Abstract
Autonomous navigation in unknown; map-free environments is a core requirement for advanced robotics. While significant breakthroughs have been achieved in terrestrial scenarios, extending this capability to the unstructured, dynamic, and harsh underwater domain remains an enormous challenge. This review comprehensively analyzes the mainstream technologies underpinning mapless autonomous underwater navigation, with a primary focus on conventional Autonomous Underwater Vehicles (AUVs). It systematically examines key technical pillars of AUV navigation, including Dead Reckoning and Simultaneous Localization and Mapping (SLAM). Furthermore, inspired by the emerging concept of fourth-generation submersibles—which leverage living organisms rather than conventional machinery—this review expands its scope to include live fish as potential controlled platforms for underwater navigation. It first dissects the sophisticated sensory systems and hierarchical navigational strategies that enable aquatic animals to thrive in complex underwater habitats. Subsequently, it categorizes and evaluates state-of-the-art methods for controlling live fish via Brain-Computer Interfaces (BCIs), proposing a three-stage control hierarchy: Direct Motor Control, Semi-Autonomous Control with Task-Level Commands, and Autonomous Control by Biological Intelligence. Finally, the review summarizes current limitations in both conventional AUV technologies and bio-hybrid systems and outlines future directions, such as integrating external sensors with fish, developing onboard AI for adaptive control, and constructing bio-hybrid swarms. This work bridges the gap between robotic engineering and biological inspiration, providing a holistic reference for advancing mapless autonomous underwater navigation.
1. Introduction
The history of autonomous navigation can be traced back to the 16th century with Leonardo da Vinci’s programmable clockwork cart. This device, utilizing a pre-set cam system for rudimentary path planning, prefigured modern ambitions for autonomous machine locomotion [1]. Significant technological advancements were made in the 20th century, particularly with the development of the Stanford Cart in the 1960s, which was capable of navigating complex environments using a combination of cameras and sensors [2]. This laid the groundwork for autonomous navigation systems. In 1977, the mechanical engineering lab in the University of Tsukuba has first constructed a computerized driverless car [3,4], which laid a crucial foundation for the development of modern autonomous driving technology. In the late 20th century, the pace of development was significantly accelerated by large-scale, government and industry funded research programs. Notable among these was the NavLab series of Carnegie Mellon University in the United States, through which a fully functional self-driving car named ALVINN (Autonomous Land Vehicle In A Neural Network) was built for the first time using neural networks [5,6]. Concurrently in Europe, the PROMETHEUS programme spurred similar efforts, leading to a landmark 1994 demonstration where Ernst Dickmanns’s vision-guided vehicles drove over 1000 km in live traffic on a Paris highway at speeds up to 130 km/h [7,8]. In the 21st century, with the advent of more powerful computing resources, the integration of advanced sensors and the proliferation of data, the field of autonomous navigation has matured rapidly. Yet, as the frontiers of robotic exploration expand, the ambition of autonomy is now moving from structured terrestrial roads to the largest, most unstructured, and least understood environment on Earth: the ocean.
The ocean, covering more than 70% of the Earth’s surface, is crucial for sustainable human development. It plays an indispensable role in regulating global climate, supporting biodiversity, and providing resources for food and medicine [9]. Despite its significance, the ocean remains one of the least explored and understood frontiers on our planet. It has been estimated that over 80% of the ocean remains unmapped, unobserved, and unexplored [10]. For both exploration and assessment of the ocean environment, specialized marine monitoring equipment is indispensable. Modern ocean exploration often relies on Autonomous Underwater Vehicles (AUVs) [11]. Such vehicles can endure long-term missions in harsh underwater environments that are inaccessible to human beings. However, the full potential of AUVs is often constrained by their reliance on pre-existing maps or remote human supervision. To fully realize the potential of AUVs, AUVs must achieve mapless autonomous navigation—the ability to explore and operate in entirely unknown regions without prior information or continuous external guidance. This would enable them to conduct long-term, wide-ranging exploration in unstructured environments, operating untethered from a support vessel and without continuous human supervision [12].
It is important to note that a primary application for conventional AUVs is systematic seafloor mapping, a task for which they are exceptionally well-suited. However, the scope of this review focuses specifically on the more challenging paradigm of mapless autonomous navigation. This capability is critical for a distinct class of missions where pre-existing maps are unavailable or insufficient, such as exploratory reconnaissance in unknown cave systems, inspection of damaged infrastructure, or adaptive surveillance and tracking in dynamic environments.
Navigating without a map in underwater environments presents unique challenges that are fundamentally different and more complex than those on land. While terrestrial vehicles can rely on GPS for precise global positioning and high-bandwidth electromagnetic waves for perception and communication, these technologies are largely ineffective underwater due to the rapid attenuation of radio waves and light in water, especially in turbid conditions [13,14]. Table 1 outlines these key differences.
Table 1.
Core Differences in Autonomous Navigation between terrestrial and underwater.
To overcome these underwater challenges, researchers have developed a suite of specialized technologies including acoustic systems [15], inertial navigation [16], and Simultaneous localization and mapping (SLAM) techniques [17].
