Cathodic Protection of A Container Ship Using A Detailed BEM Model
Abstract
:1. Introduction
2. Governing Equations of an ICCP Problem for Immersed Structures in Semi-Infinite Electrolytes and ACA/BEM
2.1. Governing Equations
2.2. ACA/BEM
3. ICCP System Design of an 18270 TEU Capacity Container Ship
3.1. Description of the Container Ship
3.2. Polarization Characteristics of the Coated Surfaces
3.3. Configuration of the ICCP System
3.4. BEM Model
3.5. Numerical Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Lee, M.J.; Lim, C.S. ICCP System Design on the Hull of an Ice Breaker by Computational Analysis, NACE Corrosion Conference and Expo, San Antonio, TX, USA, 9–13 March 2014; NACE International: Houston, TX, USA, 2014. [Google Scholar]
- Lucas, K.E.; Thomas, E.D.; Kaznoff, A.I.; Hogan, E.A. Design of Impressed Current Cathodic Protection (ICCP) systems for U.S. Navy Hulls. In Designing Cathodic Protection Systems for Marine Structures and Vehicles; Hack, H.P., Ed.; American Society for Testing and Materials: West Conshohocken, PA, USA, 1999; pp. 17–33. [Google Scholar]
- Mathiazhagan, A. Design and Programming of Cathodic Protection for ships. Int. J. Chem. Eng. 2010, 1, 217–221. [Google Scholar] [CrossRef] [Green Version]
- Iwata, M.; Huang, Y.; Fujimoto, Y. Application of BEM to Design of the Impressed Current Cathodic Protection System for Ship Hull. J. Soc. Naval. Arch. Jpn. 1992, 171, 377–383. [Google Scholar] [CrossRef] [Green Version]
- DeGiorgi, V.G.; Hogan, E.; Lucas, K.E.; Wimmer, S.A. Shipboard impressed current cathodic protection system (ICCP) analysis. WIT Trans. State Art Sci. Eng. 2005, 7, 13–44. [Google Scholar]
- Wang, Y.; KarisAllen, K.J. Comparison of Impressed Current Cathodic Protection Numerical Modeling Results with Physical Scale Modeling Data. Corr. Sci. 2010, 66, 105001‒15. [Google Scholar] [CrossRef]
- Wang, Y.; Brennan, D.P.; Chernuka, M. Parametric Studies of a Shipboard Impressed Current Cathodic Protection System Using a Boundary Element Code. In Boundary Element Technology XV; Brebbia, C.A., Dippery, R.E., Eds.; WIT Press: Southampton, UK, 2003; pp. 181–191. [Google Scholar]
- Santana Diaz, E.; Adey, R. Optimization of the performance of an ICCP system by changing current supplied and position of the anode. In Boundary Elements XXIV; Brebbia, C.A., Tadeu, A., Popov, V., Eds.; WIT Press: Southampton, UK, 2002; pp. 181–191. [Google Scholar]
- Wu, J.; Xing, S.; Yun, F. The influence of coating damage on the ICCP cathodic protection effect. WIT Trans. Eng. Sci. 2009, 65, 89–96. [Google Scholar]
- DeGiorgi, V.G. A review of computational analyses of ship cathodic protection systems. WIT Trans. Model. Simul. 1997, 18, 829–838. [Google Scholar]
- DeGiorgi, V.G. Evaluation of perfect paint assumptions in modeling of cathodic protection systems. Eng. Anal. Bound. Elem. 2002, 26, 435–445. [Google Scholar] [CrossRef]
- Zamani, N.G. Boundary Element Simulation of the Cathodic Protection System in a Prototype Ship. Appl. Math. Comput. 1988, 26, 119–134. [Google Scholar] [CrossRef]
- Santana Diaz, E.; Adey, R. Predicting the coating condition on ships using ICCP system data. Int. J. Numer. Methods Eng. 2004, 62, 727–746. [Google Scholar] [CrossRef]
- Wang, Y.; KarisAllen, K.J. Modelling stray current interference to shipboard cathodic protection system. In Proceedings of the DoD—Allied Nations Technical Corrosion Conference, Pittsburg, CA, USA, 15 November 2015. [Google Scholar]
