NC-TODIM-Based MAGDM under a Neutrosophic Cubic Set Environment
Abstract
:1. Introduction
2. Preliminaries
3. Comparison Strategy of Two NC-Numbers
- IfSc(©1) > Sc(©2), then ©1 > ©2.
- IfSc(©1) = Sc(©2) and Ac(©1) > Ac(©2), then ©1 > ©2.
- IfSc(©1) = Sc(©2) and Ac(©1) = Ac(©2), then ©1 = ©2.
4. NC-TODIM Based MAGDM under a NCS Environment
NC-TODIM Strategy
5. Illustrative Example
- Car company (A1)
- Food company (A2)
- Computer company (A3)
- Arms company (A4).
- Risk analysis (C1)
- Growth analysis (C2)
- Environmental impact analysis (C3).
6. Rank of Alternatives with Different Values of
Analysis on Influence of the Parameter to Ranking Order
7. Comparative Analysis and Discussion
8. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Zadeh, L.A. Fuzzy sets. Inf. Control 1965, 8, 338–356. [Google Scholar] [CrossRef]
- Chen, S.J.; Hwang, C.L. Fuzzy Multiple Attribute Decision-Making, Methods and Applications; Lecture Notes in Economics and Mathematical Systems; Springer-Verlag: Berlin/Heidelberg, Germany, 1992; Volume 375. [Google Scholar]
- Chang, T.H.; Wang, T.C. Using the fuzzy multi-criteria decision making approach for measuring the possibility of successful knowledge management. Inf. Sci. 2009, 179, 355–370. [Google Scholar] [CrossRef]
- Pramanik, S.; Mondal, K. Weighted fuzzy similarity measure based on tangent function and its application to medical diagnosis. Int. J. Innovat. Res. Sci. Engg. Tech. 2015, 4, 158–164. [Google Scholar] [CrossRef]
- Chen, C.T. Extension of the TOPSIS for group decision-making under fuzzy environment. Fuzzy Sets Syst. 2000, 114, 1–9. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, J. An integrated group decision-making method dealing with fuzzy preferences for alternatives and individual judgments for selection criteria. Group Decis. Negot. 2003, 12, 501–515. [Google Scholar] [CrossRef]
- Krohling, R.A.; Campanharo, V.C. Fuzzy TOPSIS for group decision making: A case study for accidents with oil spill in the sea. Expert Syst. Appl. 2011, 38, 4190–4197. [Google Scholar] [CrossRef]
- Xia, M.; Xu, Z. A novel method for fuzzy multi-criteria decision making. Int. J. Inf. Technol. Decis. Mak. 2014, 13, 497–519. [Google Scholar] [CrossRef]
- Mehlawat, M.K.; Guptal, P. A new fuzzy group multi-criteria decision making method with an application to the critical path selection. Int. J. Adv. Manuf. Technol. 2016, 83, 1281–1296. [Google Scholar] [CrossRef]
- Atanassov, K. Intuitionistic fuzzy sets. Fuzzy Sets Syst. 1986, 20, 87–96. [Google Scholar] [CrossRef]
- Xu, Z. Some similarity measures of intuitionistic fuzzy sets and their applications to multiple attribute decision making. Fuzzy Optim. Decis. Mak. 2007, 6, 109–121. [Google Scholar] [CrossRef]
- Mondal, K.; Pramanik, S. Intuitionistic fuzzy multi criteria group decision making approach to quality-brick selection problem. J. Appl. Quant. Methods 2014, 9, 35–50. [Google Scholar]
- Dey, P.P.; Pramanik, S.; Giri, B.C. Multi-criteria group decision making in intuitionistic fuzzy environment based on grey relational analysis for weaver selection in Khadi institution. J. Appl. Quant. Methods 2015, 10, 1–14. [Google Scholar]
- Smarandache, F. A unifying field in logics. In Neutrosophy: Neutrosophic Probability, Set and Logic; American Research Press: Rehoboth, DE, USA, 1999. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Single valued neutrosophic sets. Multispace Multistruct. 2010, 4, 410–413. [Google Scholar]