Moreover, with the emergence of the concept of the fourth-generation submersibles, which are based on living organisms rather than conventional machinery, this review extends the scope of its analysis to include live fish as the controlled object [18]. The main purpose of using live fish to replace machinery is the dramatic reduction of operational costs. Without the use of a battery, there is no need to use a mothership for maintenance. This is the most costly link for the operation of AUVs. Based on this concept, using live fish as a platform offers unmatched advantages that directly address the fundamental shortcomings of conventional AUVs. Biologically, they possess superior energy efficiency by converting food into propulsion unlike battery-reliant systems; they exhibit unparalleled maneuverability and hydrodynamic performance in complex fluid environments; and they have an innate stealth with minimal acoustic signatures, reducing environmental disturbance [19]. These biological advantages offer a transformative potential for specific, high stakes missions. For example, their ability to forage and leverage biological metabolism could enable multi-month persistence for tasks like long-term ecological monitoring, a task that is impossible for battery-powered systems [18]. Their superior maneuverability is ideal for navigating intricate structures like underwater caves or dense aquaculture nets, which is highly challenging for rigid, thruster-driven vehicles [20]. Similarly, their innate biological camouflage and silent propulsion make them ideal for covert surveillance or sensitive wildlife observation, far exceeding that of any conventional mechanical system [19]. However, controlling a living organism as a robotic platform introduces a novel set of challenges that are completely distinct from operating a conventional AUV. We cannot simply send direct commands to actuators or receive high-fidelity sensor data through a fiber-optic cable. The control paradigm shifts from direct mechanical actuation to indirect biological stimulation.
This paper provides a comprehensive analysis of mapless autonomous navigation. The remaining of the paper is structured as follows. Section 2 discusses the four key problems of mapless navigation and reviews the current technological solutions for conventional AUVs. Section 3 examines how these problems are solved in nature by aquatic animals. Section 4 reviews the current technologies in controlling living organisms for underwater navigation. Finally, Section 5 provides a conclusion and discusses the existing challenges and future directions for utilizing live fish as underwater monitoring platforms.
5. Conclusions, Existing Challenges and Future Trends
This review has provided a comprehensive analysis of mapless autonomous underwater navigation, bridging the gap between robotic techniques and the emerging field of fourth-generation submersible based on live fish. We began by surveying the established technologies employed in conventional AUVs, including Dead Reckoning through INS/DVL and environmental mapping via SLAM. These methods have laid a solid foundation but often struggle with the energy inefficiency, poor acoustic stealth, and limited adaptability in purely mechanical systems. In contrast, by drawing inspiration from aquatic animals, this review explored the potential of using live fish as next-generation submersible platforms. We examined the sensory and navigational strategies that have evolved in fish and subsequently detailed a three-stage hierarchy for their control.
Despite the promising potential of bio-hybrid systems, significant challenges remain. First and foremost are the ethical considerations for using living organisms, which demand the development of humane interfacing and control techniques. Technical issues include creating precise and stable implants that can operate long-term underwater. Providing continuous power supply is also a major issue, as current batteries are insufficient for long-duration missions. Finally, the natural variability and free will of living animals make their behavior less predictable than robots, which complicates reliable control.
Furthermore, it is valid to question why one might pursue complex bio-hybrid control rather than focusing on integrating advanced, bio-inspired sensors onto conventional AUV platforms. Both research aspects are valuable. The biomimetic approach seeks to enhance the capabilities of established mechanical systems, which is crucial for many existing applications. The bio-hybrid approach, in contrast, represents a more fundamental paradigm shift. It aims to address inherent limitations of machinery that biomimetic sensors alone cannot solve. Specifically, bio-hybrids demonstrate significant energy endurance by leveraging biological metabolism and foraging, which can potentially extend mission durations from days to months. They also exhibit excellent maneuverability and hydrodynamic performance, making them well-suited for navigating complex, fluid environments. Moreover, they achieve superior acoustic stealth through silent, flexible propulsion and natural biological camouflage, which outperforms the stealth capabilities of mechanical systems. This positions the bio-hybrid concept as a distinct pathway for next-generation underwater operations.
Future directions for this field include augmenting fish with external sensors. This system could enhance navigation in complex environments by gathering environmental data while also monitoring the fish’s own vital signs and sensory inputs. Integrating an onboard AI chip could enable adaptive, closed-loop control. In dynamic underwater environments, the artificial intelligence could analyze real-time data to learn and adjust control strategies, allowing the system to adapt to changing conditions. Moreover, this could lead to the development of bio-hybrid swarms, analogous to terrestrial drone systems. For a single mission, such a system could deploy multiple fish, using internal task allocation and adjustment to achieve more efficient, robust, and large-scale exploration.
Funding
This research was supported by the Scientific Research Funding Project of Westlake University (Grant No. WU2024A001).
Data Availability Statement
No new data were created or analyzed in this study. Data sharing is not applicable to this article.
Conflicts of Interest
The authors declare no conflict of interest.
References
- Leonardo da Vinci’s Inventions. Self-Propelled Cart. Available online: https://www.da-vinci-inventions.com/self-propelled-cart (accessed on 17 September 2025).