- DeGiorgi, V.G.; Wimmer, S.A. Geometric details and modeling accuracy requirements for shipboard impressed current cathodic protection system modeling. Eng. Anal. Bound. Elem. 2005, 29, 15–28. [Google Scholar] [CrossRef]
- DeGiorgi, V.G.; Thomas, E.D.; Lucas, K.E. Scale effects and verification of modeling of ship cathodic protection systems. Eng. Anal. Bound. Elem. 1998, 22, 41–49. [Google Scholar] [CrossRef]
- Lorenzi, S.; Pastore, T.; Bellezze, T.; Fratesi, R. Cathodic protection modelling of a propeller shaft. Corros. Sci. 2016, 108, 36–46. [Google Scholar] [CrossRef] [Green Version]
- Thiel, C.; Broecheler, C.; Ludwar, F.; Rennings, A.; Doose, J.; Erni, D. A Simple Superposition Formulation to Predict the Underwater Electric Potential Signature of Naval Vessels. J. Mar. Sci. Eng. 2020, 105, 105. [Google Scholar] [CrossRef] [Green Version]
- Amaya, K.; Aoki, S. Effective boundary element methods in corrosion analysis. Eng. Anal. Bound. Elem. 2003, 27, 507–519. [Google Scholar] [CrossRef]
- Rodopoulos, D.C.; Gortsas, T.V.; Tsinopoulos, S.V.; Polyzos, D. ACA/BEM for solving large-scale cathodic protection problems. Eng. Anal. Bound. Elem. 2019, 106, 139–148. [Google Scholar] [CrossRef]
- Santos, W.J.; Brasil, S.L.D.C.; Santiago, J.A.F.; Telles, J.C.F. A new solution technique for cathodic protection systems with homogeneous region by the boundary element method. Eur. J. Comput. Mech. 2018, 27, 368–382. [Google Scholar] [CrossRef]
- Wrobel, L.C. The Boundary Element Method Vol. 1: Application in Thermo-Fluids and Acoustics; Wiley: West Sussex, UK, 2002. [Google Scholar]
- Det Norske Veritas. Recommended Practice DNVGL-RP-B401: Cathodic Protection Design; DNV: Oslo, Norway, 2017. [Google Scholar]
- Holmes, J.J. Reduction of a Ship’s Magnetic Field Signatures; Morgan & Claypool Publishers: London, UK, 2008. [Google Scholar]
- Wharton, J.A.; Barik, R.C.; Kear, G.; Wood, R.J.K.; Stokes, K.R.; Walsh, F.C. The corrosion of nickel-aluminum bronze in seawater. Corros. Sci. 2005, 47, 3336–3367. [Google Scholar] [CrossRef]
ICCP zone | Current I (A) Per Anode | Current I (A) Per Zone | Current I Percentage (%) Per Zone | ||
---|---|---|---|---|---|
No. | Anode Title | Anode No | |||
1 | Front, FR | 2 | 346.8 | 693.6 | 27.54 |
2 | Center, CE | 2 | 345.9 | 691.8 | 27.47 |
3 | Behind, BE | 2 | 196.5 | 393.0 | 15.60 |
4 | Stern, ST | 2 | 224.5 | 575.0 | 22.83 |
ST3 | 1 | 126.0 | |||
5 | Tube Front-R | 4 | 4.3 | 52.0 | 2.06 |
Tube Front-L | 4 | 8.7 | |||
6 | Tube Behind-R | 4 | 14.2 | 113.4 | 4.50 |
Tube Behind-L | 4 | 14.2 | |||
Total | 26 | - | 2518.8 | 100.0 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kalovelonis, D.T.; Rodopoulos, D.C.; Gortsas, T.V.; Polyzos, D.; Tsinopoulos, S.V. Cathodic Protection of A Container Ship Using A Detailed BEM Model. J. Mar. Sci. Eng. 2020, 8, 359. https://doi.org/10.3390/jmse8050359
Kalovelonis DT, Rodopoulos DC, Gortsas TV, Polyzos D, Tsinopoulos SV. Cathodic Protection of A Container Ship Using A Detailed BEM Model. Journal of Marine Science and Engineering. 2020; 8(5):359. https://doi.org/10.3390/jmse8050359
Chicago/Turabian StyleKalovelonis, Dimitrios T., Dimitrios C. Rodopoulos, Theodoros V. Gortsas, Demosthenes Polyzos, and Stephanos V. Tsinopoulos. 2020. "Cathodic Protection of A Container Ship Using A Detailed BEM Model" Journal of Marine Science and Engineering 8, no. 5: 359. https://doi.org/10.3390/jmse8050359
APA StyleKalovelonis, D. T., Rodopoulos, D. C., Gortsas, T. V., Polyzos, D., & Tsinopoulos, S. V. (2020). Cathodic Protection of A Container Ship Using A Detailed BEM Model. Journal of Marine Science and Engineering, 8(5), 359. https://doi.org/10.3390/jmse8050359