The Physical Significance and Applications of F_TIDE in Nonstationary Tidal Analysis
Abstract
1. Introduction
2. Materials and Methods
3. Results
3.1. Prediction in F_TIDE
3.2. Exploring the Main Mechanisms Causing Tide Changes by F_TIDE
3.3. Parameter Setting
3.4. Physical Meaning of F_TIDE
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Idier, D.; Bertin, X.; Thompson, P.; Pickering, M.D. Interactions Between Mean Sea Level, Tide, Surge, Waves and Flooding: Mechanisms and Contributions to Sea Level Variations at the Coast. Surv. Geophys. 2019, 40, 1603–1630. [Google Scholar] [CrossRef]
- Akan, Ç.; Moghimi, S.; Özkan-Haller, H.T.; Osborne, J.; Kurapov, A. On the Dynamics of the Mouth of the Columbia River: Results from a Three-Dimensional Fully Coupled Wave-Current Interaction Model. J. Geophys. Res. Ocean. 2017, 122, 5218–5236. [Google Scholar] [CrossRef]
- Stumpf, R.P.; Haines, J.W. Variations in Tidal Level in the Gulf of Mexico and Implications for Tidal Wetlands. Estuar. Coast. Shelf Sci. 1998, 46, 165–173. [Google Scholar] [CrossRef]
- Doodson, A.T. The Harmonic Development of the Tide-Generating Potential. Proc. R. Soc. Lond. Ser. A 1921, 100, 305–329. [Google Scholar] [CrossRef]
- Pugh, D.; Woodworth, P. Sea-Level Science: Understanding Tides, Surges, Tsunamis and Mean Sea-Level Changes; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Talke, S.A.; Jay, D.A. Changing Tides: The Role of Natural and Anthropogenic Factors. Ann. Rev. Mar. Sci. 2020, 59, 121–151. [Google Scholar] [CrossRef]
- Haigh, I.D.; Pickering, M.D.; Green, J.A.M.; Arbic, B.K.; Arns, A.; Dangendorf, S.; Hill, D.F.; Horsburgh, K.; Howard, T.; Idier, D.; et al. The Tides They Are A-Changin’: A Comprehensive Review of Past and Future Nonastronomical Changes in Tides, Their Driving Mechanisms, and Future Implications. Rev. Geophys. 2020, 58, e2018RG000636. [Google Scholar] [CrossRef]
- Foreman, M.G.G. Manual for Tidal Currents Analysis and Prediction. 1977. Available online: https://www.researchgate.net/publication/264782849_Manual_for_Tidal_Currents_Analysis_and_Prediction?__cf_chl_tk=5.odFP4Id_L9.RMwysrI61sTI8FUcl1OGCl6Q.nRMjE-1756797774-1.0.1.1-k6d3rqfUy176tHOn2miIfVGS5gg9W2os15Ni1db4b0E (accessed on 23 August 2021).
- Godin, G. The use of Nodal Corrections in the Calculation of Harmonic Constants. Int. Hydrogr. Rev. 1986, 63, 143–162. [Google Scholar]
- Foreman, M.G.G.; Henry, R.F. The Harmonic Analysis of Tidal Model Time Series. Adv. Water Res. 1989, 12, 109–120. [Google Scholar] [CrossRef]
- Colosi, J.A.; Munk, W. Tales of the Venerable Honolulu Tide Gauge. J. Phys. Ocean. 2006, 36, 967–996. [Google Scholar] [CrossRef]
- Jay, D.A. Evolution of Tidal Amplitudes in the Eastern Pacific Ocean. Geophys. Res. Lett. 2009, 36, L04603. [Google Scholar] [CrossRef]
- Ray, R.D. Secular Changes in the Solar Semidiurnal Tide of the Western North Atlantic Ocean. Geophys. Res. Lett. 2009, 36, L19601. [Google Scholar] [CrossRef]
- Haigh, I.D.; Eliot, M.; Pattiaratchi, C. Global Influences of the 18.61 Year Nodal Cycle and 8.85 Year Cycle of Lunar Perigee on High Tidal Levels. J. Geophys. Res. Ocean. 2011, 116, C06025. [Google Scholar] [CrossRef]
- Pan, H.; Lv, X. Is There a Quasi 60-Year Oscillation in Global Tides? Cont. Shelf Res. 2021, 222, 104433. [Google Scholar] [CrossRef]
