Summer Wind Effects on Coastal Upwelling in the Southwestern Yellow Sea
Abstract
:1. Introduction
2. Data and Model Configurations
2.1. Cruise Observation Data
2.2. Satellite Data
2.3. Tidal Harmonic Constant and Tide Gauge Data
2.4. Numerical Modeling
3. Oceanographic Observations
3.1. Temperature and Salinity Distributions
3.2. DIN Distributions
4. Effects of Wind on Coastal Upwelling
4.1. Model Validation
4.2. Realistic Wind
4.3. Sensitivity to Wind
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wang, B.; Li, Y.; Yuan, D. Effects of topography on the sub-tidal circulation in the southwestern Huanghai Sea (Yellow Sea) in summer. Acta Oceanol. Sin. 2013, 32, 1–9. [Google Scholar] [CrossRef]
- Lü, X.; Qiao, F.; Xia, C.; Wang, G.; Yuan, Y. Upwelling and surface cold patches in the Yellow Sea in summer: Effects of tidal mixing on the vertical circulation. Cont. Shelf Res. 2010, 30, 620–632. [Google Scholar] [CrossRef]
- Yuan, D.; Li, Y.; Wang, B.; He, L.; Hirose, N. Coastal circulation in the Southwestern Yellow Sea in the summers of 2008 and 2009. Cont. Shelf Res. 2017, 143, 101–117. [Google Scholar] [CrossRef]
- Uda, M. Hydrographical researches on the normal monthly conditions in the Japan Sea, the Yellow Sea, and the Okhotsk Sea. J. Imp. Fish. Exp. Sta. 1934, 5, 191–236. (In Japanese) [Google Scholar]
- Yanagi, T.; Inoue, K. Tide and tidal current in the Yellow/East China Seas. La Mer 1994, 32, 153–165. [Google Scholar]
- Zhao, B.; Fang, G.; Cao, D. Numerical modeling on the tides and tidal currents in the Eastern China Sea. Yellow Sea Res. 1993, 5, 41–61. [Google Scholar]
- Ye, A.; Mei, L. Numerical modeling of tidal waves in the Bohai Sea, the Huanghai Sea and the East China Sea. Oceanol. Limnol. Sin. 1995, 26, 63–70. (In Chinese) [Google Scholar]
- Moon, J.-H.; Hirose, N.; Yoon, J.-H. Comparison of wind and tidal contributions to seasonal circulation of the Yellow Sea. J. Geophys. Res. 2009, 114, C08016. [Google Scholar] [CrossRef]
- Guan, B.X. A preliminary study of the temperature variations and the characteristics of the circulation of the Cold Water Mass in Yellow Sea. Oceanol. Limnol. Sin. 1963, 5, 255–284. (In Chinese) [Google Scholar]
- Yuan, Y.; Li, H.Q. Theoretical study on the structure and mechanism of the circulation of Yellow Sea Cold Water Mass. Sci. China Ser. B 1993, 23, 93–103. (In Chinese) [Google Scholar]
- Yuan, D.; Zhu, J.; Li, C.; Hu, D. Cross-shelf circulation in the Yellow and East China Seas indicated by MODIS satellite observations. J. Mar. Syst. 2008, 70, 134–149. [Google Scholar] [CrossRef]
- Hu, C.; He, M.X. Origin and offshore extent of floating algae in Olympic sailing area. Eos Trans. AGU 2008, 89, 302–303. [Google Scholar] [CrossRef]
- Qiao, F.; Lü, X. Coastal upwelling in the South China Sea. In Satellite Remote Sensing of South China Sea; Liu, A.K., Ho, C.R., Liu, C.T., Eds.; Tingmao Publish Company: Taipei, Taiwan, 2008; pp. 135–158. [Google Scholar]
- Zhao, B. A preliminary study of continental shelf fronts in the western part of southern Huanghai Sea and circulation structure in the front region of the Huanghai Cold Water Mass. Oceanol. Limnol. Sin. 1987, 18, 217–226. (In Chinese) [Google Scholar]
