Investigation of an Accelerated Deterioration Method for Subsea Tunnel RC Linings via Electromigration and Its Associated Test Parameters
Abstract
1. Introduction
2. Experimental Program
2.1. Mix Design and Specimen Preparation
2.2. Experimental Setup and Procedure
2.3. Acid Pickling of Reinforcement and Visualization of Chloride Penetration
3. Results and Discussion
3.1. Non-Uniform Corrosion Characteristics of Steel Reinforcement
3.2. Degree of Corrosion of Steel Reinforcement at Different Acceleration Durations
3.3. Effect of Electrode Plate Perforation Area and Distribution Pattern on Chloride Transport
3.4. Effect of the Distance Between the Electrode Plate and Concrete Specimen on Chloride Transport
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Gong, H.M.; Xue, Y.G.; Fu, K.; Kong, F.M.; Han, M.; Zhou, B.H.; Guo, Y.B. Assessing and predicting surrounding rock settlement troughs in the subsea tunnel: A case study of Haicang Tunnel. Mar. Georesources Geotechnol. 2024, 43, 1115–1126. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Wang, M.N.; Yu, L.; Guo, X.H.; Wang, Z.H.; Li, C.H. Experimental and numerical research on the influence of steel arch frame corrosion on security of supporting system in subsea tunnel. Tunn. Undergr. Space Technol. 2022, 120, 16. [Google Scholar] [CrossRef]
- Li, P.F.; Zhou, X.J. Mechanical behavior and shape optimization of lining structure for subsea tunnel excavated in weathered slot. China Ocean Eng. 2015, 29, 875–890. [Google Scholar] [CrossRef]
- Tian, S.M.; Zhang, Y.T.; Wang, M.N. The corrosion expansion force and cracking separation between corroded section steel arch frame and shotcrete in tunnel primary support. Eng. Fail. Anal. 2024, 166, 17. [Google Scholar] [CrossRef]
- Shen, W.; Ran, J.H.; Fan, L.; Sun, B.Y.; Zhang, R.L. Investigation of macro-cell corrosion in rebar within cracked concrete beams under sustained loading conditions in the simulated marine environment. Constr. Build. Mater. 2025, 468, 16. [Google Scholar] [CrossRef]
- He, Z.S.; He, C.; Ma, G.Y.; Wang, S.M.; Huang, X. Experimental investigation on the deterioration process and spatial variation of corrosion damage of RC segmental specimens under sustained load. Constr. Build. Mater. 2022, 349, 16. [Google Scholar] [CrossRef]
- Feng, K.; Yang, R.J.; Geng, J.Y.; Cao, X.P.; He, C.A.; Yang, W.Q.; Zhang, H.H. Experimental investigation of mechanical-performance deterioration of HFRC segment under combined effect of sustained loading and chloride-induced corrosion. Tunn. Undergr. Space Technol. 2021, 114, 14. [Google Scholar] [CrossRef]
- He, Z.S.; He, C.; Kang, X.Y.; Huang, X.; Wang, S.M. Assessment of structural performance of super large cross-section subsea RC shield tunnels: Emphasis on the combined effects of highly hydrostatic pressure and corrosion-induced deterioration. Ocean Eng. 2023, 288, 15. [Google Scholar] [CrossRef]
- Liu, J.G.; Wei, L.H.; Cui, Q.L.; Shu, H.; Peng, W.B.; Gong, H.M.; Xue, Y.G.; Han, M. Chloride Corrosion Resistance of Steel Fiber-Reinforced Concrete and Its Application in Subsea Tunnel Linings. Coatings 2025, 15, 25. [Google Scholar] [CrossRef]
- Wang, M.N.; Zhang, Y.T.; Yu, L.; Dong, Y.C.; Tian, Y.; Zhou, G.J. Experimental Study on Bond-Slip Behavior between Corroded I-Shaped Steel and Concrete in Subsea Tunnel. Materials 2019, 12, 2863. [Google Scholar] [CrossRef]
- El Maaddawy, T.A.; Soudki, K.A. Effectiveness of impressed current technique to simulate corrosion of steel reinforcement in concrete. J. Mater. Civ. Eng. 2003, 15, 41–47. [Google Scholar] [CrossRef]
- Deng, Q.; Wang, Z.X.; Li, S.H.; Yu, Q.L. Salt scaling resistance of pre-cracked ultra-high performance concrete with the coupling of salt freeze-thaw and wet-dry cycles. Cem. Concr. Compos. 2024, 146, 18. [Google Scholar] [CrossRef]
- Frazao, C.; Barros, J.; Camoes, A.; Alves, A.C.; Rocha, L. Corrosion effects on pullout behavior of hooked steel fibers in self-compacting concrete. Cem. Concr. Res. 2016, 79, 112–122. [Google Scholar] [CrossRef]
