Assessment of Numerical Methods for Plunging Breaking Wave Predictions †
Abstract
:1. Introduction
1.1. Wave Breaking Background
1.2. Two-Phase Numerical Models and Wave Breaking Simulations
1.3. Objectives and Approach
2. Computational Model
2.1. Governing Equations
2.2. Numerical Methods
2.3. Solitary Wave Modeling
3. Simulation Setup
4. Results and Discussion
4.1. Dam Break
4.2. Solitary Wave Run-Up over a Slope
4.3. Flow over a Submerged Bump
4.4. Solitary Wave over a Submerged Rectangular Obstacle
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Helfrich, K.R. Internal solitary wave breaking and run-up on a uniform slope. J. Fluid Mech. 1992, 243, 133–154. [Google Scholar] [CrossRef]
- Li, Y.; Raichlen, F. Non-breaking and breaking solitary wave run-up. J. Fluid Mech. 2002, 456, 295–318. [Google Scholar] [CrossRef] [Green Version]
- Chou, C.; Ouyang, K. Breaking of Solitary Waves on Uniform Slopes. China Ocean Eng. J. 1999, 4, 429–442. [Google Scholar]
- Grilli, S.T.; Svendsen, I.A.; Subramanya, R. Breaking Criterion and Characteristics for Solitary Waves on Slopes. J. Waterw. Port, Coast. Ocean Eng. 1997, 123, 102–112. [Google Scholar] [CrossRef] [Green Version]
- U.S. Department of Transportation Federal Highway Administration. Available online: https://www.fhwa.dot.gov/engineering/hydraulics/pubs/09111/09112.pdf (accessed on 18 September 2020).
- Grilli, S.T.; Losada, M.Á.; Martin, F. Characteristics of Solitary Wave Breaking Induced by Breakwaters. J. Waterw. Port, Coast. Ocean Eng. 1994, 120, 74–92. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.-T. Numerical Investigation of Solitary Wave Interaction with a Submerged Vertical Thin Barrier. Master’s Thesis, National Cheng Kung University, Cheng Kung, Taiwan, 2010. [Google Scholar]
- Wu, Y.-T.; Hsiao, S.-C.; Huang, Z.-C.; Hwang, K.-S. Propagation of solitary waves over a bottom-mounted barrier. Coast. Eng. 2012, 62, 31–47. [Google Scholar] [CrossRef]
- Wang, J.; He, G.; You, R.; Liu, P. Numerical study on interaction of a solitary wave with the submerged obstacle. Ocean Eng. 2018, 158, 1–14. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, G.; Li, G. Experimental study on the performance of the multiple-layer breakwater. Ocean Eng. 2006, 33, 1829–1839. [Google Scholar] [CrossRef]
- Ghosh, S. Free Surface Instabilities and Plunging Breaking Waves Downstream of a Bump in a Shallow Water Open Channel Flume. Ph.D. Thesis, The University of Iowa, Iowa City, IA, USA, 2008. [Google Scholar]
- Wang, Z.; Yang, J.; Koo, B.; Stern, F. A coupled level set and volume-of-fluid method for sharp interface simulation of plunging breaking waves. Int. J. Multiph. Flow 2009, 35, 227–246. [Google Scholar] [CrossRef]
- Stansby, P.K.; Chegini, A.; Barnes, T.C.D. The initial stages of dam-break flow. J. Fluid Mech. 1998, 374, 407–424. [Google Scholar] [CrossRef]
- Kamra, M.M.; Mohd, N.; Liu, C.; Sueyoshi, M.; Hu, C. Numerical and experimental investigation of three-dimensionality in the dam-break flow against a vertical wall. J. Hydrodyn. 2018, 30, 682–693. [Google Scholar] [CrossRef]
- Colagrossi, A.; Landrini, M. Numerical simulation of interfacial flows by smoothed particle hydrodynamics. J. Comput. Phys. 2003, 191, 448–475. [Google Scholar] [CrossRef]
- Alberello, A.; Iafrati, A. The Velocity Field underneath a Breaking Rogue Wave: Laboratory Experiments versus Numerical Simulations. Fluids 2019, 4, 68. [Google Scholar] [CrossRef] [Green Version]
