Computational Analysis of a Novel Iterative Scheme with an Application
Abstract
:1. Introduction
2. Preliminaries
- ().
- ;
- ().
- ;
- ().
- .
3. Novel Iteration and Convergence Results
- (i)
- Mann sequence (2) is convergent to the fixed point.
- (ii)
- New iteration sequence (12) is convergent to the fixed point.
4. Numerical Examples
5. Numerical Computations
6. Application of Volterra Integral Equation
- ()
- The map is essentially continuous.
- ()
- The two maps are also continuous such that one has constants with
- ()
- For , where .
7. Conclusions and Future Plan of Work
- (i)
- A new fixed-point iterative scheme for nonlinear problems in a Banach space setting is provided.
- (ii)
- The convergence result for the iterative scheme is proved under some mild conditions.
- (iii)
- Some qualitative results associated with stability, data dependency, and order are proven.
- (iv)
- Many new nonlinear problems are constructed, and it has been proven numerically that our new iteration converges faster to the solution as compared to the other iterative schemes.
- (v)
- An application of our new iterative scheme is provided for finding solutions to the 2D nonlinear Volterra Integral Equation (VIE).
- (vi)
- In the future, we will extend the presented results to the setting of multi-valued mappings and common fixed-point problems.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Alakoya, T.O.; Mewomo, O.T. Viscosity S-iteration method with inertial technique and self-adaptive step size for split variational inclusion, equilibrium and fixed point problems. Comput. Appl. Math. 2022, 41, 39. [Google Scholar] [CrossRef]
- Alakoya, T.; Uzor, V.; Mewomo, O. A new projection and contraction method for solving split monotone variational inclusion, pseudomonotone variational inequality, and common fixed point problems. Comput. Appl. Math. 2022, 42, 3. [Google Scholar] [CrossRef]
- Alakoya, T.O.; Uzor, V.A.; Mewomo, O.T.; Yao, J.C. On a system of monotone variational inclusion problems with fixed point constraint. J. Inequal. Appl. 2022, 47, 47. [Google Scholar] [CrossRef]
- Uzor, V.A.; Alakoya, T.O.; Mewomo, O.T. On split monotone variational inclusion problem with multiple output sets with fixed point constraints. Comput. Methods Appl. Math. 2023, 23, 729–749. [Google Scholar] [CrossRef]
- Shatanawi, W.; Shatnawi, T.A.M. New fixed point results in controlled metric type spaces based on new contractive conditions. Aims Math. 2023, 8, 9314–9330. [Google Scholar] [CrossRef]
- Joshi, M.; Tomar, A.; Abdeljawad, T. On fixed points, their geometry and application to satellite web coupling problem in S-metric spaces. Aims Math. 2023, 8, 4407–4441. [Google Scholar] [CrossRef]
- Rezazgui, A.Z.; Tallafha, A.A.; Shatanawi, W. Common fixed point results via Av α-contractions with a pair and two pairs of self-mappings in the frame of an extended quasi b-metric space. Aims Math. 2023, 8, 7225–7241. [Google Scholar] [CrossRef]
- Browder, F.E. Nonexpansive nonlinear operators in Banach space. Proc. Natl. Acad. Sci. USA 1965, 54, 1041–1044. [Google Scholar] [CrossRef]
- Gohde, D. Zum Prinzip der Kontraktiven Abbildung. Math. Nachr. 1965, 30, 251–258. [Google Scholar] [CrossRef]
- Kirk, W.A. A fixed point theorem for mappings which do not increase distances. Am. Math. Mon. 1965, 72, 1004–1006. [Google Scholar] [CrossRef]
- Rhoades, B. Fixed point iterations for certain nonlinear mappings. J. Math. Anal. Appl. 1994, 183, 118–120. [Google Scholar] [CrossRef]
- Rhoades, B. Some theorems on weakly contractive maps. Nonlinear Anal. TMA 2001, 47, 2683–2693. [Google Scholar] [CrossRef]
- Suzuki, T. Fixed point theorems and convergence theorems for some generalized nonexpansive mapping. J. Math. Anal. Appl. 2008, 340, 1088–1095. [Google Scholar] [CrossRef]
