |
Total | 53 | 100.0 | 55 | 100.0 |
Level of Performance | ||||||||
---|---|---|---|---|---|---|---|---|
Indices | Average (<110) | Above Average (110–119) | Moderately Gifted (120–29) | Gifted (≥130) | ||||
n | % | n | % | n | % | n | % | |
FSIQ | - | - | - | - | 23 | 39.0 | 36 | 61.0 |
VCI | - | - | 6 | 10.2 | 20 | 33.9 | 33 | 55.9 |
PRI | - | - | 6 | 10.2 | 17 | 28.8 | 36 | 61.0 |
WMI | 21 | 35.6 | 19 | 32.2 | 11 | 18.6 | 8 | 13.5 |
PSI | 28 | 47.5 | 12 | 20.3 | 13 | 22.0 | 6 | 10.2 |
GAI | - | - | 1 | 1.7 | 13 | 22.0 | 45 | 76.3 |
CPI | 16 | 27.1 | 21 | 35.6 | 11 | 18.6 | 11 | 18.6 |
Comparison | Mean Difference | SE | df | t | pbonferroni | ||
---|---|---|---|---|---|---|---|
VCI | - | PRI | −2.73 | 1.74 | 58 | −1.57 | .737 |
VCI | - | WMI | 16.41 | 1.94 | 58 | 8.48 | <.001 |
VCI | - | PSI | 18.95 | 2.35 | 58 | 8.06 | <.001 |
PRI | - | WMI | 19.14 | 1.61 | 58 | 11.86 | <.001 |
PRI | - | PSI | 21.68 | 2.14 | 58 | 10.11 | <.001 |
WMI | - | PSI | 2.54 | 1.99 | 58 | 1.28 | 1 |
Number of WISC-IV Primary Indices (≥120) | n | % |
---|---|---|
4 | 9 | 15.3 |
3 | 15 | 25.4 |
2 | 28 | 47.5 |
1 | 7 | 11.9 |
0 | - | - |
Total | 59 | 100 |
(a) Mother’s Level of Performance a | ||||||||
Indices | Average (<110) | Above Average (110–119) | Moderately Gifted (120–129) | Gifted (≥130) | ||||
n | % | n | % | n | % | n | % | |
FSIQ | 3 | 5.7 | 14 | 26.4 | 23 | 43.4 | 13 | 24.5 |
VCI | 4 | 7.5 | 18 | 34.0 | 19 | 35.8 | 12 | 22.6 |
PRI | 9 | 17.0 | 16 | 30.2 | 20 | 37.7 | 8 | 15.1 |
WMI | 28 | 52.8 | 16 | 30.2 | 7 | 13.2 | 2 | 3.8 |
PSI | 14 | 26.4 | 7 | 13.2 | 14 | 26.4 | 18 | 34.0 |
GAI | 4 | 7.5 | 14 | 26.4 | 22 | 41.5 | 13 | 24.5 |
CPI | 12 | 22.6 | 14 | 26.4 | 23 | 43.4 | 4 | 7.5 |
(b) Father’s Level of Performance b | ||||||||
Indices | Average (<110) | Above Average (110–119) | Moderately Gifted (120–129) | Gifted (≥130) | ||||
n | % | n | % | n | % | n | % | |
FSIQ | 14 | 25.5 | 9 | 16.4 | 16 | 29.1 | 16 | 29.1 |
VCI | 15 | 27.3 | 10 | 18.2 | 26 | 47.3 | 4 | 7.3 |
PRI | 7 | 12.7 | 26 | 47.3 | 15 | 27.3 | 7 | 12.7 |
WMI | 31 | 56.4 | 9 | 16.4 | 12 | 21.8 | 3 | 5.5 |
PSI | 20 | 36.4 | 17 | 30.9 | 9 | 16.4 | 9 | 16.4 |
GAI | 15 | 27.3 | 14 | 25.5 | 14 | 25.5 | 12 | 21.8 |
CPI | 19 | 34.5 | 12 | 21.8 | 17 | 30.9 | 7 | 12.7 |
(a) Mother’s Sample | |||||||
Comparison | Mean Difference | SE | df | t | pbonferroni | ||
VCI | - | PRI | 1.63 | 1.55 | 48 | 1.05 | 1 |
VCI | - | WMI | 11.39 | 1.78 | 48 | 6.41 | <.001 |
VCI | - | PSI | .20 | 2.42 | 48 | .08 | 1 |
PRI | - | WMI | 9.76 | 1.51 | 48 | 6.46 | <.001 |
PRI | - | PSI | −1.43 | 2.09 | 48 | −.68 | 1 |
WMI | - | PSI | −11.18 | 2.29 | 48 | −4.88 | <.001 |
(b) Father’s Sample | |||||||
Comparison | Mean Difference | SE | df | t | pbonferroni | ||
VCI | - | PRI | −1.51 | 1.91 | 48 | −.79 | 1 |
VCI | - | WMI | 6.84 | 1.77 | 48 | 3.87 | .009 |
VCI | - | PSI | 1.86 | 1.67 | 48 | 1.11 | 1 |
PRI | - | WMI | 8.35 | 1.92 | 48 | 4.34 | .002 |
PRI | - | PSI | 3.37 | 1.75 | 48 | 1.93 | 1 |
