Intraplatelet Calcium Signaling Regulates Thrombus Growth under Flow: Insights from a Multiscale Model
Abstract
:1. Introduction
2. Multiscale Modeling of Platelet–Fibrin Thrombus Formation
2.1. The Coagulation Cascade
2.2. Blood Flow and Clot Permeability
2.3. Platelet Transport and Aggregation
2.4. Intraplatelet Calcium Signaling
2.5. Numerical Implementation
3. Results
3.1. Simulation of Thrombus Growth under Normal Physiological Conditions
3.2. Threshold Response of Platelet Core Formation to the Interplatelet Contact-Dependent Activation Rate
3.3. P2Y Blockade Reduces Platelet Recruitment in the Thrombus Shell but Does Not Decrease the Number of Cells in the Thrombus Core
3.4. Platelet Size Heterogeneity Reduces the Size of the Clot
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A. The Consistency of the Numerical Mesh
Appendix B. Model Validation
References
- Jackson, S.P.; Nesbitt, W.S.; Westein, E. Dynamics of platelet thrombus formation. J. Thromb. Haemost. 2009, 7, 17–20. [Google Scholar] [CrossRef] [PubMed]
- Brass, L.F.; Diamond, S.L. Transport physics and biorheology in the setting of hemostasis and thrombosis. J. Thromb. Haemost. 2016, 14, 906–917. [Google Scholar] [CrossRef] [PubMed]
- Furie, B.; Furie, B.C. Thrombus formation in vivo. J. Clin. Investig. 2005, 115, 3355–3362. [Google Scholar] [CrossRef] [PubMed]
- Zilberman-Rudenko, J.; Sylman, J.L.; Lakshmanan, H.H.S.; McCarty, O.J.T.; Maddala, J. Dynamics of Blood Flow and Thrombus Formation in a Multi-Bypass Microfluidic Ladder Network. Cell. Mol. Bioeng. 2017, 10, 16–29. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.T.; Aubry, N.; Antaki, J.F.; Massoudi, M. Simulation of blood flow in a sudden expansion channel and a coronary artery. J. Comput. Appl. Math. 2020, 376, 112856. [Google Scholar] [CrossRef] [PubMed]
- Mountrakis, L.; Lorenz, E.; Malaspinas, O.; Alowayyed, S.; Chopard, B.; Hoekstra, A.G. Parallel performance of an IB-LBM suspension simulation framework. J. Comput. Sci. 2015, 9, 45–50. [Google Scholar] [CrossRef]
- Rink, T.; Sage, S. Calcium signaling in human platelets. Annu. Rev. Physiol. 1990, 52, 431–449. [Google Scholar] [CrossRef]
- Shattil, S.; Brass, L. Induction of the fibrinogen receptor on human platelets by intracellular mediators. J. Biol. Chem. 1987, 262, 992–1000. [Google Scholar] [CrossRef]
- Hathaway, D.R.; Adelstein, R.S. Human platelet myosin light chain kinase requires the calcium-binding protein calmodulin for activity. Proc. Natl. Acad. Sci. USA 1979, 76, 1653–1657. [Google Scholar] [CrossRef]
- Chen, Y.; Ju, L.A.; Zhou, F.; Liao, J.; Xue, L.; Su, Q.P.; Jin, D.; Yuan, Y.; Lu, H.; Jackson, S.P.; et al. An integrin αIIbβ3 intermediate affinity state mediates biomechanical platelet aggregation. Nat. Mater. 2019, 18, 760–769. [Google Scholar] [CrossRef]
- Mills, D.C. ADP receptors on platelets. Thromb. Haemost. 1996, 76, 0835–0856. [Google Scholar] [CrossRef]
- Brass, L.F. Thrombin and platelet activation. Chest 2003, 124, 18S–25S. [Google Scholar] [CrossRef] [PubMed]
- Leiderman, K.; Fogelson, A.L. Grow with the flow: A spatial–temporal model of platelet deposition and blood coagulation under flow. Math. Med. Biol. J. IMA 2011, 28, 47–84. [Google Scholar] [CrossRef] [PubMed]
- Davie, E.W.; Fujikawa, K.; Kisiel, W. The coagulation cascade: Initiation, maintenance, and regulation. Biochemistry 1991, 30, 10363–10370. [Google Scholar] [CrossRef] [PubMed]
- Kim, O.V.; Xu, Z.; Rosen, E.D.; Alber, M.S. Fibrin networks regulate protein transport during thrombus development. PLoS Comput. Biol. 2013, 9, e1003095. [Google Scholar] [CrossRef] [PubMed]