- Moravec, H.P. The Stanford Cart and the CMU Rover. Proc. IEEE 1983, 71, 872–884. [Google Scholar] [CrossRef]
- Srinivas, P.; Gudla, R.; Telidevulapalli, V.; Kota, J.; Mandha, G. Review on Self-Driving Cars Using Neural Network Architectures. World J. Adv. Res. Rev. 2022, 16, 736–746. [Google Scholar] [CrossRef]
- Tsugawa, S. Vision-based vehicles in Japan: Machine vision systems and driving control systems. IEEE Trans. Ind. Electron. 1994, 41, 398–405. [Google Scholar] [CrossRef]
- Pomerleau, D.A. ALVINN: An autonomous land vehicle in a neural network. In Proceedings of the 2nd International Conference on Neural Information Processing Systems, Denver, CO, USA, 1 January 1988; MIT Press: Cambridge, MA, USA, 1988; pp. 305–313. [Google Scholar]
- Thorpe, C.; Hebert, M.; Kanade, T.; Shafer, S. Vision and Navigation for the Carnegie-Mellon Navlab. Annu. Rev. Comput. Sci. 1987, 2, 521–556. [Google Scholar] [CrossRef]
- Dickmanns, E.D.; Zapp, A. Autonomous High Speed Road Vehicle Guidance by Computer Vision. IFAC Proc. Vol. 1987, 20, 221–226. [Google Scholar] [CrossRef]
- Dickmanns, E.D. Dynamic Vision for Perception and Control of Motion; Springer: London, UK, 2007; ISBN 978-1-84628-637-7. [Google Scholar]
- Scales, H. The Deep Sea. In The Ocean and Us; Obaidullah, F., Ed.; Springer International Publishing: Cham, Switzerland, 2023; pp. 163–173. ISBN 978-3-031-10812-9. [Google Scholar]
- Wölfl, A.-C.; Snaith, H.; Amirebrahimi, S.; Devey, C.W.; Dorschel, B.; Ferrini, V.; Huvenne, V.A.I.; Jakobsson, M.; Jencks, J.; Johnston, G.; et al. Seafloor Mapping—The Challenge of a Truly Global Ocean Bathymetry. Front. Mar. Sci. 2019, 6, 283. [Google Scholar] [CrossRef]
- The Rise of Ocean Robots. Nat. Geosci. 2020, 13, 393. [CrossRef]
- Wynn, R.B.; Huvenne, V.A.I.; Le Bas, T.P.; Murton, B.J.; Connelly, D.P.; Bett, B.J.; Ruhl, H.A.; Morris, K.J.; Peakall, J.; Parsons, D.R.; et al. Autonomous Underwater Vehicles (AUVs): Their Past, Present and Future Contributions to the Advancement of Marine Geoscience. Mar. Geol. 2014, 352, 451–468. [Google Scholar] [CrossRef]
- Paull, L.; Saeedi, S.; Seto, M.; Li, H. AUV Navigation and Localization: A Review. IEEE J. Ocean. Eng. 2014, 39, 131–149. [Google Scholar] [CrossRef]
- Li, Z.; Li, W.; Sun, K.; Fan, D.; Cui, W. Recent Progress on Underwater Wireless Communication Methods and Applications. J. Mar. Sci. Eng. 2025, 13, 1505. [Google Scholar] [CrossRef]
- Li, Z.; Chitre, M.; Stojanovic, M. Underwater acoustic communications. Nat. Rev. Electr. Eng. 2025, 2, 83–95. [Google Scholar] [CrossRef]
- Huang, G. Visual-Inertial Navigation: A Concise Review. arXiv 2019, arXiv:1906.02650. [Google Scholar] [CrossRef]
- Durrant-Whyte, H.; Bailey, T. Simultaneous Localization and Mapping: Part I. IEEE Robot. Autom. Mag. 2006, 13, 99–110. [Google Scholar] [CrossRef]
- Webster-Wood, V.A.; Guix, M.; Xu, N.W.; Behkam, B.; Sato, H.; Sarkar, D.; Sanchez, S.; Shimizu, M.; Parker, K.K. Biohybrid robots: Recent progress, challenges, and perspectives. Bioinspir. Biomim. 2022, 18, 015001. [Google Scholar] [CrossRef] [PubMed]
- Shao, X.; Yang, J.; Sawan, M.; Cui, W. Bridging Biology and Robotics: Advancing Submersible Technology from Robotic to Live-Fish Models. Acad. Eng. 2025, 2, 1–14. [Google Scholar] [CrossRef]
- Ko, H.; Lauder, G.; Nagpal, R. The Role of Hydrodynamics in Collective Motions of Fish Schools and Bioinspired Underwater Robots. J. R. Soc. Interface 2023, 20, 20230357. [Google Scholar] [CrossRef] [PubMed]
- Budiyono, A. Principles of GNSS, Inertial, and Multi-sensor Integrated Navigation Systems. Ind. Robot. Int. J. 2012, 39, 97–118. [Google Scholar] [CrossRef]
- Cheng, J.; Wang, X.; Cheng, X.; Hao, Y. Research and Design of PINS Simulator Based on Underwater Vehicle Space Model. In Proceedings of the 2009 Second International Workshop on Knowledge Discovery and Data Mining, Moscow, Russia, 23–25 January 2009; pp. 917–920. [Google Scholar]
- Stutters, L.; Liu, H.; Tiltman, C.; Brown, D.J. Navigation Technologies for Autonomous Underwater Vehicles. IEEE Trans. Syst. Man Cybern. Part C Appl. Rev. 2008, 38, 581–589. [Google Scholar] [CrossRef]
- Tazartes, D. Inertial Navigation: From Gimbaled Platforms to Strapdown Sensors. IEEE Trans. Aerosp. Electron. Syst. 2011, 47, 2292–2299. [Google Scholar] [CrossRef]
