LRA-UNet: A Lightweight Residual Attention Network for SAR Marine Oil Spill Detection
Abstract
:1. Introduction
- Residual blocks integrated with the SimAM attention mechanism are introduced into the encoder to enhance the network’s feature extraction capability;
- Replacing common 2D convolution with depthwise separable convolution reduces redundant spatial and channel features, significantly reduces the number of parameters and computation, and achieves a lightweight semantic segmentation model;
- A joint loss function is constructed by introducing an edge detection term based on the Sobel operator, enhancing the model’s segmentation accuracy along object boundaries.
2. Dataset Preparation
3. Methodology
3.1. Encoders
3.1.1. Residual Attention Module
3.1.2. Depthwise Separable Convolution
3.2. Decoder
3.3. Joint Loss Function
3.3.1. Cross-Entropy Loss
3.3.2. Loss Dice Loss
3.3.3. Edge Perception Loss
4. Results
4.1. Implementation Details
4.2. Evaluation Metrics
4.3. Algorithm Comparison
4.4. Ablation Study
4.5. Effect of the Joint Loss Function on Model Performance
5. Discussion
6. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
SAR | Synthetic aperture radar |
SimAM | Simple Attention Module |
CNN | Convolutional neural network |
FCN | Full convolutional network |
LRA-UNet | Lightweight Residual Attention U-Net |
ANN | Artificial Neural Networks |
DTs | Decision Trees |
RFs | Random Forests (RFs) |
References
- Cakir, E.; Sevgili, C.; Fiskin, R. An analysis of severity of oil spill caused by vessel accidents. Transp. Res. Part D Transp. Environ. 2021, 90, 102662. [Google Scholar] [CrossRef]
- Solberg, A.H.S. Remote sensing of ocean oil-spill pollution. Proc. IEEE 2012, 100, 2931–2945. [Google Scholar] [CrossRef]
- Chen, J.; Di, Z.; Shi, J.; Shu, Y.; Wan, Z.; Song, L.; Zhang, W. Marine oil spill pollution causes and governance: A case study of Sanchi tanker collision and explosion. J. Clean. Prod. 2020, 273, 122978. [Google Scholar] [CrossRef]
- Han, H.; Huang, S.; Liu, S.; Sha, J.; Lv, X. An assessment of marine ecosystem damage from the penglai 19-3 oil spill accident. J. Mar. Sci. Eng. 2021, 9, 732. [Google Scholar] [CrossRef]
- Ouchi, K.; Yoshida, T. On the interpretation of synthetic aperture radar images of oceanic phenomena: Past and present. Remote Sens. 2023, 15, 1329. [Google Scholar] [CrossRef]
- Khaleghian, S.; Ullah, H.; Kræmer, T.; Hughes, N.; Eltoft, T.; Marinoni, A. Sea ice classification of SAR imagery based on convolution neural networks. Remote Sens. 2021, 13, 1734. [Google Scholar] [CrossRef]
- Zhang, S.; Li, X.; Zhang, X. Internal wave signature extraction from SAR and optical satellite imagery based on deep learning. IEEE Trans. Geosci. Remote Sens. 2023, 61, 4203216. [Google Scholar] [CrossRef]
- Fingas, M.; Brown, C.E. A review of oil spill remote sensing. Sensors 2017, 18, 91. [Google Scholar] [CrossRef] [PubMed]
- Alpers, W.; Holt, B.; Zeng, K. Oil spill detection by imaging radars: Challenges and pitfalls. Remote Sens. Environ. 2017, 201, 133–147. [Google Scholar] [CrossRef]
- Zeng, K.; Wang, Y. A deep convolutional neural network for oil spill detection from spaceborne SAR images. Remote Sens. 2020, 12, 1015. [Google Scholar] [CrossRef]
- Xu, J.; Wang, H.; Cui, C.; Zhao, B.; Li, B. Oil spill monitoring of shipborne radar image features using SVM and local adaptive threshold. Algorithms 2020, 13, 69. [Google Scholar] [CrossRef]
- Yu, F.; Sun, W.; Li, J.; Zhao, Y.; Zhang, Y.; Chen, G. An improved Otsu method for oil spill detection from SAR images. Oceanologia 2017, 59, 311–317. [Google Scholar] [CrossRef]
- Al-Ruzouq, R.; Gibril, M.B.A.; Shanableh, A.; Kais, A.; Hamed, O.; Al-Mansoori, S.; Khalil, M.A. Sensors, features, and machine learning for oil spill detection and monitoring: A review. Remote Sens. 2020, 12, 3338. [Google Scholar] [CrossRef]
- Temitope Yekeen, S.; Balogun, A.-L. Advances in remote sensing technology, machine learning and deep learning for marine oil spill detection, prediction and vulnerability assessment. Remote Sens. 2020, 12, 3416. [Google Scholar] [CrossRef]