- Belyaev, A.; Dunster, J.L.; Gibbins, J.M.; Panteleev, M.A.; Volpert, V. Modeling thrombosis in silico: Frontiers, challenges, unresolved problems and milestones. Phys. Life Rev. 2018, 26, 57–95. [Google Scholar] [CrossRef]
- Leiderman, K.; Fogelson, A. An overview of mathematical modeling of thrombus formation under flow. Thromb. Res. 2014, 133, S12–S14. [Google Scholar] [CrossRef]
- Bouchnita, A.; Terekhov, K.; Nony, P.; Vassilevski, Y.; Volpert, V. A mathematical model to quantify the effects of platelet count, shear rate, and injury size on the initiation of blood coagulation under venous flow conditions. PLoS ONE 2020, 15, e0235392. [Google Scholar] [CrossRef]
- Bouchnita, A.; Galochkina, T.; Kurbatova, P.; Nony, P.; Volpert, V. Conditions of microvessel occlusion for blood coagulation in flow. Int. J. Numer. Methods Biomed. Eng. 2017, 33, e2850. [Google Scholar] [CrossRef]
- Zheng, X.; Yazdani, A.; Li, H.; Humphrey, J.D.; Karniadakis, G.E. A three-dimensional phase-field model for multiscale modeling of thrombus biomechanics in blood vessels. PLoS Comput. Biol. 2020, 16, e1007709. [Google Scholar] [CrossRef]
- Bodnár, T.; Sequeira, A. Numerical simulation of the coagulation dynamics of blood. Comput. Math. Methods Med. 2008, 9, 83–104. [Google Scholar] [CrossRef]
- Govindarajan, V.; Rakesh, V.; Reifman, J.; Mitrophanov, A.Y. Computational study of thrombus formation and clotting factor effects under venous flow conditions. Biophys. J. 2016, 110, 1869–1885. [Google Scholar] [CrossRef] [PubMed]
- Leiderman, K.; Fogelson, A.L. The influence of hindered transport on the development of platelet thrombi under flow. Bull. Math. Biol. 2013, 75, 1255–1283. [Google Scholar] [CrossRef] [PubMed]
- Barrett, A.; Brown, J.A.; Smith, M.A.; Woodward, A.; Vavalle, J.P.; Kheradvar, A.; Griffith, B.E.; Fogelson, A.L. A model of fluid–structure and biochemical interactions for applications to subclinical leaflet thrombosis. Int. J. Numer. Methods Biomed. Eng. 2023, 39, e3700. [Google Scholar] [CrossRef] [PubMed]
- Wu, W.T.; Jamiolkowski, M.A.; Wagner, W.R.; Aubry, N.; Massoudi, M.; Antaki, J.F. Multi-constituent simulation of thrombus deposition. Sci. Rep. 2017, 7, 42720. [Google Scholar] [CrossRef] [PubMed]
- Bouchnita, A.; Belyaev, A.V.; Volpert, V. Multiphase continuum modeling of thrombosis in aneurysms and recirculation zones. Phys. Fluids 2021, 33, 093314. [Google Scholar] [CrossRef]
- Xu, S.; Xu, Z.; Kim, O.V.; Litvinov, R.I.; Weisel, J.W.; Alber, M. Model predictions of deformation, embolization and permeability of partially obstructive blood clots under variable shear flow. J. R. Soc. Interface 2017, 14, 20170441. [Google Scholar] [CrossRef] [PubMed]
- Filipovic, N.; Kojic, M.; Tsuda, A. Modelling thrombosis using dissipative particle dynamics method. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2008, 366, 3265–3279. [Google Scholar] [CrossRef]
- Al-Saad, M.; Suarez, C.; Obeidat, A.; Bordas, S.; Kulasegaram, S. Application of smooth particle hydrodynamics method for modelling blood flow with thrombus formation. Comput. Model. Eng. Sci. 2020, 122, 831–862. [Google Scholar] [CrossRef]
- Yazdani, A.; Deng, Y.; Li, H.; Javadi, E.; Li, Z.; Jamali, S.; Lin, C.; Humphrey, J.D.; Mantzoros, C.S.; Em Karniadakis, G. Integrating blood cell mechanics, platelet adhesive dynamics and coagulation cascade for modelling thrombus formation in normal and diabetic blood. J. R. Soc. Interface 2021, 18, 20200834. [Google Scholar] [CrossRef]
- Yazdani, A.; Li, H.; Humphrey, J.D.; Karniadakis, G.E. A general shear-dependent model for thrombus formation. PLoS Comput. Biol. 2017, 13, e1005291. [Google Scholar] [CrossRef] [PubMed]
