Influence of Remote Internal Tides on the Locally Generated Internal Tides upon the Continental Slope in the South China Sea
Abstract
:1. Introduction
2. Methodology
2.1. Model Configuration
2.2. Baroclinic Energy Equation
2.3. Wave Decomposition
3. Results
3.1. Validation of the Simulated Results
3.2. ITs Originating from the SCS Continental Slope
4. Summary
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duda, T.F.; Lynch, J.F.; Irish, J.D.; Beardsley, R.C.; Ramp, S.R.; Chiu, C.S.; Tang, T.Y.; Yang, Y.J. Internal tide and nonlinear internal wave behavior at the continental slope in the northern South China Sea. IEEE J. Ocean. Eng. 2004, 29, 105–130. [Google Scholar] [CrossRef] [Green Version]
- Duda, T.F.; Rainville, L. Diurnal and semidiurnal internal tide energy flux at a continental slope in the South China Sea. J. Geophys. Res. 2008, 113, C03025. [Google Scholar] [CrossRef] [Green Version]
- Cao, A.; Guo, Z.; Lv, X.; Song, J.; Zhang, J. Coherent and incoherent features, seasonal behaviors and spatial variations of internal tides in the northern South China Sea. J. Mar. Syst. 2017, 172, 75–83. [Google Scholar] [CrossRef]
- Ray, R.D.; Zaron, E.D. Non-stationary internal tides observed with satellite altimetry. Geophys. Res. Lett. 2011, 38, L17609. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Z. Internal tide radiation from the Luzon Strait. J. Geophys. Res. Oceans 2014, 119, 5434–5448. [Google Scholar] [CrossRef]
- Simmons, H.L.; Hallberg, R.W.; Arbic, B.K. Internal wave generation in a global baroclinic tide model. Deep. Sea Res. Part II Top. Stud. Oceanogr. 2004, 51, 3043–3068. [Google Scholar] [CrossRef]
- Buijsman, M.C.; Klymak, J.; Legg, S.; Alford, M.H.; Farmer, D.; MacKinnon, J.A.; Nash, J.; Park, J.-H.; Pickering, A.; Simmons, H. Three-Dimensional Double-Ridge Internal Tide Resonance in Luzon Strait. J. Phys. Oceanogr. 2014, 44, 850–869. [Google Scholar] [CrossRef] [Green Version]
- Xu, Z.; Liu, K.; Yin, B.; Zhao, Z.; Wang, Y.; Li, Q. Long-range propagation and associated variability of internal tides in the South China Sea. J. Geophys. Res. Ocean. 2016, 121, 8268–8286. [Google Scholar] [CrossRef]
- Niwa, Y. Three-dimensional numerical simulation of M2internal tides in the East China Sea. J. Geophys. Res. Space Phys. 2004, 109, 04027. [Google Scholar] [CrossRef]
- Jan, S.; Lien, R.C.; Ting, C.H. Numerical study of baroclinic tides in Luzon Strait. J. Oceanogr. 2008, 64, 789–802. [Google Scholar] [CrossRef]
- Min, W.; Li, Q.; Zhang, P.; Xu, Z.; Yin, B. Generation and evolution of internal solitary waves in the southern Taiwan Strait. Geophys. Astrophys. Fluid Dyn. 2019, 113, 287–302. [Google Scholar] [CrossRef]
- Zhao, Z. Southward Internal Tides in the Northeastern South China Sea. J. Geophys. Res. Oceans 2020, 125, 016554. [Google Scholar] [CrossRef]
- Kelly, S.M.; Nash, J. Internal-tide generation and destruction by shoaling internal tides. Geophys. Res. Lett. 2010, 37, L23611. [Google Scholar] [CrossRef] [Green Version]
- Nash, J.D.; Kelly, S.M.; Shroyer, E.L.; Moum, J.N.; Duda, T.F. The Unpredictable Nature of Internal Tides on Continental Shelves. J. Phys. Oceanogr. 2012, 42, 1981–2000. [Google Scholar] [CrossRef] [Green Version]
- Gong, Y.; Rayson, M.D.; Jones, N.L.; Ivey, G.N. Directional decomposition of internal tides propagating from multiple generation sites. Ocean Model. 2021, 162, 101801. [Google Scholar] [CrossRef]
- Marchesiello, P.; Nguyen, N.M.; Gratiot, N.; Loisel, H.; Anthony, E.J.; San Dinh, C.; Nguyen, T.; Almar, R.; Kestenare, E. Erosion of the coastal Mekong delta: Assessing natural against man induced processes. Cont. Shelf Res. 2019, 181, 72–89. [Google Scholar] [CrossRef]
- Renault, L.; McWilliams, J.C.; Penven, P. Modulation of the Agulhas Current retroflection and leakage by oceanic current interaction with the atmosphere in coupled simulations. J. Phys. Oceanogr. 2017, 47, 2077–2100. [Google Scholar] [CrossRef]
- Guo, Z.; Cao, A.; Lv, X.; Song, J. Impact of multiple tidal forcing on the simulation of the M2 internal tides in the northern South China Sea. Ocean Dyn. 2020, 70, 187–198. [Google Scholar] [CrossRef]
- Large, W.G.; McWilliams, J.C.; Doney, S.C. Oceanic vertical mixing: A review and a model with a nonlocal boundary layer parameterization. Rev. Geophys. 1994, 32, 363–403. [Google Scholar] [CrossRef] [Green Version]
