Abstract
Directional frequency analysis and recording (DIFAR) is a widely used sonobuoy in modern underwater acoustic monitoring and surveillance. The sonobuoy is installed in the area of interest, collects underwater data, and transmits the data to nearby aircraft for data analysis. In this process, transmission of a large volume of raw data poses significant challenges due to limited communication bandwidth. To address this problem, existing studies on autoencoder-based methods have drastically reduced amounts of information to be transmitted with moderate data reconstruction errors. However, the information bottleneck inherent in these autoencoder-based methods often leads to significant fidelity degradation. To overcome these limitations, this paper proposes a novel autoencoder method focused on the reconstruction fidelity. The proposed method operates with two key components: Gated Fusion (GF), proven critical for effectively fusing multi-scale features, and Squeeze and Excitation (SE), an adaptive Channel Attention for feature refinement. Quantitative evaluations on a realistic simulated sonobuoy dataset demonstrate that the proposed model achieves up to a 90.36% reduction in spectral mean squared error for linear frequency modulation signals compared to the baseline.