- Titterton, D.; Weston, J. Strapdown Inertial Navigation Technology, 2nd ed.; The Institution of Engineering and Technology: Stevenage, UK, 2004. [Google Scholar]
- Titterton, D.; Weston, J. Strapdown Inertial Navigation Technology—2nd Edition—[Book Review]. IEEE Aerosp. Electron. Syst. Mag. 2005, 20, 33–34. [Google Scholar] [CrossRef]
- Bao, J.; Li, D.; Qiao, X.; Rauschenbach, T. Integrated Navigation for Autonomous Underwater Vehicles in Aquaculture: A Review. Inf. Process. Agric. 2020, 7, 139–151. [Google Scholar] [CrossRef]
- Tian, Y.-P.; Yang, X.-J.; Guo, Y.-Z.; Liu, F. Filtering and analysis on the random drift of FOG. In AOPC 2015: Optical Fiber Sensors and Applications; Liao, Y., Zhang, W., Jiang, D., Wang, W., Brambilla, G., Eds.; SPIE: Beijing, China, 2015; p. 96790J. [Google Scholar] [CrossRef]
- Zhang, H.; Cai, Y.; Yue, J.; Mu, W.; Zhou, S.; Jin, D.; Xu, L. Integrated Navigation Algorithm for Autonomous Underwater Vehicle Based on Linear Kalman Filter, Thrust Model, and Propeller Tachometer. J. Mar. Sci. Eng. 2025, 13, 303. [Google Scholar] [CrossRef]
- Snyder, J. Doppler Velocity Log (DVL) Navigation for Observation-Class ROVs. In Proceedings of the OCEANS 2010 MTS/IEEE SEATTLE, Seattle, WA, USA, 20–23 September 2010; pp. 1–9. [Google Scholar]
- McCue, L. Handbook of Marine Craft Hydrodynamics and Motion Control. IEEE Control. Syst. Mag. 2016, 36, 78–79. [Google Scholar] [CrossRef]
- Li, J.; Gu, M.; Zhu, T.; Wang, Z.; Zhang, Z.; Han, G. Research on Error Correction Technology in Underwater SINS/DVL Integrated Positioning and Navigation. Sensors 2023, 23, 4700. [Google Scholar] [CrossRef] [PubMed]
- Vickery, K. Acoustic positioning systems. A practical overview of current systems. In Proceedings of the 1998 Workshop on Autonomous Underwater Vehicles, Cambridge, MA, USA, 20–21 August 1998; pp. 5–17. [Google Scholar] [CrossRef]
- Lurton, X. An Introduction to Underwater Acoustics: Principles and Applications, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 978-3-540-78480-7. [Google Scholar]
- Miller, P.; Farrell, J.; Zhao, Y.; Djapic, V. Autonomous Underwater Vehicle Navigation. IEEE J. Ocean. Eng. 2010, 35, 663–678. [Google Scholar] [CrossRef]
- Pan, X.; Wu, Y. Underwater Doppler Navigation with Self-Calibration. J. Navig. 2016, 69, 295–312. [Google Scholar] [CrossRef]
- Gilcoto, M.; Jones, E.; Fariña-Busto, L. Robust Estimations of Current Velocities with Four-Beam Broadband ADCPs. J. Atmos. Ocean. Technol. 2009, 26, 2777–2788. [Google Scholar] [CrossRef]
- Zhou, B.; Tong, H.; Zhang, B.; Xu, W. Development of Eight-Beam Phased Array Transducer. J. Vib. Shock. 2022, 41, 217–222. [Google Scholar]
- Liu, J.; Insana, M.F. Coded Pulse Excitation for Ultrasonic Strain Imaging. IEEE Trans. Ultrason. Ferroelectr. Freq. Control. 2005, 52, 231–240. [Google Scholar] [CrossRef]
- Li, H.; Sun, D.; Cao, Z.; Rui, C.; Cheng, M. Precision Evaluation in Velocity Estimation for Broadband Doppler Sonar. Measurement 2025, 256, 118140. [Google Scholar] [CrossRef]
- Lavery, A.C.; Bassett, C.; Lawson, G.L.; Jech, J.M. Exploiting Signal Processing Approaches for Broadband Echosounders. ICES J. Mar. Sci. 2017, 74, 2262–2275. [Google Scholar] [CrossRef]
- Burdyny, M.; Poroy, O.; Spain, P.; Lopez, G. Phased Array Velocity Sensor Operational Advantages and Data Analysis. In Proceedings of the OCEANS’11 MTS/IEEE KONA, Waikoloa, HI, USA, 19–22 September 2011; pp. 1–8. [Google Scholar]
- Martynyuk, A.P.; Kazakova, E.V. On the Acoustic Doppler Log Error with a Phased Array Antenna. Gyroscopy Navig. 2011, 2, 39–45. [Google Scholar] [CrossRef]
- Yang, H.; Gao, X.; Huang, H.; Li, B.; Jiang, J. A Tightly Integrated Navigation Method of SINS, DVL, and PS Based on RIMM in the Complex Underwater Environment. Sensors 2022, 22, 9479. [Google Scholar] [CrossRef]
- Wei, Z.; Guo, W.; Lan, Y.; Liu, B.; Sun, Y.; Gao, S. Data-Driven Cooperative Localization Algorithm for Deep-Sea Landing Vehicles Under Track Slippage. Remote Sens. 2025, 17, 755. [Google Scholar] [CrossRef]
- Zhang, F.; Zhao, S.; Li, L.; Cao, C. Underwater DVL Optimization Network (UDON): A Learning-Based DVL Velocity Optimizing Method for Underwater Navigation. Drones 2025, 9, 56. [Google Scholar] [CrossRef]
- Klein, I.; Gutnik, Y.; Lipman, Y. Estimating DVL Velocity in Complete Beam Measurement Outage Scenarios. IEEE Sens. J. 2022, 22, 20730–20737. [Google Scholar] [CrossRef]