- Ross, A.C.; Najjar, R.G.; Li, M.; Lee, S.B.; Zhang, F.; Liu, W. Fingerprints of Sea Level Rise on Changing Tides in the Chesapeake and Delaware Bays. J. Geophys. Res. Ocean. 2017, 122, 8102–8125. [Google Scholar] [CrossRef]
- Schindelegger, M.; Green, J.A.M.; Wilmes, S.B.; Haigh, I.D. Can We Model the Effect of Observed Sea Level Rise on Tides? J. Geophys. Res. Ocean. 2018, 123, 4593–4609. [Google Scholar] [CrossRef]
- Idier, D.; Paris, F.; Le Cozannet, G.; Boulahya, F.; Dumas, F. Sea-Level Rise Impacts on the Tides of the European Shelf. Cont. Shelf Res. 2017, 137, 56–71. [Google Scholar] [CrossRef]
- Devlin, A.T.; Jay, D.A.; Zaron, E.D.; Talke, S.A.; Pan, J.; Lin, H. Tidal Variability Related to Sea Level Variability in the Pacific Ocean. J. Geophys. Res. Ocean. 2017, 122, 8445–8463. [Google Scholar] [CrossRef]
- Müller, M.; Cherniawsky, J.Y.; Foreman, M.G.G.; Von Storch, J.S. Seasonal Variation of the M2 Tide. Ocean. Dyn. 2014, 64, 159–177. [Google Scholar] [CrossRef]
- Pickering, M.D.; Horsburgh, K.J.; Blundell, J.R.; Hirschi, J.J.M.; Nicholls, R.J.; Verlaan, M.; Wells, N.C. The Impact of Future Sea-Level Rise on the Global Tides. Cont. Shelf Res. 2017, 142, 50–68. [Google Scholar] [CrossRef]
- Georgas, N. Large Seasonal Modulation of Tides Due to Ice Cover Friction in a Midlatitude Estuary. J. Phys. Ocean. 2012, 42, 352–369. [Google Scholar] [CrossRef]
- Godin, G. The Propagation of Tides up Rivers with Special Considerations on the Upper Saint Lawrence River. Estuar. Coast. Shelf Sci. 1999, 48, 307–324. [Google Scholar] [CrossRef]
- Ku, L.F.; Greenberg, D.A.; Garrett, C.J.R.; Dobson, F.W. Nodal Modulation of the Lunar Semidiurnal Tide in the Bay of Fundy and Gulf of Maine. Science 1985, 230, 69–71. [Google Scholar] [CrossRef]
- Horsburgh, K.J.; Wilson, C. Tide-Surge Interaction and Its Role in the Distribution of Surge Residuals in the North Sea. J. Geophys. Res. Ocean. 2007, 112, C08003. [Google Scholar] [CrossRef]
- Müller, M. The Influence of Changing Stratification Conditions on Barotropic Tidal Transport and Its Implications for Seasonal and Secular Changes of Tides. Cont. Shelf Res. 2012, 47, 107–118. [Google Scholar] [CrossRef]
- Devlin, A.T.; Jay, D.A.; Talke, S.A.; Zaron, E. Can Tidal Perturbations Associated with Sea Level Variations in the Western Pacific Ocean Be Used to Understand Future Effects of Tidal Evolution? Ocean Dyn. 2014, 64, 1093–1120. [Google Scholar] [CrossRef]
- Familkhalili, R.; Talke, S.A. The Effect of Channel Deepening on Tides and Storm Surge: A Case Study of Wilmington, NC. Geophys. Res. Lett. 2016, 43, 9138–9147. [Google Scholar] [CrossRef]
- Reidy, M.S. Tides of History: Ocean Science and Her Majesty’s Navy; University of Chicago Press: Chicago, IL, USA, 2008. [Google Scholar]
- Kurniawan, A.; Ooi, S.K.; Gerritsen, H.; Twigt, D. Calibrating the Regional Tidal Prediction of the Singapore Regional Model Using OpenDA. In Proceedings of the 9th International Conference on Hydroinformatics (HIC 2010), Tianjin, China, 7–11 September 2010. [Google Scholar]
- Karri, R.R.; Badwe, A.; Wang, X.; El Serafy, G.; Sumihar, J.; Babovic, V.; Gerritsen, H. Application of Data Assimilation for Improving Forecast of Water Levels and Residual Currents in Singapore Regional Waters. Ocean Dyn. 2013, 63, 43–61. [Google Scholar] [CrossRef]