- Wang, H.; Smarandache, F.; Zhang, Y.Q.; Sunderraman, R. Interval Neutrosophic Sets and Logic: Theory and Applications in Computing; Hexis: Phoenix, AZ, USA, 2005. [Google Scholar]
- Kharal, A. A neutrosophic multi-criteria decision making method. New Math. Nat. Comput. 2014, 10, 143–162. [Google Scholar] [CrossRef]
- Ye, J. Similarity measures between interval neutrosophic sets and their multi criteria decision-making method. J. Intell. Fuzzy Syst. 2014, 26, 165–172. [Google Scholar]
- Ye, J. Multiple attribute group decision-making method with completely unknown weights based on similarity measures under single valued neutrosophic environment. J. Intell. Fuzzy Syst. 2014, 27, 2927–2935. [Google Scholar]
- Mondal, K.; Pramanik, S. Multi-criteria group decision making approach for teacher recruitment in higher education under simplified neutrosophic environment. Neutrosophic Sets Syst. 2014, 6, 28–34. [Google Scholar]
- Biswas, P.; Pramanik, S.; Giri, B.C. Entropy based grey relational analysis method for multi-attribute decision making under single valued neutrosophic assessments. Neutrosophic Sets Syst. 2014, 2, 102–110. [Google Scholar]
- Biswas, P.; Pramanik, S.; Giri, B.C. A new methodology for neutrosophic multi-attribute decision-making with unknown weight information. Neutrosophic Sets Syst. 2014, 3, 44–54. [Google Scholar]
- Biswas, P.; Pramanik, S.; Giri, B.C. Cosine similarity measure based multi-attribute decision-making with trapezoidal fuzzy neutrosophic numbers. Neutrosophic Sets Syst. 2014, 8, 46–56. [Google Scholar]
- Mondal, K.; Pramanik, S. Neutrosophic decision making model for clay-brick selection in construction field based on grey relational analysis. Neutrosophic Sets Syst. 2015, 9, 64–71. [Google Scholar]
- Mondal, K.; Pramanik, S. Neutrosophic tangent similarity measure and its application to multiple attribute decision making. Neutrosophic Sets Syst. 2015, 9, 85–92. [Google Scholar]
- Pramanik, S.; Biswas, P.; Giri, B.C. Hybrid vector similarity measures and their applications to multi-attribute decision making under neutrosophic environment. Neural Comput. Appl. 2017, 28, 1163–1176. [Google Scholar] [CrossRef]
- Sahin, R.; Küçük, A. Subsethood measure for single valued neutrosophic sets. J. Intell. Fuzzy Syst. 2015, 29, 525–530. [Google Scholar] [CrossRef]
- Ye, J. An extended TOPSIS method for multiple attribute group decision making based on single valued neutrosophic linguistic numbers. J. Intell. Fuzzy Syst. 2015, 28, 247–255. [Google Scholar]
- Biswas, P.; Pramanik, S.; Giri, B.C. TOPSIS method for multi-attribute group decision-making under single-valued neutrosophic environment. Neural Comput. Appl. 2016, 27, 727–737. [Google Scholar] [CrossRef]
- Biswas, P.; Pramanik, S.; Giri, B.C. Value and ambiguity index based ranking method of single-valued trapezoidal neutrosophic numbers and its application to multi-attribute decision making. Neutrosophic Sets Syst. 2016, 12, 127–138. [Google Scholar]
- Biswas, P.; Pramanik, S.; Giri, B.C. Aggregation of triangular fuzzy neutrosophic set information and its application to multi-attribute decision making. Neutrosophic Sets Syst. 2016, 12, 20–40. [Google Scholar]