- Mann, W.R. Mean value methods in iteration. Proc. Am. Math. Soc. 1953, 4, 506–510. [Google Scholar] [CrossRef]
- Ishikawa, S. Fixed points by a new iteration method. Proc. Am. Math. Soc. 1974, 44, 147–150. [Google Scholar] [CrossRef]
- Agarwal, R.; Regan, D.O.; Sahu, D. Iterative construction of fixed points of nearly asymptotically nonexpansive mappings. J. Nonlinear Convex Anal. 2007, 8, 61–79. [Google Scholar]
- Chugh, R.; Kumar, V.; Kumar, S. Strong convergence of a new three step iterative scheme in Banach spaces. Am. J. Comput. Math. 2012, 2, 345–357. [Google Scholar] [CrossRef]
- Gursoy, F.; Karakaya, V. A Picard-S hybrid type iteration method for solving a differential equation with retarded argument. arXiv 2014, arXiv:1403.2546. [Google Scholar]
- Hacioglu, E.; Gursoy, F.; Maldar, S.; Atalan, Y.; Milovanovic, G.V. Iterative approximation of fixed points and applications to two-point second order boundary value problems and to machine learning. Appl. Numer. Math. 2021, 167, 143–172. [Google Scholar] [CrossRef]
- Kanwar, V.; Sharma, P.; Argyros, I.K.; Behl, R.; Argyros, C.; Ahmadian, A.; Salimi, M. Geometrically constructed family of the simple fixed point iteration method. Mathematics 2021, 9, 694. [Google Scholar] [CrossRef]
- Karakaya, V.; Atalan, Y.; Dogan, K.; Bouzara, N.E.H. Some fixed point results for a new three steps iteration process in Banach spaces. Fixed Point Theory 2017, 18, 625–640. [Google Scholar] [CrossRef]
- Mebawondu, A.A.; Mewomo, O.T. Fixed point results for a new three steps iteration process. Ann. Univ. Craiova-Math. Comput. Sci. Ser. 2019, 46, 298–319. [Google Scholar]
- Ullah, K.; Arshad, M. Numerical reckoning fixed points for Suzuki’s generalized nonexpansive mappings via new iteration process. Filomat 2018, 32, 187–196. [Google Scholar] [CrossRef]
- Abbas, H.; Mebawondu, A.; Mewomo, O. Some results for a new three steps iteration scheme in Banach spaces. Bull. Transilv. Univ. Brasov. Math. Inform. Phys. Ser. III 2018, 11, 1–18. [Google Scholar]
- Abbas, M.; Nazir, T. A new faster iteration process applied to constrained minimization and feasibility problems. Math. Vesnik 2014, 66, 223–234. [Google Scholar]
- Noor, M.A. New approximation schemes for general variational inequalities. J. Math. Anal. Appl. 2000, 251, 217–229. [Google Scholar] [CrossRef]
- Phuengrattana, W.; Suantai, S. On the rate of convergence of Mann, Ishikawa, Noor and SP-iterations for continuous functions on an arbitrary interval. J. Comput.Appl. Math. 2011, 235, 3006–3014. [Google Scholar] [CrossRef]
- Sharma, P.; Ramos, H.; Behl, R.; Kanwar, V. A new three-step fixed point iteration scheme with strong convergence and applications. J. Comput. Appl. Math. 2023, 430, 115242. [Google Scholar] [CrossRef]
- Suantai, S. Weak and strong convergence criteria of Noor iterations for asymptotically nonexpansive mappings. J. Math. Anal. Appl. 2005, 311, 506–517. [Google Scholar] [CrossRef]
- Thakur, B.S.; Thakur, D.; Postolache, M. A new iterative scheme for approximating fixed points of nonexpansive mappings. Filomat 2016, 30, 2711–2720. [Google Scholar] [CrossRef]
- Thianwan, S. Common fixed points of new iterations for two asymptotically nonexpansive nonself-mapping in a Banach space. J. Comput. Appl. Math. 2009, 224, 688–695. [Google Scholar] [CrossRef]
- Zamfirescu, T. Fix point theorems in metric space. Arch. Math. 1972, 23, 292–298. [Google Scholar] [CrossRef]
- Berinde, V. Iterative Approximation of Fixed Points; Springer: Berlin/Heidelberg, Germany, 2007. [Google Scholar]
- Osilike, M. Stability results for fixed point iteration procedures. J. Nigerian Math. Soc. 1995, 14, 17–29. [Google Scholar]
- Imoru, C.O.; Olatinwo, M.O. On the stability of Picard and Mann iteration processes. Carpathian J. Math. 2003, 19, 155–160. [Google Scholar]