- Kaneva, V.N.; Dunster, J.L.; Volpert, V.; Ataullahanov, F.; Panteleev, M.A.; Nechipurenko, D.Y. Modeling thrombus shell: Linking adhesion receptor properties and macroscopic dynamics. Biophys. J. 2021, 120, 334–351. [Google Scholar] [CrossRef] [PubMed]
- Tosenberger, A.; Ataullakhanov, F.; Bessonov, N.; Panteleev, M.; Tokarev, A.; Volpert, V. Modelling of thrombus growth in flow with a DPD-PDE method. J. Theor. Biol. 2013, 337, 30–41. [Google Scholar] [CrossRef] [PubMed]
- Tsyu, N.G.; Belyaev, A.V. Coarse-grained simulations of von Willebrand factor adsorption to collagen with consequent platelet recruitment. Int. J. Numer. Methods Biomed. Eng. 2023, 39, e3747. [Google Scholar] [CrossRef] [PubMed]
- Shankar, K.N.; Zhang, Y.; Sinno, T.; Diamond, S.L. A three-dimensional multiscale model for the prediction of thrombus growth under flow with single-platelet resolution. PLoS Comput. Biol. 2022, 18, e1009850. [Google Scholar] [CrossRef] [PubMed]
- Pivkin, I.V.; Richardson, P.D.; Karniadakis, G. Blood flow velocity effects and role of activation delay time on growth and form of platelet thrombi. Proc. Natl. Acad. Sci. USA 2006, 103, 17164–17169. [Google Scholar] [CrossRef] [PubMed]
- Li, G.; Qiang, Y.; Li, H.; Li, X.; Dao, M.; Karniadakis, G.E. In silico and in vitro study of the adhesion dynamics of erythrophagocytosis in sickle cell disease. Biophys. J. 2023, 122, 2590–2604. [Google Scholar] [CrossRef]
- Fogelson, A.L.; Guy, R.D. Immersed-boundary-type models of intravascular platelet aggregation. Comput. Methods Appl. Mech. Eng. 2008, 197, 2087–2104. [Google Scholar] [CrossRef]
- Bouchnita, A.; Volpert, V. A multiscale model of platelet-fibrin thrombus growth in the flow. Comput. Fluids 2019, 184, 10–20. [Google Scholar] [CrossRef]
- Peskin, C.S. Flow patterns around heart valves. In Proceedings of the Third International Conference on Numerical Methods in Fluid Mechanics: Vol. II Problems of Fluid Mechanics; Springer: Berlin/Heidelberg, Germany, 2007; pp. 214–221. [Google Scholar]
- Terekhov, K.M.; Butakov, I.D.; Danilov, A.A.; Vassilevski, Y.V. Dynamic adaptive moving mesh finite-volume method for the blood flow and coagulation modeling. Int. J. Numer. Methods Biomed. Eng. 2023, 39, e3731. [Google Scholar] [CrossRef]
- Lenoci, L.; Duvernay, M.; Satchell, S.; DiBenedetto, E.; Hamm, H.E. Mathematical model of PAR1-mediated activation of human platelets. Mol. BioSyst. 2011, 7, 1129–1137. [Google Scholar] [CrossRef] [PubMed]
- Kleppe, R.; Jonassen, I.; Døskeland, S.O.; Selheim, F. Mathematical modelling of nitric oxide/cyclic GMP/cyclic AMP signalling in platelets. Int. J. Mol. Sci. 2018, 19, 612. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.Y.; Diamond, S.L. A human platelet calcium calculator trained by pairwise agonist scanning. PLoS Comput. Biol. 2015, 11, e1004118. [Google Scholar] [CrossRef] [PubMed]
- Chatterjee, M.S.; Purvis, J.E.; Brass, L.F.; Diamond, S.L. Pairwise agonist scanning predicts cellular signaling responses to combinatorial stimuli. Nat. Biotechnol. 2010, 28, 727–732. [Google Scholar] [CrossRef] [PubMed]
- Lu, Y.; Lee, M.Y.; Zhu, S.; Sinno, T.; Diamond, S.L. Multiscale simulation of thrombus growth and vessel occlusion triggered by collagen/tissue factor using a data-driven model of combinatorial platelet signalling. Math. Med. Biol. J. 2017, 34, 523–546. [Google Scholar] [CrossRef] [PubMed]
- Ratto, N.; Bouchnita, A.; Chelle, P.; Marion, M.; Panteleev, M.; Nechipurenko, D.; Tardy-Poncet, B.; Volpert, V. Patient-specific modelling of blood coagulation. Bull. Math. Biol. 2021, 83, 50. [Google Scholar] [CrossRef] [PubMed]