- Zijl, F.; Verlaan, M.; Gerritsen, H. Improved Water-Level Forecasting for the Northwest European Shelf and North Sea through Direct Modelling of Tide, Surge and Non-Linear Interaction. Ocean Dyn. 2013, 63, 823–847. [Google Scholar] [CrossRef]
- Zijl, F.; Sumihar, J.; Verlaan, M. Application of Data Assimilation for Improved Operational Water Level Forecasting on the Northwest European Shelf and North Sea. Ocean Dyn. 2015, 65, 1699–1716. [Google Scholar] [CrossRef]
- Rashid, M.M.; Wahl, T. Predictability of Extreme Sea Level Variations Along the U.S. Coastline. J. Geophys. Res. Ocean. 2020, 125, e2020JC016295. [Google Scholar] [CrossRef]
- Chen, Y.; Gan, M.; Pan, S.; Pan, H.; Zhu, X.; Tao, Z. Application of Auto-Regressive (AR) Analysis to Improve Short-Term Prediction of Water Levels in the Yangtze Estuary. J. Hydrol. 2020, 590, 125386. [Google Scholar] [CrossRef]
- Tu, L.Z.; Gao, X.; Xu, J.; Sun, W.; Sun, Y.; Su, D. A Novel Method for Regional Short-Term Forecasting of Water. Water 2021, 13, 820. [Google Scholar] [CrossRef]
- Wei, H.L.; Billings, S.A. An Efficient Nonlinear Cardinal B-Spline Model for High Tide Forecasts at the Venice Lagoon. Nonlin. Process. Geophys. 2006, 13, 577–584. [Google Scholar] [CrossRef]
- Tsai, C.-P.; Lee, T.-L. Back-Propagation Neural Network in Tidal-Level Forecasting. J. Waterw. Port Coast. Ocean Eng. 1999, 125, 195–202. [Google Scholar] [CrossRef]
- Lee, T.L.; Tsai, C.P.; Jeng, D.S.; Shieh, R.J. Neural Network for the Prediction and Supplement of Tidal Record in Taichung Harbor, Taiwan. Adv. Eng. Softw. 2002, 33, 329–338. [Google Scholar] [CrossRef]
- Chang, H.K.; Lin, L.C. Multi-Point Tidal Prediction Using Artificial Neural Network with Tide-Generating Forces. Coast. Eng. 2006, 53, 857–864. [Google Scholar] [CrossRef]
- Yoon, H.; Jun, S.C.; Hyun, Y.; Bae, G.O.; Lee, K.K. A Comparative Study of Artificial Neural Networks and Support Vector Machines for Predicting Groundwater Levels in a Coastal Aquifer. J. Hydrol. 2011, 396, 128–138. [Google Scholar] [CrossRef]
- Yang, C.H.; Wu, C.H.; Hsieh, C.M.; Wang, Y.C.; Tsen, I.F.; Tseng, S.H. Deep Learning for Imputation and Forecasting Tidal Level. IEEE J. Ocean. Eng. 2021, 46, 1261–1271. [Google Scholar] [CrossRef]
- Zhang, Y.; Jiao, S.; Zhou, W.; Wang, Y.; Lv, X. Exploration the Effect of Nonstationary Signals on the Tidal Phenomenon Using F_TIDE Part, I. Sci. Rep. 2025, 15, 6303. [Google Scholar] [CrossRef]
- Pawlowicz, R.; Beardsley, B.; Lentz, S. Classical Tidal Harmonic Analysis Including Error Estimates in MATLAB Using T TIDE. Comput. Geosci. 2002, 28, 929–937. [Google Scholar] [CrossRef]
- Blier, W.; Keefe, S.; Shaffer, W.A.; Kim, S.C. Storm Surges in the Region of Western Alaska. Mon. Weather. Rev. 1997, 125, 3094–3108. [Google Scholar] [CrossRef]
- Lee, S.B.; Li, M.; Zhang, F. Impact of Sea Level Rise on Tidal Range in Chesapeake and Delaware Bays. J. Geophys. Res. Ocean. 2017, 122, 3917–3938. [Google Scholar] [CrossRef]
- Passeri, D.L.; Hagen, S.C.; Plant, N.G.; Bilskie, M.V.; Medeiros, S.C.; Alizad, K. Tidal Hydrodynamics under Future Sea Level Rise and Coastal Morphology in the Northern Gulf of Mexico. Earths Future 2016, 4, 159–176. [Google Scholar] [CrossRef]
- Pelling, H.E.; Uehara, K.; Green, J.A.M. The Impact of Rapid Coastline Changes and Sea Level Rise on the Tides in the Bohai Sea, China. J. Geophys. Res. Ocean. 2013, 118, 3462–3472. [Google Scholar] [CrossRef]