- Wackers, J.; Koren, B.; Raven, H.C.; Van Der Ploeg, A.; Starke, A.R.; Deng, G.B.; Queutey, P.; Visonneau, M.; Hino, T.; Ohashi, K. Free-Surface Viscous Flow Solution Methods for Ship Hydrodynamics. Arch. Comput. Methods Eng. 2011, 18, 1–41. [Google Scholar] [CrossRef] [Green Version]
- Oger, G.; Rousset, J.M.; Le Touze, D.; Alessandrini, B.; Fxerrant, P. SPH simulations of 3-D slamming problems. In Proceedings of the 9th International Conference on Numerical Ship Hydrodynamics, Washington, DC, USA, 5–8 August 2007. [Google Scholar]
- Shibata, K.; Koshizuka, S.; Tanizawa, K. Three-dimensional numerical analysis of shipping water onto a moving ship using a particle method. J. Mar. Sci. Technol. 2009, 14, 214–227. [Google Scholar] [CrossRef]
- Hirata, N.; Hino, T. An Efficient Algorithm for Simulating Free-Surface Turbulent Flows around an Advancing Ship. J. Soc. Nav. Arch. Jpn. 1999, 1999, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Starke, B.; van der Ploeg, A.; Raven, H. Viscous free surface flow computations for self-propulsion conditions using PARNASSOS. In Proceedings of the Gothenburg 2010: A Workshop on CFD in Ship Hydrodynamics, Gothenburg, Sweden, 7 December 2010. [Google Scholar]
- Alessandrini, B.; Delhommeau, G. A Fully Coupled Navier-Stokes Solver for Calculations of Turbulent Incompressible Free Surface Flow Past A Ship Hull. Int. J. Numer. Methods Fluid 1999, 29, 125–142. [Google Scholar] [CrossRef]
- Li, T.; Matusiak, J. Simulation of a modern surface ship with a wetted transom in a viscous flow. In Proceedings of the 11th International Offshore and Polar Engineering Conference, Stavanger, Norway, 17–22 June 2001. [Google Scholar]
- Sussman, M.; Fatemi, E.; Osher, S.; Smereka, P. A level set approach for computing solutions to incompressible two- phase flow II. In Proceedings of the Sixth International Symposium on Computational Fluid Dynamics, Lake Tahoe, NV, USA, 4–8 September 1995. [Google Scholar]
- Hino, T.; Ohashi, K.; Kobayashi, H. Flow Simulations Using Navier-Stokes Solver Surf. In Proceedings of the Gothenburg 2010: A Workshop on CFD in Ship Hydrodynamics, G2010 Workshop. Gothenburg, Sweden, 7 December 2010. [Google Scholar]
- Carrica, P.M.; Wilson, R.V.; Noack, R.; Xing, T.; Kandasamy, M.; Stern, F. A dynamic overset, single-phase level set approach for viscous ship flows and large amplitude motions and maneuvering. In Proceedings of the 26th symposium on Naval Hydrodynamics, Rome, Italy, 26–31 August 2006. [Google Scholar]
- Iafrati, A.; Di Mascio, A.; Campana, E.F. A level set technique applied to unsteady free surface flows. Int. J. Numer. Methods Fluids 2001, 35, 281–297. [Google Scholar] [CrossRef]
- Kim, H.; Yang, C.; Kim, H.J.; Chun, H.H. A Combined Local and Global Hull Form Modification Approach for Hydrodynamic Optimization. In Proceedings of the 28th Symposium on Naval Hydrodynamics, Pasadena, CA, USA, 12–17 September 2010. [Google Scholar]
- Queutey, P.; Visonneau, M. An interface capturing method for free-surface hydrodynamic flows. Comput. Fluids 2007, 36, 1481–1510. [Google Scholar] [CrossRef]
- Manzke, M.; Rung, T. Resistance Prediction and Sea Keeping Analysis with FreSCo+. In Proceedings of the Gothenburg 2010: A Workshop on CFD in Ship Hydrodynamics, G2010 Workshop. Gothenburg, Sweden, 7 December 2010. [Google Scholar]