- Falati, S.; Gross, P.; Merrill-Skoloff, G.; Croce, K.; Furie, B.; Furie, B. In vivo real time imaging of arterial thrombus formation reveals P-selectin-and PSGL-1-mediated tissue factor accumulation as a mechanism for fibrin clot generation. In Blood; American Society of Hematology: Washington, DC, USA, 2001; Volume 98, p. 823A. [Google Scholar]
- Krasotkina, Y.V.; Sinauridze, E.I.; Ataullakhanov, F.I. Spatiotemporal dynamics of fibrin formation and spreading of active thrombin entering non-recalcified plasma by diffusion. Biochim. Biophys. Acta (BBA)-Gen. Subj. 2000, 1474, 337–345. [Google Scholar] [CrossRef]
- Wufsus, A.R.; Macera, N.; Neeves, K. The hydraulic permeability of blood clots as a function of fibrin and platelet density. Biophys. J. 2013, 104, 1812–1823. [Google Scholar] [CrossRef] [PubMed]
- Nesbitt, W.S.; Giuliano, S.; Kulkarni, S.; Dopheide, S.M.; Harper, I.S.; Jackson, S.P. Intercellular calcium communication regulates platelet aggregation and thrombus growth. J. Cell Biol. 2003, 160, 1151–1161. [Google Scholar] [CrossRef]
- Covic, L.; Gresser, A.L.; Kuliopulos, A. Biphasic kinetics of activation and signaling for PAR1 and PAR4 thrombin receptors in platelets. Biochemistry 2000, 39, 5458–5467. [Google Scholar] [CrossRef]
- Dolan, A.T.; Diamond, S.L. Systems modeling of Ca2+ homeostasis and mobilization in platelets mediated by IP3 and store-operated Ca2+ entry. Biophys. J. 2014, 106, 2049–2060. [Google Scholar] [CrossRef]
- Chorin, A.J. Numerical solution of the Navier-Stokes equations. Math. Comput. 1968, 22, 745–762. [Google Scholar] [CrossRef]
- Noris, P.; Biino, G.; Pecci, A.; Civaschi, E.; Savoia, A.; Seri, M.; Melazzini, F.; Loffredo, G.; Russo, G.; Bozzi, V.; et al. Platelet diameters in inherited thrombocytopenias: Analysis of 376 patients with all known disorders. Blood J. Am. Soc. Hematol. 2014, 124, e4–e10. [Google Scholar] [CrossRef]
- Brambilla, M.; Canzano, P.; Becchetti, A.; Tremoli, E.; Camera, M. Alterations in platelets during SARS-CoV-2 infection. Platelets 2022, 33, 192–199. [Google Scholar] [CrossRef]
- Frojmovic, M.M.; Milton, J.G. Human platelet size, shape, and related functions in health and disease. Physiol. Rev. 1982, 62, 185–261. [Google Scholar] [CrossRef] [PubMed]
- Shen, F.; Kastrup, C.J.; Liu, Y.; Ismagilov, R.F. Threshold response of initiation of blood coagulation by tissue factor in patterned microfluidic capillaries is controlled by shear rate. Arterioscler. Thromb. Vasc. Biol. 2008, 28, 2035–2041. [Google Scholar] [CrossRef]
- Tomaiuolo, M.; Stalker, T.J.; Welsh, J.D.; Diamond, S.L.; Sinno, T.; Brass, L.F. A systems approach to hemostasis: 2. Computational analysis of molecular transport in the thrombus microenvironment. Blood J. Am. Soc. Hematol. 2014, 124, 1816–1823. [Google Scholar] [CrossRef]
- Tomaiuolo, M.; Brass, L.F.; Stalker, T.J. Regulation of platelet activation and coagulation and its role in vascular injury and arterial thrombosis. Interv. Cardiol. Clin. 2017, 6, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Stalker, T.J.; Traxler, E.A.; Wu, J.; Wannemacher, K.M.; Cermignano, S.L.; Voronov, R.; Diamond, S.L.; Brass, L.F. Hierarchical organization in the hemostatic response and its relationship to the platelet-signaling network. Blood J. Am. Soc. Hematol. 2013, 121, 1875–1885. [Google Scholar] [CrossRef]
- Welsh, J.D.; Muthard, R.W.; Stalker, T.J.; Taliaferro, J.P.; Diamond, S.L.; Brass, L.F. A systems approach to hemostasis: 4. How hemostatic thrombi limit the loss of plasma-borne molecules from the microvasculature. Blood J. Am. Soc. Hematol. 2016, 127, 1598–1605. [Google Scholar] [CrossRef]
