Diagnostics for Targeted NSCLC Therapy
Abstract
:1. Introduction
2. Proposal
2.1. Prerequisites
2.2. Current Diagnostic Algorithm
2.3. Future Diagnostic Algorithm
3. Discussion
4. Conclusions
Author Contributions
Conflicts of Interest
References
- Thielen, A.; Lengauer, T. Geno2pheno[454]: A web server for the prediction of HIV-1 coreceptor usage from next-generation sequencing data. Intervirology 2012, 55, 113–117. [Google Scholar] [CrossRef] [PubMed]
- Lengauer, T.; Sander, O.; Sierra, S.; Thielen, A.; Kaiser, R. Bioinformatics prediction of HIV coreceptor usage. Nat. Biotechnol. 2007, 25, 1407–1410. [Google Scholar] [CrossRef] [PubMed]
- Bozek, K.; Eckhardt, M.; Sierra, S.; Anders, M.; Kaiser, R.; Krausslich, H.G.; Muller, B.; Lengauer, T. An expanded model of HIV cell entry phenotype based on multi-parameter single-cell data. Retrovirology 2012, 9, 60. [Google Scholar] [CrossRef] [PubMed]
- Bogojeska, J.; Lengauer, T. Hierarchical bayes model for predicting effectiveness of HIV combination therapies. Stat. Appl. Genet. Mol. Biol. 2012, 11, 11. [Google Scholar] [CrossRef]
- Pfeifer, N.; Lengauer, T. Improving HIV coreceptor usage prediction in the clinic using hints from next-generation sequencing data. Bioinformatics 2012, 28, i589–i595. [Google Scholar] [CrossRef] [PubMed]
- Lengauer, T.; Sing, T. Bioinformatics-assisted anti-HIV therapy. Nat. Rev. Microbiol. 2006, 4, 790–797. [Google Scholar] [CrossRef] [PubMed]
- Hirsch, F.R.; Scagliotti, G.V.; Mulshine, J.L.; Kwon, R.; Curran, W.J., Jr.; Wu, Y.L.; Paz-Ares, L. Lung cancer: Current therapies and new targeted treatments. Lancet 2017, 389, 299–311. [Google Scholar] [CrossRef]
- Ku, B.M.; Sun, J.M.; Lee, S.H.; Ahn, J.S.; Park, K.; Ahn, M.J. An update on biomarkers for kinase inhibitor response in non-small-cell lung cancer. Expert Rev. Mol. Diagn. 2017, 17, 933–942. [Google Scholar] [CrossRef] [PubMed]
- Goodman, A.M.; Kato, S.; Bazhenova, L.; Patel, S.P.; Frampton, G.M.; Miller, V.; Stephens, P.J.; Daniels, G.A.; Kurzrock, R. Tumor mutational burden as an independent predictor of response to immunotherapy in diverse cancers. Mol. Cancer Ther. 2017, 16, 2598–2608. [Google Scholar] [CrossRef] [PubMed]
- Barlesi, F.; Mazieres, J.; Merlio, J.P.; Debieuvre, D.; Mosser, J.; Lena, H.; Ouafik, L.; Besse, B.; Rouquette, I.; Westeel, V.; et al. Routine molecular profiling of patients with advanced non-small-cell lung cancer: Results of a 1-year nationwide programme of the french cooperative thoracic intergroup (IFCT). Lancet 2016, 387, 1415–1426. [Google Scholar] [CrossRef]
- Schildgen, V.; Lüsebrink, J.; Schildgen, O.; Stoelben, E.; Brockmann, M. Epidemiology of KRAS, BRAF, and EGFR mutations in lung cancer in a german tertiary hospital in patients with testing indication. Pers. Med. 2016, 315–323. [Google Scholar] [CrossRef]
- Schildgen, V.; Lusebrink, J.; Appel, J.D.; Wubben, C.; Engel-Riedel, W.; Ludwig, C.; Stoelben, E.; Schildgen, O.; Brockmann, M. Identification of uncommon pik3ca mutations in lung cancer by using pyrosequencing. Diagn. Mol. pathol. Am. J. Surg. Pathol. Part B 2013, 22, 22–27. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Li, J. Effectiveness of palliative care for non-small cell lung cancer. Exp. Ther. Med. 2016, 12, 2387–2389. [Google Scholar] [CrossRef] [PubMed]