- Smarandache, F.; Pramanik, S. (Eds.) New Trends in Neutrosophic Theory and Applications; Pons Editions: Brussels, Belgium, 2016; pp. 15–161. ISBN 978-1-59973-498-9. [Google Scholar]
- Sahin, R.; Liu, P. Maximizing deviation method for neutrosophic multiple attribute decision making with incomplete weight information. Neural Comput. Appl. 2016, 27, 2017–2029. [Google Scholar] [CrossRef]
- Sahin, R. Cross-entropy measure on interval neutrosophic sets and its applications in multi criteria decision making. Neural Comput. Appl. 2017, 28, 1177–1187. [Google Scholar] [CrossRef]
- Sahin, R.; Liu, P. Possibility-induced simplified neutrosophic aggregation operators and their application to multi-criteria group decision-making. J. Exp. Theor. Artif. Intell. 2017, 29, 769–785. [Google Scholar] [CrossRef]
- Biswas, P.; Pramanik, S.; Giri, B.C. Multi-attribute group decision making based on expected value of neutrosophic trapezoidal numbers. New Math. Natural Comput. 2015. [Google Scholar] [CrossRef]
- Şahin, R. Multi-Criteria Neutrosophic Decision Making Method Based on Score and Accuracy Functions under Neutrosophic Environment. arXiv, 2014; arXiv:1412.5202. [Google Scholar]
- Biswas, P.; Pramanik, S.; Giri, B.C. GRA method of multiple attribute decision making with single valued neutrosophic hesitant fuzzy set information. In New Trends in Neutrosophic Theory and Applications; Smarandache, F., Pramanik, S., Eds.; Pons Editions: Brussels, Belgium, 2016; Volume 1, pp. 55–63. ISBN 978-1-59973-498-9. [Google Scholar]
- Biswas, P.; Pramanik, S.; Giri, B.C. Some distance measures of single valued neutrosophic hesitant fuzzy sets and their applications to multiple attribute decision making. In New Trends in Neutrosophic Theory and Applications; Smarandache, F., Pramanik, S., Eds.; Pons Editions: Brussels, Belgium, 2016; Volume 1, pp. 27–34. ISBN 978-1-59973-498-9. [Google Scholar]
- Sahin, R.; Liu, P. Distance and similarity measure for multiple attribute with single–valued neutrosophic hesitant fuzzy information. In New Trends in Neutrosophic Theory and Applications; Smarandache, F., Pramanik, S., Eds.; Pons Editions: Brussels, Belgium, 2016; Volume 1, pp. 35–54. ISBN 978-1-59973-498-9. [Google Scholar]
- Sahin, R.; Liu, P. Correlation coefficient of single-valued neutrosophic hesitant fuzzy sets and its applications in decision making. Neural Comput. Appl. 2017, 28, 1387–1395. [Google Scholar] [CrossRef]
- Ali, M.; Deli, I.; Smarandache, F. The theory of neutrosophic cubic sets and their applications in pattern recognition. J. Intell. Fuzzy Syst. 2016, 30, 1957–1963. [Google Scholar] [CrossRef]
- Jun, Y.B.; Smarandache, F.; Kim, C.S. Neutrosophic Cubic sets. New Math. Natural Comput. 2017, 13, 41–54. [Google Scholar] [CrossRef]
- Banerjee, D.; Giri, B.C.; Pramanik, S.; Smarandache, F. GRA for multi attribute decision making in neutrosophic cubic set environment. Neutrosophic Sets Syst. 2017, 15, 60–69. [Google Scholar] [CrossRef]
- Deng, J.L. Introduction to grey system theory. J. Grey Syst. 1989, 1, 1–24. [Google Scholar]
- Pramanik, S.; Mukhopadhyaya, D. Grey relational analysis based intuitionistic fuzzy multi criteria group decision-making approach for teacher selection in higher education. Int. J. Comput. Appl. 2011, 34, 21–29. [Google Scholar]