- Singha, S.; Bellerby, T.J.; Trieschmann, O. Satellite oil spill detection using artificial neural networks. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2013, 6, 2355–2363. [Google Scholar] [CrossRef]
- Topouzelis, K.; Karathanassi, V.; Pavlakis, P.; Rokos, D. Detection and discrimination between oil spills and look-alike phenomena through neural networks. Remote Sens. 2007, 62, 264–270. [Google Scholar] [CrossRef]
- Cheng, L.; Li, Y.; Qin, M.; Liu, B. A marine oil spill detection framework considering special disturbances using Sentinel-1 data in the Suez Canal. Mar. Pollut. Bull. 2024, 208, 117012. [Google Scholar] [CrossRef]
- Singha, S.; Ressel, R.; Velotto, D.; Lehner, S. A combination of traditional and polarimetric features for oil spill detection using TerraSAR-X. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2016, 9, 4979–4990. [Google Scholar] [CrossRef]
- Sun, Z.; Sun, S.; Zhao, J.; Ai, B.; Yang, Q. Detection of massive oil spills in sun glint optical imagery through super-pixel segmentation. J. Mar. Sci. Eng. 2022, 10, 1630. [Google Scholar] [CrossRef]
- Topouzelis, K.; Psyllos, A. Oil spill feature selection and classification using decision tree forest on SAR image data. ISPRS J. Photogramm. Remote Sens. 2012, 68, 135–143. [Google Scholar] [CrossRef]
- Tong, S.; Liu, X.; Chen, Q.; Zhang, Z.; Xie, G. Multi-feature based ocean oil spill detection for polarimetric SAR data using random forest and the self-similarity parameter. Remote Sens. 2019, 11, 451. [Google Scholar] [CrossRef]
- Lang, P.; Fu, X.; Dong, J.; Yang, H.; Yin, J.; Yang, J.; Martorella, M. Recent Advances in Deep Learning Based SAR Image Targets Detection and Recognition. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2025, 18, 6884–6915. [Google Scholar] [CrossRef]
- Xiao, Y.; Tian, Z.; Yu, J.; Zhang, Y.; Liu, S.; Du, S.; Lan, X. A review of object detection based on deep learning. Multimedia Tools Appl. 2020, 79, 23729–23791. [Google Scholar] [CrossRef]
- Sehar, U.; Naseem, M.L. How deep learning is empowering semantic segmentation: Traditional and deep learning techniques for semantic segmentation: A comparison. Multimed. Tools Appl. 2022, 81, 30519–30544. [Google Scholar] [CrossRef]
- Alokasi, H.; Ahmad, M.B. Deep learning-based frameworks for semantic segmentation of road scenes. Electronics 2022, 11, 1884. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, X.; Chen, Z.; Lu, Z. A review of deep learning-based semantic segmentation for point cloud. IEEE Access 2019, 7, 179118–179133. [Google Scholar] [CrossRef]
- Najafizadegan, S.; Danesh-Yazdi, M. Variable-complexity machine learning models for large-scale oil spill detection: The case of Persian Gulf. Mar. Pollut. Bull. 2023, 195, 115459. [Google Scholar] [CrossRef]
- Baek, W.-K.; Jung, H.-S. Performance comparison of oil spill and ship classification from x-band dual-and single-polarized sar image using support vector machine, random forest, and deep neural network. Remote Sens. 2021, 13, 3203. [Google Scholar] [CrossRef]
- Long, J.; Shelhamer, E.; Darrell, T. Fully convolutional networks for semantic segmentation. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Boston, MA, USA, 7–12 June 2015; pp. 3431–3440. [Google Scholar]
- Ronneberger, O.; Fischer, P.; Brox, T. U-net: Convolutional networks for biomedical image segmentation. In Proceedings of the Medical Image Computing and Computer-Assisted Intervention–MICCAI 2015: 18th International Conference, Munich, Germany, 5–9 October 2015; pp. 234–241. [Google Scholar]
- Krestenitis, M.; Orfanidis, G.; Ioannidis, K.; Avgerinakis, K.; Vrochidis, S.; Kompatsiaris, I. Oil spill identification from satellite images using deep neural networks. Remote Sens. 2019, 11, 1762. [Google Scholar] [CrossRef]
- Mahmoud, A.S.; Mohamed, S.A.; El-Khoriby, R.A.; AbdelSalam, H.M.; El-Khodary, I.A. Oil spill identification based on dual attention UNet model using Synthetic Aperture Radar images. J. Indian Soc. Remote Sens. 2023, 51, 121–133. [Google Scholar] [CrossRef]
