You are currently viewing a new version of our website. To view the old version click .
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

18 December 2025

High-Fidelity Decoding Method for Acoustic Data Transmission and Reception of DIFAR Sonobuoy Using Autoencoder

and
Department of Information and Communication Engineering, Changwon National University, Changwon 51140, Republic of Korea
*
Author to whom correspondence should be addressed.
This article belongs to the Section Ocean Engineering

Abstract

Directional frequency analysis and recording (DIFAR) is a widely used sonobuoy in modern underwater acoustic monitoring and surveillance. The sonobuoy is installed in the area of interest, collects underwater data, and transmits the data to nearby aircraft for data analysis. In this process, transmission of a large volume of raw data poses significant challenges due to limited communication bandwidth. To address this problem, existing studies on autoencoder-based methods have drastically reduced amounts of information to be transmitted with moderate data reconstruction errors. However, the information bottleneck inherent in these autoencoder-based methods often leads to significant fidelity degradation. To overcome these limitations, this paper proposes a novel autoencoder method focused on the reconstruction fidelity. The proposed method operates with two key components: Gated Fusion (GF), proven critical for effectively fusing multi-scale features, and Squeeze and Excitation (SE), an adaptive Channel Attention for feature refinement. Quantitative evaluations on a realistic simulated sonobuoy dataset demonstrate that the proposed model achieves up to a 90.36% reduction in spectral mean squared error for linear frequency modulation signals compared to the baseline.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.