- Liu, M.; Gao, Y.; Li, G.; Guang, X.; Li, S. An Improved Alignment Method for the Strapdown Inertial Navigation System (SINS). Sensors 2016, 16, 621. [Google Scholar] [CrossRef] [PubMed]
- Kalman, R.E. A New Approach to Linear Filtering and Prediction Problems. Trans. ASME–J. Basic Eng. 1960, 82, 35–45. [Google Scholar] [CrossRef]
- Schmidt, S.F. Application of State-Space Methods to Navigation Problems. In Advances in Control Systems; Leondes, C.T., Ed.; Elsevier: Amsterdam, The Netherlands, 1966; Volume 3, pp. 293–340. [Google Scholar]
- Lv, P.-F.; Guo, J.; Lv, J.-Y.; He, B. Integrated Navigation Based on HG-RNN and EKF for Autonomous Underwater Vehicle. In Proceedings of the OCEANS 2024—Singapore, Singapore, 15–18 April 2024; pp. 1–5. [Google Scholar]
- Julier, S.J.; Uhlmann, J.K. New extension of the Kalman filter to nonlinear systems. In Signal Processing, Sensor Fusion, and Target Recognition VI; SPIE: Bellingham, WA, USA, 1997; Volume 3068. [Google Scholar] [CrossRef]
- Allotta, B.; Caiti, A.; Chisci, L.; Costanzi, R.; Di Corato, F.; Fantacci, C.; Fenucci, D.; Meli, E.; Ridolfi, A. An Unscented Kalman Filter Based Navigation Algorithm for Autonomous Underwater Vehicles. Mechatronics 2016, 39, 185–195. [Google Scholar] [CrossRef]
- Gordon, N.J.; Salmond, D.J.; Smith, A.F.M. Novel Approach to Nonlinear/Non-Gaussian Bayesian State Estimation. IEE Proc. F Radar Signal Process. 1993, 140, 107–113. [Google Scholar] [CrossRef]
- Menna, B.V.; Villar, S.A.; Acosta, G.G. Particle Filter Based Autonomous Underwater Vehicle Navigation System Aided Thru Acoustic Communication Ranging. In Proceedings of the Global Oceans 2020: Singapore—U.S. Gulf Coast, Biloxi, MS, USA, 5–30 October 2020; pp. 1–10. [Google Scholar]
- Barrau, A.; Bonnabel, S. The Invariant Extended Kalman Filter as a Stable Observer. IEEE Trans. Autom. Control. 2017, 62, 1797–1812. [Google Scholar] [CrossRef]
- Liu, C.; Wang, G.; Guan, X.; Huang, C. Robust m-Estimation-Based Maximum Correntropy Kalman Filter. ISA Trans. 2023, 136, 198–209. [Google Scholar] [CrossRef]
- Simon, D. Optimal State Estimation: Kalman, H Infinity, and Nonlinear Approaches; Wiley: Hoboken, NJ, USA, 2006; ISBN 978-0-471-70858-2. [Google Scholar]
- Rocha, K.D.T.; Terra, M.H. Robust Kalman Filter for Systems Subject to Parametric Uncertainties. Syst. Control. Lett. 2021, 157, 105034. [Google Scholar] [CrossRef]
- Webster, S.E.; Eustice, R.M.; Singh, H.; Whitcomb, L.L. Advances in Single-Beacon One-Way-Travel-Time Acoustic Navigation for Underwater Vehicles. Int. J. Robot. Res. 2012, 31, 935–950. [Google Scholar] [CrossRef]
- Bailey, T.; Durrant-Whyte, H. Simultaneous Localization and Mapping (SLAM): Part II. IEEE Robot. Autom. Mag. 2006, 13, 108–117. [Google Scholar] [CrossRef]
- Urick, R.J. Principles of Underwater Sound; McGraw-Hill: New York, NY, USA, 1983; ISBN 9780070660878. [Google Scholar]
- Guth, F.; Silveira, L.; Botelho, S.; Drews-Jr, P.; Ballester, P. Underwater SLAM: Challenges, State of the Art, Algorithms and a New Biologically-Inspired Approach. In Proceedings of the IEEE RAS and EMBS International Conference on Biomedical Robotics and Biomechatronics, Sao Paulo, Brazil, 12–15 August 2014; pp. 981–986. [Google Scholar]
- Hammerstad, E.; Asheim, S.; Nilsen, K.; Bodholt, H. Advances in multibeam echo sounder technology. In Proceedings of the OCEANS ‘93, Victoria, BC, Canada, 18–21 October 1993; Volume 1, pp. I482–I487. [Google Scholar] [CrossRef]
- Pinto, M.A.; Lyonnet, B.; Simian, T.; Meltzheim, S. A New High Resolution AUV-Based Synthetic Aperture Sonar for Challenging Environmental Conditions. In Proceedings of the OCEANS 2023—MTS/IEEE U.S. Gulf Coast, Biloxi, MS, USA, 25–28 September 2023; pp. 1–5. [Google Scholar]
- Fernandez, J.E.; Matthews, A.D.; Cook, D.A.; Stroud, J.S. Synthetic Aperture Sonar Development for Autonomous Underwater Vehicles. In Proceedings of the Oceans ‘04 MTS/IEEE Techno-Ocean ‘04, Kobe, Japan, 9–12 November 2004; Volume 4, pp. 1927–1933. [Google Scholar]
- Wang, L.; Bellettini, A.; Hollett, R.; Tesei, A.; Pinto, M.; Chapman, S.; Gade, K. InSAS’00: Interferometric SAS and INS aided SAS imaging. In Proceedings of the MTS/IEEE Oceans 2001. An Ocean Odyssey. Conference Proceedings (IEEE Cat. No.01CH37295), Honolulu, HI, USA, 5–8 November 2001; Volume 1, pp. 179–187. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, S.; He, X.; Huang, H.; Hao, K. Underwater Target Tracking Using Forward-Looking Sonar for Autonomous Underwater Vehicles. Sensors 2020, 20, 102. [Google Scholar] [CrossRef]