- Berinde, V. On the stability of some fixed point procedures. Bul. Stiint. Univ. Baia Mare Ser. B Mat.-Inform. 2002, 18, 7–14. [Google Scholar]
- Weng, X. Fixed point iteration for local strictly pseudo-contractive mapping. Proc. Am. Math. Soc. 1991, 113, 727–731. [Google Scholar]
- Harder, A.M. Fixed Point Theory and Stability Results for Fixed Point Iteration Procedures. Ph.D Thesis, University of Missouri, Rolla, MI, USA, 1987. [Google Scholar]
- Berinde, V. Picard iteration converges faster than Mann iteration for a class of quasi-contravtive operators. In Fixed Point Theory and Applications; Springer: Berlin/Heidelberg, Germany, 2004; Volume 2, pp. 1–9. [Google Scholar]
- Chauhan, H.V.S.; Singh, B.; Tunc, C.; Tunc, O. On the existence of solutions of non-linear 2D Volterra integral equations in a Banach Space. Rev. Real Acad. Cienc. Exactas Fis. Nat. Ser. A-Mat. 2022, 116, 101. [Google Scholar] [CrossRef]
- Deep, A.; Deepmala, T.C. On the existence of solutions of some non-linear functional integral equations in Banach algebra with applications. Arab. J. Basic Appl. Sci. 2020, 27, 279–286. [Google Scholar] [CrossRef]
n | New | Sharma | Karakaya | M | Abbas |
---|---|---|---|---|---|
1 | 0.6178569153 | 0.6097295906 | 0.6283899067 | 0.6261605913 | 0.6287944212 |
2 | 0.0001770274 | 0.0082029991 | 0.0105834463 | 0.0083058168 | 0.0109966797 |
3 | 4.59584 (−8) | 0.0001001622 | 0.0002341580 | 0.0001844357 | 0.0002431310 |
4 | 1.19311 (−11) | 1.22158 (−6) | 6.86816 (−6) | 5.40926 (−6) | 7.13147 (−6) |
5 | 3.10862 (−15) | 1.48984 (−8) | 2.48667 (−7) | 1.95847 (−7) | 2.58200 (−7) |
6 | 0.0000000000 | 1.81700 (−10) | 1.06332 (−8) | 8.37459 (−9) | 1.10408 (−8) |
7 | 0.0000000000 | 2.21600 (−12) | 5.21333 (−10) | 4.10595 (−10) | 5.41319 (−10) |
8 | 0.0000000000 | 2.70894 (−14) | 2.86974 (−11) | 2.26016 (−11) | 2.97966 (−11) |
9 | 0.0000000000 | 2.22044 (−16) | 1.74638 (−12) | 1.37512 (−12) | 1.81366 (−12) |
10 | 0.0000000000 | 0.0000000000 | 1.16573 (−13) | 9.12603 (−14) | 1.20792 (−13) |
n | New | Sharma | Karakaya | M | Abbas |
---|---|---|---|---|---|
1 | 0.4071498001 | 0.4017526881 | 0.0912785378 | 0.0930058087 | 0.0924390089 |
2 | 0.0043524550 | 0.0098843889 | 0.0028488193 | 0.0046373364 | 0.0040510574 |
3 | 0.0000352918 | 0.0001730132 | 0.0001068721 | 0.0001704100 | 0.0001502011 |
4 | 2.95231 (−7) | 3.25208 (−6) | 3.99034 (−6) | 6.36753 (−6) | 5.61060 (−6) |
5 | 2.46912 (−9) | 6.10544 (−8) | 1.49016 (−7) | 2.37784 (−7) | 2.09520 (−7) |
6 | 2.06500 (−11) | 1.14625 (−9) | 5.56487 (−9) | 8.87982 (−9) | 7.82433 (−9) |
7 | 1.72528 (−13) | 2.15203 (−11) | 2.07814 (−10) | 3.31608 (−10) | 2.92191 (−10) |
8 | 1.33226 (−15) | 4.04121 (−13) | 7.76079 (−12) | 1.23835 (−11) | 1.09116 (−11) |
9 | 0.0000000000 | 7.77156 (−15) | 2.89879 (−13) | 4.62407 (−13) | 4.07451 (−13) |
10 | 0.0000000000 | 2.22044 (−16) | 1.07691 (−14) | 1.73194 (−14) | 1.50990 (−14) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmad, F.; Ullah, K.; Ahmad, J.; Aloqaily, A.; Mlaiki, N. Computational Analysis of a Novel Iterative Scheme with an Application. Computation 2024, 12, 192. https://doi.org/10.3390/computation12090192
Ahmad F, Ullah K, Ahmad J, Aloqaily A, Mlaiki N. Computational Analysis of a Novel Iterative Scheme with an Application. Computation. 2024; 12(9):192. https://doi.org/10.3390/computation12090192
Chicago/Turabian StyleAhmad, Fayyaz, Kifayat Ullah, Junaid Ahmad, Ahmad Aloqaily, and Nabil Mlaiki. 2024. "Computational Analysis of a Novel Iterative Scheme with an Application" Computation 12, no. 9: 192. https://doi.org/10.3390/computation12090192
APA StyleAhmad, F., Ullah, K., Ahmad, J., Aloqaily, A., & Mlaiki, N. (2024). Computational Analysis of a Novel Iterative Scheme with an Application. Computation, 12(9), 192. https://doi.org/10.3390/computation12090192