- Chang, K.H.; Chang, Y.C.; Tasi, I.T. Enhancing FMEA assessment by integrating grey relational analysis and the decision making trial and evaluation laboratory approach. Eng. Fail. Anal. 2013, 31, 211–224. [Google Scholar] [CrossRef]
- Pramanik, S.; Dalapati, S.; Alam, S.; Roy, T.K.; Smarandache, F. neutrosophic cubic MCGDM method based on similarity measure. Neutrosophic Sets Syst. 2017, 16, 44–56. [Google Scholar] [CrossRef]
- Lu, Z.; Ye, J. Cosine measures of neutrosophic cubic sets for multiple attribute decision-making. Symmetry 2017, 9, 121. [Google Scholar] [CrossRef]
- Pramanik, S.; Dey, P.P.; Giri, B.C.; Smarandache, F. An extended TOPSIS for multi-attribute decision making problems with neutrosophic cubic information. Neutrosophic Sets Syst. 2017, 17, 20–28. [Google Scholar]
- Zhan, J.; Khan, M.; Gulistan, M. Applications of neutrosophic cubic sets in multi-criteria decision-making. Int. J. Uncertain. Quantif. 2017, 7, 377–394. [Google Scholar] [CrossRef]
- Ye, J. Linguistic neutrosophic cubic numbers and their multiple attribute decision-making method. Information 2017, 8, 110. [Google Scholar] [CrossRef]
- Gomes, L.; Lima, M. TODIM: Basics and application to multicriteria ranking of projects with environmental impacts. Found. Comput. Decis. Sci. 1991, 16, 113–127. [Google Scholar]
- Kahneman, D.; Tversky, A. Prospect theory: An analysis of decision under risk. Econ. J. Econ. Soc. 1979, 47, 263–291. [Google Scholar] [CrossRef]
- Krohling, R.A.; De Souza, T.T.M. Combining prospect theory and fuzzy numbers to multi-criteria decision making. Expert Syst. Appl. 2012, 39, 11487–11493. [Google Scholar] [CrossRef]
- Liu, P.; Teng, F. An extended TODIM method for multiple attribute group decision-making based on 2-dimension uncertain linguistic Variable. Complexity 2014, 21, 20–30. [Google Scholar] [CrossRef]
- Tosun, O.; Akyu, G. A fuzzy TODIM approach for the supplier selection problem. Int. J. Comput. Intell. Syst. 2015, 8, 317–329. [Google Scholar] [CrossRef]
- Gomes, L.F.A.M.; Machado, M.A.S.; Da Costa, F.F.; Rangel, L.A.D. Criteria interactions in multiple criteria decision aiding: A Choquet formulation for the TODIM method. Procedia Comput. Sci. 2013, 17, 324–331. [Google Scholar] [CrossRef]
- Fan, Z.P.; Zhang, X.; Chen, F.D.; Liu, Y. Extended TODIM method for hybrid multiple attribute decision making problems. Knowl. Based Syst. 2013, 42, 40–48. [Google Scholar] [CrossRef]
- Krohling, R.A.; Pacheco, A.G.C.; Siviero, A.L.T. IF-TODIM: An intuitionistic fuzzy TODIM to multi-criteria decision making. Knowl. Based Syst. 2013, 53, 142–146. [Google Scholar] [CrossRef]
- Wang, J.Q. TODIM method with multi-valued neutrosophic set. Control Decis. 2015, 30, 1139–1142. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, P.; Shi, L. An extended multiple attribute group decision-making TODIM method based on the neutrosophic numbers. J. Intell. Fuzzy Syst. 2016, 30, 1773–1781. [Google Scholar] [CrossRef]
- Ji, P.; Zhang, H.; Wang, J. A projection-based TODIM method under multi-valued neutrosophic environments and its application in personnel selection. Neural Comput. Appl. 2016. [Google Scholar] [CrossRef]
- Xu, D.S.; Wei, C.; Wei, G.W. TODIM method for single-valued neutrosophic multiple attribute decision making. Information 2017, 8, 125. [Google Scholar] [CrossRef]