- Vargas, E.; Scona, R.; Willners, J.S.; Luczynski, T.; Cao, Y.; Wang, S.; Petillot, Y.R. Robust Underwater Visual SLAM Fusing Acoustic Sensing. In Proceedings of the 2021 IEEE International Conference on Robotics and Automation (ICRA), Xi’an, China, 30 May–5 June 2021; pp. 2140–2146. [Google Scholar]
- Zhang, S.; Zhao, S.; An, D.; Liu, J.; Wang, H.; Feng, Y.; Li, D.; Zhao, R. Visual SLAM for Underwater Vehicles: A Survey. Comput. Sci. Rev. 2022, 46, 100510. [Google Scholar] [CrossRef]
- Li, X.; Shen, Y.; Lu, J.; Jiang, Q.; Xie, O.; Yang, Y.; Zhu, Q. DyStSLAM: An efficient stereo vision SLAM system in dynamic environment. Meas. Sci. Technol. 2022, 34, 025105. [Google Scholar] [CrossRef]
- Jia, Z.; Ma, Y.; Lai, J.; Wang, Z. DOA-SLAM: An Efficient Stereo Visual SLAM System in Dynamic Environment. Int. J. Control. Autom. Syst. 2025, 23, 1181–1198. [Google Scholar] [CrossRef]
- Davison, A.J.; Reid, I.D.; Molton, N.D.; Stasse, O. MonoSLAM: Real-Time Single Camera SLAM. IEEE Trans. Pattern Anal. Mach. Intell. 2007, 29, 1052–1067. [Google Scholar] [CrossRef]
- Grimaldi, M.; Nakath, D.; She, M.; Köser, K. Investigation of the Challenges of Underwater-Visual-Monocular-SLAM. arXiv 2023, arXiv:2306.08738. [Google Scholar] [CrossRef]
- Kohlbrecher, S.; von Stryk, O.; Meyer, J.; Klingauf, U. A Flexible and Scalable SLAM System with Full 3D Motion Estimation. In Proceedings of the 2011 IEEE International Symposium on Safety, Security, and Rescue Robotics, Kyoto, Japan, 1–5 November 2011; pp. 155–160. [Google Scholar]
- Grisetti, G.; Stachniss, C.; Burgard, W. Improved Techniques for Grid Mapping with Rao-Blackwellized Particle Filters. IEEE Trans. Robot. 2007, 23, 34–46. [Google Scholar] [CrossRef]
- Palomer, A.; Ridao, P.; Youakim, D.; Ribas, D.; Forest, J.; Petillot, Y. 3D Laser Scanner for Underwater Manipulation. Sensors 2018, 18, 1086. [Google Scholar] [CrossRef]
- Hess, W.; Kohler, D.; Rapp, H.; Andor, D. Real-time loop closure in 2D LIDAR SLAM. In Proceedings of the 2016 IEEE International Conference on Robotics and Automation (ICRA), Stockholm, Sweden, 16–21 May 2016; pp. 1271–1278. [Google Scholar] [CrossRef]
- Gutmann, J.-S.; Konolige, K. Incremental Mapping of Large Cyclic Environments. In Proceedings of the Proceedings 1999 IEEE International Symposium on Computational Intelligence in Robotics and Automation. CIRA’99 (Cat. no.99EX375), Monterey, CA, USA, 8–9 November 1999; pp. 318–325. [Google Scholar]
- Lu, F.; Milios, E. Globally Consistent Range Scan Alignment for Environment Mapping. Auton. Robot. 1997, 4, 333–349. [Google Scholar] [CrossRef]
- Mur-Artal, R.; Montiel, J.M.M.; Tardós, J.D. ORB-SLAM: A Versatile and Accurate Monocular SLAM System. IEEE Trans. Robot. 2015, 31, 1147–1163. [Google Scholar] [CrossRef]
- Dellaert, F.; Kaess, M. Factor Graphs for Robot Perception. Found. Trends Robot. 2017, 6, 1–139. [Google Scholar] [CrossRef]
- Kaess, M.; Ranganathan, A.; Dellaert, F. iSAM: Incremental Smoothing and Mapping. IEEE Trans. Robot. 2008, 24, 1365–1378. [Google Scholar] [CrossRef]
- Lowe, D.G. Distinctive Image Features from Scale-Invariant Keypoints. Int. J. Comput. Vis. 2004, 60, 91–110. [Google Scholar] [CrossRef]
- Bay, H.; Ess, A.; Tuytelaars, T.; Van Gool, L. Speeded-up Robust Features (SURF). Comput. Vis. Image Underst. 2008, 110, 346–359. [Google Scholar] [CrossRef]
- Rublee, E.; Rabaud, V.; Konolige, K.; Bradski, G. ORB: An Efficient Alternative to SIFT or SURF. In Proceedings of the 2011 International Conference on Computer Vision, Barcelona, Spain, 6–13 November 2011; pp. 2564–2571. [Google Scholar]
- Heshmat, M.; Saad Saoud, L.; Abujabal, M.; Sultan, A.; Elmezain, M.; Seneviratne, L.; Hussain, I. Underwater SLAM Meets Deep Learning: Challenges, Multi-Sensor Integration, and Future Directions. Sensors 2025, 25, 3258. [Google Scholar] [CrossRef]
- Besl, P.J.; McKay, N.D. A Method for Registration of 3-d Shapes. IEEE Trans. Pattern Anal. Mach. Intell. 1992, 14, 239–256. [Google Scholar] [CrossRef]