- Li, Y.; Zhang, H.; Tang, C.; Zou, T.; Jiang, D. Influence of Rising Sea Level on Tidal Dynamics in the Bohai Sea. J. Coast. Res. 2016, 74, 22–31. [Google Scholar] [CrossRef]
- Arns, A.; Wahl, T.; Dangendorf, S.; Jensen, J. The Impact of Sea Level Rise on Storm Surge Water Levels in the Northern Part of the German Bight. Coast. Eng. 2015, 96, 118–131. [Google Scholar] [CrossRef]
- Greenberg, D.A.; Blanchard, W.; Smith, B.; Barrow, E. Climate Change, Mean Sea Level and High Tides in the Bay of Fundy. Atmos.—Ocean. 2012, 50, 261–276. [Google Scholar] [CrossRef]
- Ettema, R.; Asce, F.; Baker, J.L.; Howlett, G.; Asce, M.; Hudson, B. Ice-Floe Impact with a Rubble-Mound Causeway at the Port of Nome, Alaska. J. Cold Reg. Eng. 2019, 33, 05019001. [Google Scholar] [CrossRef]
- Pan, H.; Lv, X.; Wang, Y.; Matte, P.; Chen, H.; Jin, G. Exploration of Tidal-Fluvial Interaction in the Columbia River Estuary Using S_TIDE. J. Geophys. Res. Ocean. 2018, 123, 6598–6619. [Google Scholar] [CrossRef]
Standard Parameter | Value (cm) | Confidence Intervals (cm) | SNR | |
---|---|---|---|---|
Change in M2 | H1,1 | 1.77 | 1.77 ± 1.04 | 1.71 |
H1,2 | 1.34 | 1.34 ± 0.55 | 2.42 | |
H1,3 | 0.81 | 0.81 ± 0.73 | 1.11 | |
H1,4 | 0.82 | 0.82 ± 0.69 | 1.18 | |
Change in K1 | H2,1 | 1.24 | 1.24 ± 1.06 | 1.17 |
H2,2 | 0.85 | 0.85 ± 0.35 | 2.43 | |
H2,3 | 0.90 | 0.90 ± 0.66 | 1.36 | |
H2,4 | 0.55 | 0.55 ± 0.68 | 0.81 | |
Change in MSL | h36 | 6.33 | 6.33 ± 0.59 | 10.76 |
h313 | 6.67 | 6.67 ± 0.65 | 10.35 | |
h314 | 11.74 | 11.74 ± 0.64 | 18.42 | |
h315 | 7.28 | 7.28 ± 0.63 | 11.55 | |
h323 | 8.65 | 8.65 ± 0.61 | 14.31 | |
h324 | 7.80 | 7.80 ± 0.59 | 13.18 | |
h332 | 9.62 | 9.62 ± 0.59 | 16.30 | |
h337 | 6.95 | 6.95 ± 0.59 | 11.81 | |
h338 | 8.02 | 8.02 ± 0.59 | 13.71 | |
MSL | s3 | 132.81 | 132.81 ± 2.97 | 44.76 |
Trend of MSL | k3 | |||
Trend of M2 | K1 | |||
Trend of K1 | K2 | |||
M2 | Hs1 | 11.73 | ||
K1 | Hs2 | 6.94 |
T_TIDE17 | F_TIDE17 | T_TIDE1 | F_TIDE1 | |
---|---|---|---|---|
M2 | 11.26 | 11.19 | 11.08 | 10.88 |
K1 | 8.57 | 8.74 | 8.46 | 9.75 |
Sa | 13.03 | 13.44 | - | - |
O1 | 6.11 | 6.19 | 5.93 | 6.56 |
Ssa | 9.70 | 9.23 | 11.01 | 10.99 |
N2 | 3.74 | 3.72 | 3.26 | 3.18 |
Mf | 6.21 | 5.72 | 8.53 | 8.35 |
S1 | 3.33 | 2.37 | - | - |
P1 | 2.60 | 2.55 | 2.25 | 2.41 |
Msm | 7.18 | 6.31 | 10.72 | 11.25 |
MSL | 137.50 | 137.33 | 137.27 | 137.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiao, S.; Zhang, Y.; Cao, X.; Zhou, W.; Lv, X. The Physical Significance and Applications of F_TIDE in Nonstationary Tidal Analysis. J. Mar. Sci. Eng. 2025, 13, 1692. https://doi.org/10.3390/jmse13091692
Jiao S, Zhang Y, Cao X, Zhou W, Lv X. The Physical Significance and Applications of F_TIDE in Nonstationary Tidal Analysis. Journal of Marine Science and Engineering. 2025; 13(9):1692. https://doi.org/10.3390/jmse13091692
Chicago/Turabian StyleJiao, Shengyi, Yunfei Zhang, Xuefeng Cao, Wei Zhou, and Xianqing Lv. 2025. "The Physical Significance and Applications of F_TIDE in Nonstationary Tidal Analysis" Journal of Marine Science and Engineering 13, no. 9: 1692. https://doi.org/10.3390/jmse13091692
APA StyleJiao, S., Zhang, Y., Cao, X., Zhou, W., & Lv, X. (2025). The Physical Significance and Applications of F_TIDE in Nonstationary Tidal Analysis. Journal of Marine Science and Engineering, 13(9), 1692. https://doi.org/10.3390/jmse13091692