- Amante, C.; Eakins, B.W. ETOPO1 1 Arc-Minute Global Relief Model: Procedures, Data Sources and Analysis; NOAA Technical Memorandum NESDIS NGDC-24; NOAA National Centers for Environmental Information: Silver Spring, MA, USA, 2009. [Google Scholar] [CrossRef]
- Egbert, G.D.; Erofeeva, S.Y. Efficient inverse modeling of barotropic ocean tides. J. Atmos. Ocean. Technol. 2002, 19, 183–204. [Google Scholar] [CrossRef] [Green Version]
- Kerry, C.G.; Powell, B.S.; Carter, G.S. Effects of Remote Generation Sites on Model Estimates of M2 Internal Tides in the Philippine Sea. J. Phys. Oceanogr. 2013, 43, 187–204. [Google Scholar] [CrossRef]
- Kerry, C.G.; Powell, B.S.; Carter, G.S. The Impact of Subtidal Circulation on Internal Tide Generation and Propagation in the Philippine Sea. J. Phys. Oceanogr. 2014, 44, 1386–1405. [Google Scholar] [CrossRef]
- Nash, J.; Alford, M.H.; Kunze, E. Estimating Internal Wave Energy Fluxes in the Ocean. J. Atmos. Ocean. Technol. 2005, 22, 1551–1570. [Google Scholar] [CrossRef] [Green Version]
- Zilberman, N.V.; Merrifield, M.A.; Carter, G.S.; Luther, D.S.; Levine, M.D.; Boyd, T.J. Incoherent Nature of M2 Internal Tides at the Hawaiian Ridge. J. Phys. Oceanogr. 2011, 41, 2021–2036. [Google Scholar] [CrossRef] [Green Version]
- Mercier, M.J.; Garnier, N.B.; Dauxois, T. Reflection and diffraction of internal waves analyzed with the Hilbert transform. Phys. Fluids 2008, 20, 86601. [Google Scholar] [CrossRef] [Green Version]
- Peacock, T.; Mercier, M.J.; Didelle, H.; Viboud, S.; Dauxois, T. A laboratory study of low-mode internal tide scattering by finite-amplitude topography. Phys. Fluids 2009, 21, 121702. [Google Scholar] [CrossRef] [Green Version]
- Bourget, B.; Dauxois, T.; Joubaud, S.; Odier, P. Experimental study of parametric subharmonic instability for internal plane waves. J. Fluid Mech. 2013, 723, 1–20. [Google Scholar] [CrossRef] [Green Version]
- Wang, S.; Cao, A.; Chen, X.; Li, Q.; Song, J.; Meng, J. Estimation of the Reflection of Internal Tides on a Slope. J. Ocean Univ. China 2020, 19, 489–496. [Google Scholar] [CrossRef]
- Wang, S.; Cao, A.; Li, Q.; Chen, X. Reflection of K 1 Internal Tides at the Continental Slope in the Northern South China Sea. J. Geophys. Res. Oceans 2021, 126, 017260. [Google Scholar] [CrossRef]
- Cummins, P.F.; Oey, L.-Y. Simulation of Barotropic and Baroclinic Tides off Northern British Columbia. J. Phys. Oceanogr. 1997, 27, 762–781. [Google Scholar] [CrossRef]
- Craig, W.; Guyenne, P.; Sulem, C. The surface signature of internal waves. J. Fluid Mech. 2012, 710, 277–303. [Google Scholar] [CrossRef]
- Alford, M.H.; MacKinnon, J.A.; Nash, J.; Simmons, H.; Pickering, A.; Klymak, J.; Pinkel, R.; Sun, O.; Rainville, L.; Musgrave, R.; et al. Energy Flux and Dissipation in Luzon Strait: Two Tales of Two Ridges. J. Phys. Oceanogr. 2011, 41, 2211–2222. [Google Scholar] [CrossRef]
- Wang, Y.; Xu, Z.; Yin, B.; Hou, Y.; Chang, H. Long-Range Radiation and Interference Pattern of Multisource M 2 Internal Tides in the Philippine Sea. J. Geophys. Res. Oceans 2018, 123, 5091–5112. [Google Scholar] [CrossRef] [Green Version]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Guo, Z.; Cao, A.; Wang, S. Influence of Remote Internal Tides on the Locally Generated Internal Tides upon the Continental Slope in the South China Sea. J. Mar. Sci. Eng. 2021, 9, 1268. https://doi.org/10.3390/jmse9111268
Guo Z, Cao A, Wang S. Influence of Remote Internal Tides on the Locally Generated Internal Tides upon the Continental Slope in the South China Sea. Journal of Marine Science and Engineering. 2021; 9(11):1268. https://doi.org/10.3390/jmse9111268
Chicago/Turabian StyleGuo, Zheng, Anzhou Cao, and Shuya Wang. 2021. "Influence of Remote Internal Tides on the Locally Generated Internal Tides upon the Continental Slope in the South China Sea" Journal of Marine Science and Engineering 9, no. 11: 1268. https://doi.org/10.3390/jmse9111268
APA StyleGuo, Z., Cao, A., & Wang, S. (2021). Influence of Remote Internal Tides on the Locally Generated Internal Tides upon the Continental Slope in the South China Sea. Journal of Marine Science and Engineering, 9(11), 1268. https://doi.org/10.3390/jmse9111268