- Jamal-Hanjani, M.; Wilson, G.A.; McGranahan, N.; Birkbak, N.J.; Watkins, T.B.K.; Veeriah, S.; Shafi, S.; Johnson, D.H.; Mitter, R.; Rosenthal, R.; et al. Tracking the evolution of non-small-cell lung cancer. N. Engl. J. Med. 2017, 376, 2109–2121. [Google Scholar] [CrossRef] [PubMed]
- Kerr, K.M.; Lamb, D. Actual growth rate and tumour cell proliferation in human pulmonary neoplasms. Br. J. Cancer 1984, 50, 343–349. [Google Scholar] [CrossRef] [PubMed]
- Heikkila, L.; Mattila, P.; Harjula, A.; Suomalainen, R.J.; Mattila, S. Tumour growth rate and its relationship to prognosis in bronchiolo-alveolar and pulmonary adenocarcinoma. Ann. Chir. Gynaecol. 1985, 74, 210–214. [Google Scholar] [PubMed]
- Zhong, W.Z.; Zhou, Q.; Wu, Y.L. The resistance mechanisms and treatment strategies for EGFR-mutant advanced non-small-cell lung cancer. Oncotarget 2017, 8, 71358–71370. [Google Scholar] [CrossRef] [PubMed]
- Singh, M.; Jadhav, H.R. Targeting non-small cell lung cancer with small-molecule EGFR tyrosine kinase inhibitors. Drug Discov. Today 2017. [Google Scholar] [CrossRef] [PubMed]
- Revesz, D.; Engelhardt, E.G.; Tamminga, J.J.; Schramel, F.; Onwuteaka-Philipsen, B.D.; van de Garde, E.M.W.; Steyerberg, E.W.; Jansma, E.P.; De Vet, H.C.W.; Coupe, V.M.H. Decision support systems for incurable non-small cell lung cancer: A systematic review. BMC Med. Inform. Decision Mak. 2017, 17, 144. [Google Scholar]
- Li, G.; Dai, W.R.; Shao, F.C. Effect of alk-inhibitors in the treatment of non-small cell lung cancer: A systematic review and meta-analysis. Eur. Rev. Med. Pharmacol. Sci. 2017, 21, 3496–3503. [Google Scholar] [PubMed]
- Jiang, T.; Ren, S.; Li, X.; Su, C.; Zhou, C.; O’Brien, M. The changing diagnostic pathway for lung cancer patients in Shanghai, China. Eur. J. Cancer 2017, 84, 168–172. [Google Scholar] [CrossRef] [PubMed]
- Malhotra, J.; Jabbour, S.K.; Aisner, J. Current state of immunotherapy for non-small cell lung cancer. Transl. Lung Cancer Res. 2017, 6, 196–211. [Google Scholar] [CrossRef] [PubMed]
- Kutkowska, J.; Porebska, I.; Rapak, A. Non-small cell lung cancer—Mutations, targeted and combination therapy. Postepy Hig. Med. Doswiadczalnej 2017, 71, 431–445. [Google Scholar] [CrossRef]
- Nenadic, I.; Staber, J.; Dreier, S.; Simons, G.; Schildgen, V.; Brockmann, M.; Schildgen, O. Cost saving opportunities in NSCLC therapy by optimized diagnostics. Cancers 2017, 9, 88. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Edwards, A.; Flemington, E.K.; Zhang, K. Racial disparities in patient survival and tumor mutation burden, and the association between tumor mutation burden and cancer incidence rate. Sci. Rep. 2017, 7, 13639. [Google Scholar] [CrossRef] [PubMed]
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Schildgen, V.; Nenadic, I.; Brockmann, M.; Schildgen, O. Diagnostics for Targeted NSCLC Therapy. Challenges 2017, 8, 29. https://doi.org/10.3390/challe8020029
Schildgen V, Nenadic I, Brockmann M, Schildgen O. Diagnostics for Targeted NSCLC Therapy. Challenges. 2017; 8(2):29. https://doi.org/10.3390/challe8020029
Chicago/Turabian StyleSchildgen, Verena, Ilija Nenadic, Michael Brockmann, and Oliver Schildgen. 2017. "Diagnostics for Targeted NSCLC Therapy" Challenges 8, no. 2: 29. https://doi.org/10.3390/challe8020029
APA StyleSchildgen, V., Nenadic, I., Brockmann, M., & Schildgen, O. (2017). Diagnostics for Targeted NSCLC Therapy. Challenges, 8(2), 29. https://doi.org/10.3390/challe8020029