- Hwang, J.P.; Jung, M.S.; Kim, M.; Ann, K.Y. Corrosion risk of steel fibre in concrete. Constr. Build. Mater. 2015, 101, 239–245. [Google Scholar] [CrossRef]
- Clemente, S.J.C.; Lejano, B.A.; Ongpeng, J.M.C. Corrosion behavior analysis of self-compacting concrete using impressed current and rapid chloride penetration test. Int. J. GEOMATE 2023, 24, 76–83. [Google Scholar] [CrossRef]
- Berrocal, C.G.; Lundgren, K.; Löfgren, I. Corrosion of steel bars embedded in fibre reinforced concrete under chloride attack: State of the art. Cem. Concr. Res. 2016, 80, 69–85. [Google Scholar] [CrossRef]
- Mangat, P.S.; Gurusamy, K. Chloride diffusion in steel fiber reinforced marine concrete. Cem. Concr. Res. 1987, 17, 385–396. [Google Scholar] [CrossRef]
- Marcos-Meson, V.; Fischer, G.; Solgaard, A.; Edvardsen, C.; Michel, A. Mechanical Performance of Steel Fibre Reinforced Concrete Exposed to Wet-Dry Cycles of Chlorides and Carbon Dioxide. Materials 2021, 14, 2642. [Google Scholar] [CrossRef] [PubMed]
- Jiang, J.H.; Yuan, Y.S. Prediction model for the time-varying corrosion rate of rebar based on micro-environment in concrete. Constr. Build. Mater. 2012, 35, 625–632. [Google Scholar] [CrossRef]
- Shakouri, M.; Vaddey, N.P.; Trejo, D. Effect of Admixed and External Chlorides on Transport of Chlorides in Concrete. ACI Mater. J. 2019, 116, 119–128. [Google Scholar] [CrossRef]
- Spiesz, P.; Brouwers, H.J.H. The apparent and effective chloride migration coefficients obtained in migration tests. Cem. Concr. Res. 2013, 48, 116–127. [Google Scholar] [CrossRef]
- Pontes, J.; Real, S.; Bogas, J.A. The rapid chloride migration test as a method to determine the chloride penetration resistance of concrete in marine environment. Constr. Build. Mater. 2023, 404, 11. [Google Scholar] [CrossRef]
- Jain, J.A.; Neithalath, N. Chloride transport in fly ash and glass powder modified concretes—Influence of test methods on microstructure. Cem. Concr. Compos. 2010, 32, 148–156. [Google Scholar] [CrossRef]
- Tang, L.P.; Nilsson, L.O. Rapid-determination of the chloride diffusivity in concrete by applying an electrical-field. ACI Mater. J. 1992, 89, 49–53. [Google Scholar]
- Tang, L. Electrically accelerated methods for determining chloride diffusivity in concrete—Current development. Mag. Concr. Res. 1996, 48, 173–179. [Google Scholar] [CrossRef]
- Wang, Y.Z.; Fu, K. Comparisons of instantaneous chloride diffusion coefficients determined by RCM method and chloride natural diffusion test. Constr. Build. Mater. 2019, 223, 595–604. [Google Scholar] [CrossRef]
- Wang, S.Q.; Cao, J.Z.; Gong, F.Y.; Peng, Y.Z.; Wang, Z.; Zhao, Y.X.; Zeng, B. Insights on the multiple ions distribution in concrete under stray current: From experiments to multi-field simulation. J. Build. Eng. 2024, 98, 15. [Google Scholar] [CrossRef]
- Kribes, Z.E.; Cherif, R.; Ait-Mokhtar, A. Modelling of Chloride Transport in the Standard Migration Test including Electrode Processes. Materials 2023, 16, 6200. [Google Scholar] [CrossRef] [PubMed]
- Liu, Q.F.; Shen, X.H.; Savija, B.; Meng, Z.Z.; Tsang, D.C.W.; Sepasgozar, S.; Schlangen, E. Numerical study of interactive ingress of calcium leaching, chloride transport and multi-ions coupling in concrete. Cem. Concr. Res. 2023, 165, 15. [Google Scholar] [CrossRef]
- Fu, C.Q.; Zhang, J.H.; Yu, N.T.; Yuan, W.B.; Gao, Z.J. Reliability of chloride diffusion coefficients calculated from rapid chloride migration experiments. Mag. Concr. Res. 2025, 77, 809–818. [Google Scholar] [CrossRef]
- Shi, J.J.; Ming, J.; Sun, W. Accelerated Corrosion Behavior of Steel in Concrete Subjected to Sustained Flexural Loading Using Electrochemical Methods and X-Ray Computed Tomography. J. Mater. Civ. Eng. 2018, 30, 2337. [Google Scholar] [CrossRef]
- Wei, L.H.; Liu, J.G.; Shu, H.; Cui, Q.L.; Peng, W.B.; Gong, H.M.; Xue, Y.G.; Han, M. Degradation Characteristics and Mechanisms of Steel Fiber-Reinforced Concrete Linings in Subsea Tunnels: Insights from Accelerated Erosion Tests with Applied Electric Fields. J. Mar. Sci. Eng. 2025, 13, 18. [Google Scholar] [CrossRef]