- Liu, P.D.; Wang, Y.M. Multiple attribute decision-making method based on single valued neutrosophic normalized weighted Bonferroni mean. Neural Comput. Appl. 2014, 25, 2001–2010. [Google Scholar] [CrossRef]
- Liu, P.D.; Tang, G.L. Some power generalized aggregation operators based on the interval neutrosophic numbers and their application to decision making. J. Intell. Fuzzy Syst. 2016, 30, 2517–2528. [Google Scholar] [CrossRef]
- Liu, P.D.; Wang, Y.M. Interval neutrosophic prioritized OWA operator and its application to multiple attribute decision making. J. Syst. Sci. Complex. 2016, 29, 681–697. [Google Scholar] [CrossRef]
- Liu, P.D. The aggregation operators based on Archimedean t-conorm and t-norm for the single valued neutrosophic numbers and their application to decision making. Int. J. Fuzzy Syst. 2016, 18, 849–863. [Google Scholar] [CrossRef]
- Liu, P.D.; Chu, Y.C.; Li, Y.W.; Chen, Y.B. Some generalized neutrosophic number Hamacher aggregation operators and their application to group decision making. Int. J. Fuzzy Syst. 2014, 16, 242–255. [Google Scholar]
C1 | C2 | C2 | |
---|---|---|---|
A1 | 0.56 | 0.54 | 0.06 |
A2 | 0.40 | 0.09 | 0.54 |
A3 | 0.50 | 0.38 | 0.06 |
A4 | −0.03 | 0.09 | 0.54 |
C1 | C2 | C2 | |
---|---|---|---|
A1 | −0.03 | 0.13 | 0.49 |
A2 | 0.13 | 0.13 | 0.49 |
A3 | 0.56 | 0.60 | −0.04 |
A4 | 0.39 | 0.13 | 0.49 |
C1 | C2 | C2 | |
---|---|---|---|
A1 | 0.07 | 0.09 | 0.56 |
A2 | 0.07 | 0.52 | 0.13 |
A3 | 0.51 | 0.37 | 0.39 |
A4 | 0.51 | 0.09 | −0.03 |
C1 | C2 | C2 | |
---|---|---|---|
A1 | 0.14 | 0.30 | −0.24 |
A2 | 0.12 | −0.23 | 0.32 |
A3 | −0.20 | 0.09 | −0.24 |
A4 | −0.38 | −0.23 | 0.32 |
C1 | C2 | C2 | |
---|---|---|---|
A1 | −0.38 | −0.18 | 0.21 |
A2 | −0.20 | −0.18 | 0.21 |
A3 | 0.14 | 0.36 | −0.21 |
A4 | 0.12 | −0.18 | 0.21 |
C1 | C2 | C2 | |
---|---|---|---|
A1 | −0.24 | −0.23 | 0.41 |
A2 | −0.24 | 0.30 | −0.20 |
A3 | 0.26 | 0.09 | 0.12 |
A4 | 0.26 | −0.23 | −0.38 |
Ai | A1 | A2 | A3 | A4 |
---|---|---|---|---|
0.49 | 0.61 | 1 | 0 |
Values of | Global Values of Alternative () | Rank Order of Ai |
---|---|---|
0.5 | = 0, = 0.89, = 1, = 0.46
> > > | A3 > A2 > A4 > A1 |
1 | = 0.49, = 0.61, = 1, = 0 > > > | A3 > A2 > A1 > A4 |
1.5 | = 0, = 0.72, = 1, = 0.44 > > > | A3 > A2 > A4 > A1 |
2 | = 0, = 1, = 0.81, = 0.38 > > > | A2 > A3 > A4 > A1 |
3 | = 0, = 0.56, = 1, = 0.45 > > > | A3 > A2 > A4 > A1 |
Proposed NC-TODIM Strategy | Similarity Measure [48] |
---|---|
= 0, = 0.89, = 1, = 0.46 | = 0.20, = 0.80, = 0.22, = 0.19 |
Ranking order: A3 > A2 > A4 > A1 | Ranking order: A2 > A3 > A1 > A4 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pramanik, S.; Dalapati, S.; Alam, S.; Roy, T.K. NC-TODIM-Based MAGDM under a Neutrosophic Cubic Set Environment. Information 2017, 8, 149. https://doi.org/10.3390/info8040149
Pramanik S, Dalapati S, Alam S, Roy TK. NC-TODIM-Based MAGDM under a Neutrosophic Cubic Set Environment. Information. 2017; 8(4):149. https://doi.org/10.3390/info8040149
Chicago/Turabian StylePramanik, Surapati, Shyamal Dalapati, Shariful Alam, and Tapan Kumar Roy. 2017. "NC-TODIM-Based MAGDM under a Neutrosophic Cubic Set Environment" Information 8, no. 4: 149. https://doi.org/10.3390/info8040149
APA StylePramanik, S., Dalapati, S., Alam, S., & Roy, T. K. (2017). NC-TODIM-Based MAGDM under a Neutrosophic Cubic Set Environment. Information, 8(4), 149. https://doi.org/10.3390/info8040149