- Machado, M.; Zaffari, G.; Ribeiro, P.O.; Drews-Jr, P.; Botelho, S. Description and Matching of Acoustic Images Using a Forward Looking Sonar: A Topological Approach. IFAC-PapersOnLine 2017, 50, 2317–2322. [Google Scholar] [CrossRef]
- Latombe, J.-C. Robot Motion Planning, 1st ed.; Springer: New York, NY, USA, 1991; ISBN 978-1-4615-4022-9. [Google Scholar]
- Cheng, C.; Sha, Q.; He, B.; Li, G. Path Planning and Obstacle Avoidance for AUV: A Review. Ocean. Eng. 2021, 235, 109355. [Google Scholar] [CrossRef]
- Khatib, O. Real-Time Obstacle Avoidance for Manipulators and Mobile Robots. In Autonomous Robot Vehicles; Cox, I.J., Wilfong, G.T., Eds.; Springer: New York, NY, USA, 1990; pp. 396–404. ISBN 978-1-4613-8997-2. [Google Scholar]
- Fox, D.; Burgard, W.; Thrun, S. The Dynamic Window Approach to Collision Avoidance. IEEE Robot. Autom. Mag. 1997, 4, 23–33. [Google Scholar] [CrossRef]
- Wang, Z.; Liang, Y.; Gong, C.; Zhou, Y.; Zeng, C.; Zhu, S. Improved Dynamic Window Approach for Unmanned Surface Vehicles’ Local Path Planning Considering the Impact of Environmental Factors. Sensors 2022, 22, 5181. [Google Scholar] [CrossRef]
- Liu, B.; Zhang, H.; Nian, M.; Ouyang, H.; Xu, S. AUV Local Path Planning Based on an Improved DWA Algorithm in Complex Dynamic Environments. In Proceedings of the 2025 IEEE 6th International Seminar on Artificial Intelligence, Networking and Information Technology (AINIT), Shenzhen, China, 11–13 April 2025; pp. 1–8. [Google Scholar]
- Fiorini, P. Motion Planning in Dynamic Environments Using Velocity Obstacles. Int. J. Robot. Res. 1998, 17, 760–772. [Google Scholar] [CrossRef]
- Koren, Y.; Borenstein, J. Potential Field Methods and Their Inherent Limitations for Mobile Robot Navigation. In Proceedings of the Proceedings 1991 IEEE International Conference on Robotics and Automation, Sacramento, CA, USA, 7–12 April 1991; Volume 2, pp. 1398–1404. [Google Scholar]
- Hart, P.E.; Nilsson, N.J.; Raphael, B. A Formal Basis for the Heuristic Determination of Minimum Cost Paths. IEEE Trans. Syst. Sci. Cybern. 1968, 4, 100–107. [Google Scholar] [CrossRef]
- Koenig, S.; Likhachev, M.; Furcy, D. Lifelong Planning a*. Artif. Intell. 2004, 155, 93–146. [Google Scholar] [CrossRef]
- Koenig, S.; Likhachev, M. Fast Replanning for Navigation in Unknown Terrain. IEEE Trans. Robot. 2005, 21, 354–363. [Google Scholar] [CrossRef]
- LaValle, S.M. Rapidly-Exploring Random Trees: A New Tool for Path Planning; Technical Report TR 98-11; Department of Computer Science, Iowa State University: Ames, IA, USA, 1998. [Google Scholar]
- Zhang, L.; Lin, Z.; Wang, J.; He, B. Rapidly-Exploring Random Trees Multi-Robot Map Exploration Under Optimization Framework. Robot. Auton. Syst. 2020, 131, 103565. [Google Scholar] [CrossRef]
- Kuffner, J.J.; LaValle, S.M. RRT-Connect: An Efficient Approach to Single-Query Path Planning. In Proceedings of the Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. no.00CH37065), San Francisco, CA, USA, 24–28 April 2000; Volume 2, pp. 995–1001. [Google Scholar]
- Chen, Y.; Wang, L. Adaptively Dynamic RRT*-Connect: Path Planning for UAVs Against Dynamic Obstacles. In Proceedings of the 2022 7th International Conference on Automation, Control and Robotics Engineering (CACRE), Xi’an, China, 14–16 July 2022; pp. 1–7. [Google Scholar]
- Arslan, O.; Berntorp, K.; Tsiotras, P. Sampling-Based Algorithms for Optimal Motion Planning Using Closed-Loop Prediction. In Proceedings of the 2017 IEEE International Conference on Robotics and Automation (ICRA), Singapore, 29 May–3 June 2017; pp. 4991–4996. [Google Scholar]
- Xie, C.; Wang, Y.; Liu, Y.; Li, Z.; Zhu, J.; Qin, J. An AUV Path Planning Method Based on Improved APF-RRT*. In Proceedings of the 2023 IEEE International Conference on Mechatronics and Automation (ICMA), Heilongjiang, China, 6–9 August 2023; pp. 1190–1195. [Google Scholar]
- Gammell, J.D.; Srinivasa, S.S.; Barfoot, T.D. Informed RRT*: Optimal Sampling-Based Path Planning Focused via Direct Sampling of an Admissible Ellipsoidal Heuristic. In Proceedings of the 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems, Chicago, IL, USA, 14–18 September 2014; pp. 2997–3004. [Google Scholar]
- Wang, Y.; Li, J.; Yang, Y.; Liu, C.; Tang, Q. An Improved Informed RRT*-Connect Algorithm for UAVs Path Planning. In Proceedings of the 2024 IEEE International Conference on Unmanned Systems (ICUS), Nanjing, China, 18–20 October 2024; pp. 325–333. [Google Scholar]