WMI | - | PSI | −4.98 | 1.95 | 48 | −2.56 | .385 |
(a) Mother-Child Correlations 1 | (b) Father-Child Correlations 2 | |||||||
---|---|---|---|---|---|---|---|---|
r | p | ICC | CI 90% | r | p | ICC | CI 90% | |
FSIQ | .26 | (.029) | .17 | [.01; .32] | −.01 | (.514) | .00 | [−.09;.10] |
VCI | .16 | (.124) | .10 | [−.02; .23] | .08 | (.271) | .04 | [−.05; .14] |
PRI | .25 | (.034) | .14 | [−.01; .28] | .15 | (.132) | .08 | [−.03; .19] |
WMI | .22 | (.058) | .22 | [.07; .37] | .21 | (.061) | .19 | [.03; .34] |
PSI | .31 | (.013) | .25 | [.10; .40] | −.05 | (.644) | .00 | [−.17; .17] |
GAI | .24 | (.045) | .10 | [−.02; .23] | −.01 | (.518) | .00 | [−.06; .08] |
CPI | .22 | (.056) | .23 | [.07; .38] | .01 | (.460) | .01 | [−.15; .18] |
Children | Mothers | Tests of Significant Differences | |||||
---|---|---|---|---|---|---|---|
M | SD | M | SD | Diff. | t(52) | p | |
FSIQ | 132.36 | 7.74 | 123.38 | 9.49 | 8.98 | 6.19 | <.001 |
VCI | 131.66 | 8.86 | 120.81 | 9.64 | 10.85 | 6.59 | <.001 |
PRI | 133.00 | 10.72 | 119.32 | 10.46 | 13.68 | 7.70 | <.001 |
WMI | 114.15 | 9.82 | 109.68 | 10.65 | 4.47 | 2.54 | .014 |
PSI | 111.83 | 14.00 | 121.09 | 13.83 | −9.26 | −4.11 | <.001 |
GAI | 136.38 | 8.37 | 122.55 | 9.57 | 13.83 | 9.04 | <.001 |
CPI | 116.25 | 11.96 | 118.19 | 10.72 | −1.94 | −1.00 | .323 |
Children | Fathers | Tests of Significant Differences | |||||
---|---|---|---|---|---|---|---|
M | SD | M | SD | Diff. | t(52) | p | |
FSIQ | 133.38 | 8.22 | 119.42 | 13.12 | 13.96 | 6.67 | <.001 |
VCI | 132.07 | 9.11 | 116.00 | 13.29 | 16.07 | 7.71 | <.001 |
PRI | 134.15 | 10.99 | 118.73 | 11.53 | 15.42 | 7.80 | <.001 |
WMI | 114.62 | 10.80 | 110.64 | 15.15 | 3.98 | 1.77 | .082 |
PSI | 112.95 | 14.09 | 114.31 | 12.25 | −1.36 | −.53 | .599 |
GAI | 137.24 | 8.46 | 119.55 | 11.82 | 17.69 | 9.00 | <.001 |
CPI | 117.22 | 12.60 | 114.69 | 14.23 | 2.53 | .99 | .325 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pezzuti, L.; Farese, M.; Dawe, J.; Lauriola, M. The Cognitive Profile of Gifted Children Compared to Those of Their Parents: A Descriptive Study Using the Wechsler Scales. J. Intell. 2022, 10, 91. https://doi.org/10.3390/jintelligence10040091
Pezzuti L, Farese M, Dawe J, Lauriola M. The Cognitive Profile of Gifted Children Compared to Those of Their Parents: A Descriptive Study Using the Wechsler Scales. Journal of Intelligence. 2022; 10(4):91. https://doi.org/10.3390/jintelligence10040091
Chicago/Turabian StylePezzuti, Lina, Morena Farese, James Dawe, and Marco Lauriola. 2022. "The Cognitive Profile of Gifted Children Compared to Those of Their Parents: A Descriptive Study Using the Wechsler Scales" Journal of Intelligence 10, no. 4: 91. https://doi.org/10.3390/jintelligence10040091
APA StylePezzuti, L., Farese, M., Dawe, J., & Lauriola, M. (2022). The Cognitive Profile of Gifted Children Compared to Those of Their Parents: A Descriptive Study Using the Wechsler Scales. Journal of Intelligence, 10(4), 91. https://doi.org/10.3390/jintelligence10040091