- Geng, C.L.; Xu, Y.M.; Weng, D. A New Method to Quickly Assess the Inhibitor Efficiency. J. Wuhan Univ. Technol.-Mater. Sci. Ed. 2008, 23, 950–954. [Google Scholar] [CrossRef]
- Jin, N.G.; He, J.H.; Fu, C.Q.; Jin, X.Y. Study on experimental method and morphology of accelerated non-uniform corrosion of steel bars. J. Zhejiang Univ. Eng. Sci. 2020, 54, 483–490. [Google Scholar]
- Fu, C.Q.; Jin, N.G.; Ye, H.L.; Liu, J.M.; Jin, X.Y. Non-uniform corrosion of steel in mortar induced by impressed current method: An experimental and numerical investigation. Constr. Build. Mater. 2018, 183, 429–438. [Google Scholar] [CrossRef]
- Zhang, L.; Niu, D.T.; Wen, B.; Luo, D.M. Concrete Protective Layer Cracking Caused by Non-Uniform Corrosion of Reinforcements. Materials 2019, 12, 4245. [Google Scholar] [CrossRef] [PubMed]
- Feng, W.P.; Tarakbay, A.; Memon, S.A.; Tang, W.C.; Cui, H.Z. Methods of accelerating chloride-induced corrosion in steel-reinforced concrete: A comparative review. Constr. Build. Mater. 2021, 289, 14. [Google Scholar] [CrossRef]
- Michel, A.; Solgaard, A.O.S.; Pease, B.J.; Geiker, M.R.; Stang, H.; Olesen, J.F. Experimental investigation of the relation between damage at the concrete-steel interface and initiation of reinforcement corrosion in plain and fibre reinforced concrete. Corros. Sci. 2013, 77, 308–321. [Google Scholar] [CrossRef]
- Liu, Q.F.; Su, R.K.L. A Wasserstein distance-based analogous method to predict distribution of non-uniform corrosion on reinforcements in concrete. Constr. Build. Mater. 2019, 226, 965–975. [Google Scholar] [CrossRef]
- Feng, T.T.; Yu, H.F.; Tan, Y.S.; Ma, H.Y.; Xu, M.; Yue, C.J. Service Life Design for Concrete Engineering in Marine Environments of Northern China Based on a Modified Theoretical Model of Chloride Diffusion and Large Datasets of Ocean Parameters. Engineering 2022, 17, 123–139. [Google Scholar] [CrossRef]
- Liu, Q.F.; Pei, G.D.; Hou, H.T.; Chen, Y.Q. Probabilistic similarity of non-uniform corrosion pattern between natural corrosion and accelerated experiment. Constr. Build. Mater. 2023, 392, 15. [Google Scholar] [CrossRef]
- Xi, X.; Yang, S.T.; Li, C.Q. A non-uniform corrosion model and meso-scale fracture modelling of concrete. Cem. Concr. Res. 2018, 108, 87–102. [Google Scholar] [CrossRef]
- Liu, Q.F.; Chen, Y.Q.; Ge, Y.; Xiong, Q.R.; Ma, J.L.; Wang, Y.K.; Zhang, F.L. Time-dependent non-uniform corrosion of concrete structures under marine environments considering the vertical variation of exposure conditions. Ocean Eng. 2024, 306, 20. [Google Scholar] [CrossRef]
PC (kg/m3) | PFA (kg/m3) | SP (kg/m3) | SA (kg/m3) | CS (kg/m3) | PS (kg/m3) | W (kg/m3) |
---|---|---|---|---|---|---|
305 | 60 | 80 | 734 | 1008 | 6.2 | 158 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Cui, Q.; Zhang, S.; Li, X.; Wei, L.; Gong, H.; Xue, Y.; Han, M. Investigation of an Accelerated Deterioration Method for Subsea Tunnel RC Linings via Electromigration and Its Associated Test Parameters. J. Mar. Sci. Eng. 2025, 13, 1799. https://doi.org/10.3390/jmse13091799
Liu J, Cui Q, Zhang S, Li X, Wei L, Gong H, Xue Y, Han M. Investigation of an Accelerated Deterioration Method for Subsea Tunnel RC Linings via Electromigration and Its Associated Test Parameters. Journal of Marine Science and Engineering. 2025; 13(9):1799. https://doi.org/10.3390/jmse13091799
Chicago/Turabian StyleLiu, Jiguo, Qinglong Cui, Shengbin Zhang, Xin Li, Longhai Wei, Huimin Gong, Yiguo Xue, and Min Han. 2025. "Investigation of an Accelerated Deterioration Method for Subsea Tunnel RC Linings via Electromigration and Its Associated Test Parameters" Journal of Marine Science and Engineering 13, no. 9: 1799. https://doi.org/10.3390/jmse13091799
APA StyleLiu, J., Cui, Q., Zhang, S., Li, X., Wei, L., Gong, H., Xue, Y., & Han, M. (2025). Investigation of an Accelerated Deterioration Method for Subsea Tunnel RC Linings via Electromigration and Its Associated Test Parameters. Journal of Marine Science and Engineering, 13(9), 1799. https://doi.org/10.3390/jmse13091799