- Bhushan, S.; Yoon, H.; Stern, F.; Guilmineau, E.; Visonneau, M.; Toxopeus, S.; Simonsen, C.; Aram, S.; Kim, S.-E.; Grigoropoulos, G. Assessment of CFD for Surface Combatant 5415 at Straight Ahead and Static Drift. J. Fluids Eng. 2019, 141, 051101. [Google Scholar] [CrossRef]
- Iafrati, A.; Babanin, A.; Onorato, M. Modulational Instability, Wave Breaking, and Formation of Large-Scale Dipoles in the Atmosphere. Phys. Rev. Lett. 2013, 110, 184504. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cointe, R.; Tulin, M.P. A theory of steady breakers. J. Fluid Mech. 1994, 276, 1–20. [Google Scholar] [CrossRef]
- Rhee, S.H.; Stern, F. RANS Model for Spilling Breaking Waves. J. Fluids Eng. 2002, 124, 424–432. [Google Scholar] [CrossRef]
- Muscari, R.; Di Mascio, A. Numerical modeling of breaking waves generated by a ship’s hull. J. Mar. Sci. Technol. 2004, 9, 158–170. [Google Scholar] [CrossRef]
- Düz, B.; Scharnke, J.; Hallmann, R.; Tukker, J.; Khurana, S.; Blanchard, K. Comparison of the CFD Results to PIV Measurements in Kinematics of Spilling and Plunging Breakers. In Proceedings of the Volume 6B: Ocean Engineering, New York, NY, USA, 3–7 August 2020. [Google Scholar]
- Aggarwal, A.; Chella, M.A.; Bihs, H.; Myrhaug, D. Properties of breaking irregular waves over slopes. Ocean Eng. 2020, 216, 108098. [Google Scholar] [CrossRef]
- Muk, S.; Ong, M.C.; Obhrai, C.; Gatin, I.; Vukčević, V. Influences of free surface jump conditions and different k−ω SST turbulence models on breaking wave modelling. Ocean Eng. 2020, 217, 107746. [Google Scholar] [CrossRef]
- Yu, C.; Sheu, T.W. Development of a coupled level set and immersed boundary method for predicting dam break flows. Comput. Phys. Commun. 2017, 221, 1–18. [Google Scholar] [CrossRef]
- Jasak, H.; Jemcov, A.; Tukovic, Z. Openfoam: A C++ library for complex physics simulations. In Proceedings of the International Workshop on Coupled Methods in Numerical Dynamics, Dubrovnik, Croatia, 19–21 September 2007. [Google Scholar]
- Kees, C.E.; Akkerman, I.; Farthing, M.W.; Bazilevs, Y. A conservative level set method suitable for variable-order approximations and unstructured meshes. J. Comput. Phys. 2011, 230, 4536–4558. [Google Scholar] [CrossRef]
- Chambers, B. Numerical Simulations of Breaking Waves and Vehicle Fording Using OpenFOAM. Master’s Thesis, Mississippi State University, Starkville, MI, USA, 2017. [Google Scholar]
- Hubbard, G. Validation of Finite Element Couple Level-Set Volume of Fluid Method for Plunging Breaking Wave Prediction. Master’s Thesis, Mississippi State University, Starkville, MI, USA, 2020. [Google Scholar]
- Hirt, C.; Nichols, B. Volume of fluid (VOF) method for the dynamics of free boundaries. J. Comput. Phys. 1981, 39, 201–225. [Google Scholar] [CrossRef]
- Robertson, E.; Choudhury, V.; Bhushan, S.; Walters, D. Validation of OpenFOAM numerical methods and turbulence models for incompressible bluff body flows. Comput. Fluids 2015, 123, 122–145. [Google Scholar] [CrossRef]
- Bazilevs, Y.; Calo, V.; Cottrell, J.; Hughes, T.; Reali, A.; Scovazzi, G. Variational multiscale residual-based turbulence modeling for large eddy simulation of incompressible flows. Comput. Methods Appl. Mech. Eng. 2007, 197, 173–201. [Google Scholar] [CrossRef]
- Boussinesq, J. Théorie de l’intumescence liquide, applelée onde solitaire ou de translation, se propageant dans un canal rectangulaire. Comptes Rendus l’Académie Sci. 1871, 72, 755–759. [Google Scholar]