- Zhu, Q.; Zhang, Y.; Li, Z.; Yan, X.; Guan, Q.; Zhong, Y.; Zhang, L.; Li, D. Oil spill contextual and boundary-supervised detection network based on marine SAR images. IEEE Trans. Geosci. Remote Sens. 2021, 60, 5213910. [Google Scholar] [CrossRef]
- Yekeen, S.T.; Balogun, A.L.; Yusof, K.B.W. A novel deep learning instance segmentation model for automated marine oil spill detection. ISPRS J. Photogramm. Remote Sens. 2020, 167, 190–200. [Google Scholar] [CrossRef]
- Chen, G.; Li, Y.; Sun, G.; Zhang, Y. Application of deep networks to oil spill detection using polarimetric synthetic aperture radar images. Appl. Sci. 2017, 7, 968. [Google Scholar] [CrossRef]
- Guo, H.; Wei, G.; An, J. Dark spot detection in SAR images of oil spill using segnet. Appl. Sci. 2018, 8, 2670. [Google Scholar] [CrossRef]
- Cantorna, D.; Dafonte, C.; Iglesias, A.; Arcay, B. Oil spill segmentation in SAR images using convolutional neural networks. A comparative analysis with clustering and logistic regression algorithms. Appl. Soft Comput. 2019, 84, 105716. [Google Scholar] [CrossRef]
- Satyanarayana, A.R.; Dhali, M.A. Oil Spill Segmentation using Deep Encoder-Decoder models. arXiv 2023, arXiv:2305.01386. [Google Scholar]
- Yang, L.; Zhang, R.-Y.; Li, L.; Xie, X. Simam: A simple, parameter-free attention module for convolutional neural networks. In Proceedings of the International Conference on Machine Learning, Virtual, 18–24 July 2021; pp. 11863–11874. [Google Scholar]
- Cheng, L.; Li, Y.; Zhao, K.; Liu, B.; Sun, Y. A Two-Stage Oil Spill Detection Method Based on an Improved Superpixel Module and DeepLab V3+ Using SAR Images. IEEE Geosci. Remote Sens. Lett. 2024, 22, 4000505. [Google Scholar] [CrossRef]
Category | Masks | Labels | Number of Training Samples | Number of Training Samples | Pixel Counts | |
---|---|---|---|---|---|---|
Training Set | Testing Set | |||||
Sea | Black | 0 | 5888 | 129 | 1,344,786,043 | 29,668,237 |
Oil Spill | Cyan | 1 | 38,538,319 | 888,122 | ||
Look-Alike | Red | 2 | 100,233,748 | 2,249,185 | ||
Ship | Brown | 3 | 1,533,636 | 9920 | ||
Land | Green | 4 | 58,412,126 | 1,000,775 |
Methods | Sea Surface | Oil Spill | Look-Alike | Ship | Land | mIoU (%) | Dice |
---|---|---|---|---|---|---|---|
UNet | 90.78 | 60.12 | 35.68 | 37.28 | 90.87 | 62.95 | 0.7005 |
DeepLabV3+ (MobileNetV2) | 93.61 | 61.27 | 37.83 | 27.45 | 91.13 | 62.26 | 0.6925 |
DeepLabV3+ (ResNet50) | 94.51 | 62.13 | 38.64 | 30.90 | 91.79 | 63.59 | 0.7068 |
DeepLabV3+ (ResNet101) | 94.06 | 61.74 | 38.99 | 27.65 | 92.17 | 62.92 | 0.7003 |
Ours | 94.25 | 64.62 | 36.95 | 40.04 | 92.07 | 65.59 | 0.7249 |
Ours (Joint loss) | 93.62 | 65.29 | 41.41 | 42.97 | 93.50 | 67.36 | 0.7453 |
Baseline | DSConv | Residual + SimAM | Joint Loss | mIoU (%) | Dice |
---|---|---|---|---|---|
✓ | 62.95 | 0.7005 | |||
✓ | ✓ | 64.00 | 0.7110 | ||
✓ | ✓ | ✓ | 65.59 | 0.7249 | |
✓ | ✓ | ✓ | ✓ | 67.36 | 0.7453 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cai, Y.; Su, J.; Song, J.; Xu, D.; Zhang, L.; Shen, G. LRA-UNet: A Lightweight Residual Attention Network for SAR Marine Oil Spill Detection. J. Mar. Sci. Eng. 2025, 13, 1161. https://doi.org/10.3390/jmse13061161
Cai Y, Su J, Song J, Xu D, Zhang L, Shen G. LRA-UNet: A Lightweight Residual Attention Network for SAR Marine Oil Spill Detection. Journal of Marine Science and Engineering. 2025; 13(6):1161. https://doi.org/10.3390/jmse13061161
Chicago/Turabian StyleCai, Yu, Jingjing Su, Jun Song, Dekai Xu, Liankang Zhang, and Gaoyuan Shen. 2025. "LRA-UNet: A Lightweight Residual Attention Network for SAR Marine Oil Spill Detection" Journal of Marine Science and Engineering 13, no. 6: 1161. https://doi.org/10.3390/jmse13061161
APA StyleCai, Y., Su, J., Song, J., Xu, D., Zhang, L., & Shen, G. (2025). LRA-UNet: A Lightweight Residual Attention Network for SAR Marine Oil Spill Detection. Journal of Marine Science and Engineering, 13(6), 1161. https://doi.org/10.3390/jmse13061161