- Huang, M.; Liang, X.S.; Wu, H.; Wang, Y. Different generating mechanisms for the summer surface cold patches in the Yellow Sea. Atmos.-Ocean 2017, 56, 199–211. [Google Scholar] [CrossRef]
- Wan, Z.; Qiao, F.; Yuan, Y. Three-dimensional numerical modelling of tidal waves in the Bohai, Yellow and East China Seas. Oceanol. Limnol. Sin. 1998, 29, 611–616. [Google Scholar]
- Zhang, H.; Zhu, J.R.; Wu, H. Numerical simulation of eight main tidal constituents in the East China Sea, Yellow Sea and Bohai Sea. J. East China Norm. Univ. Nat. Sci. Ed. 2005, 3, 71–77. (In Chinese) [Google Scholar]
- Kang, Y.Y.; Ding, X.; Xu, F.; Zhang, C.K.; Ge, X.P. Topographic mapping on large-scale tidal flats with an iterative approach on the waterline method. Estuar. Coast. Shelf Sci. 2017, 190, 11–22. [Google Scholar] [CrossRef]
- Anand, P.; Albert, P.I.; Rao, A.R. Observed inter-annual variability of upwelling characteristics during 2016–2017: A study using Princeton Ocean Model. Def. Sci. J. 2019, 69, 142–148. [Google Scholar] [CrossRef] [Green Version]
- Hao, J.J. Numerical study of the influence of river and warm advection on the temperature inversion in the eastern China seas. Mar. Sci. 2020, 44, 3. [Google Scholar]
- Li, X.; Zhao, D.; Zou, Z. A numerical study of Stokes drift and thermal effects on the oceanic mixed layer. Acta Oceanol. Sin. 2020, 39, 39–49. [Google Scholar] [CrossRef]
- Hirose, N. Inverse estimation of empirical parameters used in a regional ocean circulation model. J. Oceanogr. 2011, 67, 323–336. [Google Scholar] [CrossRef]
- Hirose, N.; Takayama, K.; Moon, J.H.; Watanabe, T.; Nishida, Y. Regional data assimilation system extended to the East Asian marginal seas. Umi Sora Sea Sky 2013, 89, 43–51. [Google Scholar]
- Matsumoto, K.; Takanezawa, T.; Ooe, M. Ocean tide models developed by assimilating TOPEX/POSEIDON altimeter data into hydrodynamical model: A global model and a regional model around Japan. J. Oceanogr. 2000, 56, 567–581. [Google Scholar] [CrossRef]
- Wang, Y.H.; Fang, G.H.; Wei, Z.X.; Wang, Y.G.; Wang, X.Y. Accuracy assessment of global ocean tide models base on satellite altimetry. Adv. Earth Sci. 2010, 25, 353–359. [Google Scholar]
- Kondo, J. Air-sea bulk transfer coefficients in diabetic conditions. Bound. Layer Meteorol. 1975, 9, 91–112. [Google Scholar] [CrossRef]
- Paulson, C.A.; Simpson, J.J. Irradiance measurements in the Upper Ocean. J. Phys. Oceanogr. 1977, 7, 952–956. [Google Scholar] [CrossRef]
- Ren, J.L.; Zhang, J.; Li, J.B.; Yu, X.Y.; Liu, S.M.; Zhang, E.R. Dissolved aluminum in the Yellow Sea and East China Sea, AI as a tracer of Changjiang (Yangtze river) discharge and Kuroshio incursion. Estuar. Coast. Shelf Sci. 2006, 68, 165–174. [Google Scholar] [CrossRef]
- Fang, R.J. Yancheng coastal and estuarine areas countermeasures water survey in Jiangsu Province. Beijing Agric. 2011, 12, 213–214. (In Chinese) [Google Scholar]
- Shang, Z.T. Effects of rainfall on water quality of aquaculture along the coastal areas of Jiangsu Province and countermeasures. Meteorol. Environ. Res. 2011, 10, 68–73. [Google Scholar]
- Wu, T.; Zhao, L.; Liu, H.; Wang, T.; Han, X.R.; Shi, X.Y. Preliminary study on the influence of Enteromorpha prolifera on nutrients. Mar. Environ. Sci. 2013, 32, 347–352. [Google Scholar]