- Alberello, A.; Pakodzi, C.; Nelli, F.; Bitner-Gregersen, E.M.; Toffoli, A. Three Dimensional Velocity Field underneath a Breaking Rogue Wave. In Proceedings of the Volume 1: Offshore Technology, Stavanger, Norway, 30 November–1 December 2017. [Google Scholar]
- Zhou, Z.Q.; De Kat, J.O.; Buchner, B. A nonlinear 3-D approach to simulate green water dynamics on deck. In Proceedings of the Seventh International Conference on Numerical Ship Hydrodynamics, Nantes, France, 19–22 July 1999. [Google Scholar]
- Greco, M.; Landrini, M.; Faltinsen, O. Impact flows and loads on ship-deck structures. J. Fluids Struct. 2004, 19, 251–275. [Google Scholar] [CrossRef]
- Colicchio, G.; Landrini, M.; Chaplin, J.C. Level-set modelling of the air-water flow generated by a surface piercing body. In Proceedings of the 8th International Conference on Numerical Ship Hydrodynamics, Busan, Korea, 5–8 August 2003. [Google Scholar]
- Cooker, M.J.; Peregrine, D.H.; Vidal, C.; Dold, J.W. The interaction between a solitary wave and a submerged semicircular cylinder. J. Fluid Mech. 1990, 215, 1–22. [Google Scholar] [CrossRef] [Green Version]
Case # | Test Case | Solver | Grid | Flow Parameters | Breaking Type | Validation/Comparison Data |
---|---|---|---|---|---|---|
1 | Dam break without obstacle | Proteus | 5 Grids: 28 K, 48 K, 64.5 K, 76.1 K, 88 K | h0 = 0.6 m | Wall reflected plunging breaking wave | Wave profile at different times against experiment [49] and CFD [15,50,51]. |
OpenFOAM | 3 Grids: 44 K, 64 K, 87 K | |||||
2 | Solitary wave run-up on slope | Proteus | 4 Grids: 133 K, 368 K, 890 K, 1.2 M | H0/h0 = 0.45 | Forward plunging breaking and surging waves | Wave profile at different times and water depth against experiment [2] and CFD [6] |
OpenFOAM | 3 Grids: 146 K, 396 K, 747 K | H0/h0 = 0.06, 0.1, 0.3, 0.45, 0.6 | ||||
3 | Flow over a submerged bump | Proteus | 4 Grids: 96 K, 196 K, 384 K, 972 K | h = 0.1143 m, h0 = 1.85h | Backward plunging breaking wave due flow reflection induced by hydraulic jump | Wave profile at different times against experiment and CFD [12] |
OpenFOAM | 2 Grids: 400 K, 1.0 M | |||||
4. | Solitary wave over rectangular obstacle | OpenFOAM | 2 Grids: | h = 0.1 m, | Backward plunging breaking due to obstacle induced vortex | Velocity and wave elevation profiles at different breaking stages against experiment and CFD [8] |
838 K, 1.6 M | h0 = 1.4h, | |||||
H0/h0 = 0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bhushan, S.; El Fajri, O.; Hubbard, G.; Chambers, B.; Kees, C. Assessment of Numerical Methods for Plunging Breaking Wave Predictions. J. Mar. Sci. Eng. 2021, 9, 264. https://doi.org/10.3390/jmse9030264
Bhushan S, El Fajri O, Hubbard G, Chambers B, Kees C. Assessment of Numerical Methods for Plunging Breaking Wave Predictions. Journal of Marine Science and Engineering. 2021; 9(3):264. https://doi.org/10.3390/jmse9030264
Chicago/Turabian StyleBhushan, Shanti, Oumnia El Fajri, Graham Hubbard, Bradley Chambers, and Christopher Kees. 2021. "Assessment of Numerical Methods for Plunging Breaking Wave Predictions" Journal of Marine Science and Engineering 9, no. 3: 264. https://doi.org/10.3390/jmse9030264
APA StyleBhushan, S., El Fajri, O., Hubbard, G., Chambers, B., & Kees, C. (2021). Assessment of Numerical Methods for Plunging Breaking Wave Predictions. Journal of Marine Science and Engineering, 9(3), 264. https://doi.org/10.3390/jmse9030264