- Neeves, K.; Maloney, S.; Fong, K.; Schmaier, A.; Kahn, M.; Brass, L.; Diamond, S.L. Microfluidic focal thrombosis model for measuring murine platelet deposition and stability: PAR4 signaling enhances shear-resistance of platelet aggregates. J. Thromb. Haemost. 2008, 6, 2193–2201. [Google Scholar] [CrossRef] [PubMed]
- Handtke, S.; Thiele, T. Large and small platelets—(When) do they differ? J. Thromb. Haemost. 2020, 18, 1256–1267. [Google Scholar] [CrossRef] [PubMed]
- Stalker, T.J.; Welsh, J.D.; Tomaiuolo, M.; Wu, J.; Colace, T.V.; Diamond, S.L.; Brass, L.F. A systems approach to hemostasis: 3. Thrombus consolidation regulates intrathrombus solute transport and local thrombin activity. Blood J. Am. Soc. Hematol. 2014, 124, 1824–1831. [Google Scholar] [CrossRef] [PubMed]
- Masalceva, A.A.; Kaneva, V.N.; Panteleev, M.A.; Ataullakhanov, F.; Volpert, V.; Afanasyev, I.; Nechipurenko, D.Y. Analysis of microvascular thrombus mechanobiology with a novel particle-based model. J. Biomech. 2022, 130, 110801. [Google Scholar] [CrossRef]
- Wu, Z.; Xu, Z.; Kim, O.; Alber, M. Three-dimensional multi-scale model of deformable platelets adhesion to vessel wall in blood flow. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20130380. [Google Scholar] [CrossRef] [PubMed]
- Kim, O.V.; Litvinov, R.I.; Alber, M.S.; Weisel, J.W. Quantitative structural mechanobiology of platelet-driven blood clot contraction. Nat. Commun. 2017, 8, 1274. [Google Scholar] [CrossRef] [PubMed]
- Michael, C.; Pancaldi, F.; Britton, S.; Kim, O.V.; Peshkova, A.D.; Vo, K.; Xu, Z.; Litvinov, R.I.; Weisel, J.W.; Alber, M. Combined computational modeling and experimental study of the biomechanical mechanisms of platelet-driven contraction of fibrin clots. Commun. Biol. 2023, 6, 869. [Google Scholar] [CrossRef] [PubMed]
- Bouchnita, A.; Nony, P.; Llored, J.P.; Volpert, V. Combining mathematical modeling and deep learning to make rapid and explainable predictions of the patient-specific response to anticoagulant therapy under venous flow. Math. Biosci. 2022, 349, 108830. [Google Scholar] [CrossRef] [PubMed]
- Bouchnita, A.; Yadav, K.; Llored, J.P.; Gurovich, A.; Volpert, V. Thrombin Generation Thresholds for Coagulation Initiation under Flow. Axioms 2023, 12, 873. [Google Scholar] [CrossRef]
Parameter | Value | Description |
---|---|---|
2.5 s−1 | Platelet activation within 3 s of bonding [33] | |
8 nM−1 s−1 | Ca2+ activation by ADP [51] | |
0.011 nM−1 s−1 | Ca2+ activation by PAR-4 with half-life time of 145 s [52] | |
0.00962 s−1 | Ca2+ degradation with half-life time of 0.6–1.8 min [52] | |
* | 100 nM | Concentration of Ca2+ in active platelets [53] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bouchnita, A.; Volpert, V. Intraplatelet Calcium Signaling Regulates Thrombus Growth under Flow: Insights from a Multiscale Model. Computation 2024, 12, 99. https://doi.org/10.3390/computation12050099
Bouchnita A, Volpert V. Intraplatelet Calcium Signaling Regulates Thrombus Growth under Flow: Insights from a Multiscale Model. Computation. 2024; 12(5):99. https://doi.org/10.3390/computation12050099
Chicago/Turabian StyleBouchnita, Anass, and Vitaly Volpert. 2024. "Intraplatelet Calcium Signaling Regulates Thrombus Growth under Flow: Insights from a Multiscale Model" Computation 12, no. 5: 99. https://doi.org/10.3390/computation12050099
APA StyleBouchnita, A., & Volpert, V. (2024). Intraplatelet Calcium Signaling Regulates Thrombus Growth under Flow: Insights from a Multiscale Model. Computation, 12(5), 99. https://doi.org/10.3390/computation12050099