- Li, H.-M.; Tang, H.-J.; Shi, X.-Y.; Zhang, C.-S.; Wang, X.-L. Increased nutrient loads from the Changjiang (Yangtze) River have led to increased harmful algal blooms. Harmful Algae 2014, 39, 92–101. [Google Scholar] [CrossRef]
- Wang, J.-J.; Yu, Z.-G.; Wei, Q.-S.; Dong, M.-F.; Yao, Q.-Z. Distributions of nutrients in the southwestern yellow sea in spring and summer of 2017 and their relationship with Ulva prolifera outbreaks. Oceanol. Limnol. Sin. 2018, 49, 1045–1053. (In Chinese) [Google Scholar]
- Wei, Q.; Wang, B.; Yao, Q.; Fu, M.; Sun, J.; Xu, B.; Yu, Z. Hydro-biogeochemical processes and their implications for Ulva prolifera blooms and expansion in the world’s largest green tide occurrence region (Yellow Sea, China). Sci. Total Environ. 2018, 645, 257–266. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.C.; Shen, H.T.; Huang, Q.H. Concentration variation and flux estimation of dissolved inorganic nutrient from the Changjiang River into its estuary. Oceanol. Limnol. Sin. 2002, 33, 332–340. (In Chinese) [Google Scholar]
- Shen, Z.L. Nitrogen transport fluxes in the Yangtze River. Adv. Water Sci. 2004, 15, 752–759. [Google Scholar]
- Li, H.M.; Zhang, C.S.; Han, X.R.; Shi, X.Y. Changes in concentrations of oxygen, dissolved nitrogen, phosphate, and silicate in the southern yellow sea, 1980–2012: Sources and seaward gradients. Estuar. Coast. Shelf Sci. 2015, 163, 44–55. [Google Scholar] [CrossRef]
- Cai, R.S.; Chen, J.L.; Huang, R.H. The Response of Marine Environment in the Offshore Area of China and Its Adjacent Ocean to Recent Global Climate Change. Chin. J. Atmos. Sci. 2006, 30, 1019–1033. (In Chinese) [Google Scholar]
- Wu, L.; Wang, B. A Case Study on the Variability of Summer Water Properties in the Southeastern Yellow Sea Based on the Hydrological Data from 1995 to 2019. Water 2021, 13, 79. [Google Scholar] [CrossRef]
Experiments | Forcing |
---|---|
Exp.C | Daily wind stress and tidal forcing |
Exp.nw | Only tidal forcing |
Exp.cw | Steady and uniform wind stress and tidal forcing |
Exp.curl | Steady but weak shear wind stress and tidal forcing |
Time | Area Averaged Meridional Wind Stress and Its Curl (dyne/cm2) |
---|---|
26 July (neap tide) | 0.14/negative |
4 August (spring tide) | 0.55/negative |
11 August (neap tide) | 0.19/positive |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, B.; Wu, L.; Zhao, N.; Liu, T.; Hirose, N. Summer Wind Effects on Coastal Upwelling in the Southwestern Yellow Sea. J. Mar. Sci. Eng. 2021, 9, 1021. https://doi.org/10.3390/jmse9091021
Wang B, Wu L, Zhao N, Liu T, Hirose N. Summer Wind Effects on Coastal Upwelling in the Southwestern Yellow Sea. Journal of Marine Science and Engineering. 2021; 9(9):1021. https://doi.org/10.3390/jmse9091021
Chicago/Turabian StyleWang, Bin, Lei Wu, Ning Zhao, Tianran Liu, and Naoki Hirose. 2021. "Summer Wind Effects on Coastal Upwelling in the Southwestern Yellow Sea" Journal of Marine Science and Engineering 9, no. 9: 1021. https://doi.org/10.3390/jmse9091021
APA StyleWang, B., Wu, L., Zhao, N., Liu, T., & Hirose, N. (2021). Summer Wind Effects on Coastal Upwelling in the Southwestern Yellow Sea. Journal of Marine Science and Engineering, 9(9), 1021. https://doi.org/10.3390/jmse9091021