- Webb, D.J.; Berg, J. van den Kinodynamic RRT*: Asymptotically Optimal Motion Planning for Robots with Linear Dynamics. In Proceedings of the 2013 IEEE International Conference on Robotics and Automation, Karlsruhe, Germany, 6–10 May 2013; pp. 5054–5061. [Google Scholar]
- Taheri, E.; Ferdowsi, M.H.; Danesh, M. Closed-Loop Randomized Kinodynamic Path Planning for an Autonomous Underwater Vehicle. Appl. Ocean. Res. 2019, 83, 48–64. [Google Scholar] [CrossRef]
- Gurve, V.; Mahajan, S.; Wagle, S.A. Robot motion planning: Methods, challenges, and future directions. Int. J. Intell. Robot. Appl. 2025, 9, 1–12. [Google Scholar] [CrossRef]
- Dong, L.; He, Z.; Song, C.; Sun, C. A Review of Mobile Robot Motion Planning Methods: From Classical Motion Planning Workflows to Reinforcement Learning-Based Architectures. J. Syst. Eng. Electron. 2023, 34, 439–459. [Google Scholar] [CrossRef]
- Ma, D.; Chen, X.; Ma, W.; Zheng, H.; Qu, F. Neural Network Model-Based Reinforcement Learning Control for AUV 3D Path Following. IEEE Trans. Intell. Veh. 2024, 9, 893–904. [Google Scholar] [CrossRef]
- Wen, J.; Dai, H.; He, J.; Sun, L.; Gao, L. Intelligent Decision-Making Method for AUV Path Planning Against Ocean Current Disturbance via Reinforcement Learning. IEEE Internet Things J. 2024, 11, 38965–38975. [Google Scholar] [CrossRef]
- Wang, Q.; Liu, C.; Meng, Y.; Ren, X.; Wang, X. Reinforcement Learning-Based Moving-Target Enclosing Control for an Unmanned Surface Vehicle in Multi-Obstacle Environments. Ocean. Eng. 2024, 304, 117920. [Google Scholar] [CrossRef]
- Li, G.; Wong, T.W.; Shih, B.; Guo, C.; Wang, L.; Liu, J.; Wang, T.; Liu, X.; Yan, J.; Wu, B.; et al. Bioinspired soft robots for deep-sea exploration. Nat. Commun. 2023, 14, 7097. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Yang, Q.; Li, R.; Yang, J.; Liu, Q.; Zhu, B.; Weng, C.; Liu, W.; Hu, P.; Ma, L.; et al. A Comprehensive Review on the Evolution of Bio-Inspired Sensors from Aquatic Creatures. Cell Rep. Phys. Sci. 2024, 5, 102064. [Google Scholar] [CrossRef]
- Cheng, H.Y.; Yu, S.M.; Yu, H.; Zhu, J.; Chu, J. Bioinspired Underwater Navigation Using Polarization Patterns Within Snell’s Window. China Ocean. Eng. 2023, 37, 628–636. [Google Scholar] [CrossRef]
- Qiao, Q.; Kong, X.; Wu, S.; Liu, G.; Zhang, G.; Yang, H.; Zhang, W.; Yang, Y.; Jia, L.; He, C.; et al. A Bio-Inspired MEMS Wake Detector for AUV Tracking and Coordinated Formation. Remote Sens. 2023, 15, 2949. [Google Scholar] [CrossRef]
- Shu, S.; Wang, T.; He, J.; Chen, P.; Xu, S.; Li, C.; Xu, M.; Tang, W. Bionic Underwater Multimodal Sensor Inspired by Fish Lateralis Neuromasts. Device 2023, 1, 100175. [Google Scholar] [CrossRef]
- Xu, P.; Liu, J.; Liu, X.; Wang, X.; Zheng, J.; Wang, S.; Chen, T.; Wang, H.; Wang, C.; Fu, X.; et al. A Bio-Inspired and Self-Powered Triboelectric Tactile Sensor for Underwater Vehicle Perception. npj Flex. Electron. 2022, 6, 25. [Google Scholar] [CrossRef]
- Jiu, H.; Deng, W. A planning method for chemical plume tracking and source localization with autonomous underwater vehicle. Int. J. Adv. Robot. Syst. 2024, 21, 17298806241233909. [Google Scholar] [CrossRef]
- Sahoo, S.P.; Das, B.; Pati, B.B.; Garcia Marquez, F.P.; Segovia Ramirez, I. Hybrid Path Planning Using a Bionic-Inspired Optimization Algorithm for Autonomous Underwater Vehicles. J. Mar. Sci. Eng. 2023, 11, 761. [Google Scholar] [CrossRef]
- Zhi-Wen, W.; Kun, L.M.; Li-jing, W. Path Planning for UUV in Dynamic Environment. In Proceedings of the 2016 9th International Symposium on Computational Intelligence and Design (ISCID), Hangzhou, China, 10–11 December 2016; Volume 1, pp. 211–215. [Google Scholar]
- Zhang, Y.; Gong, D.; Zhang, J. Robot Path Planning in Uncertain Environment Using Multi-Objective Particle Swarm Optimization. Neurocomputing 2013, 103, 172–185. [Google Scholar] [CrossRef]
- Triantafyllou, M.; Triantafyllou, G. An Efficient Swimming Machine. Sci. Am. 1995, 272, 64–70. [Google Scholar] [CrossRef]
- Cui, W.; Pan, L.; Li, R. A Suggestion of Using Task Efficiency to Replace Swimming Efficiency for Both Robotic Fish and Living Fish. Ships Offshore Struct. 2024, 19, 2204–2212. [Google Scholar] [CrossRef]
- Goodyear, C.P.; Ferguson, D.E. Sun-Compass Orientation in the Mosquitofish, Gambusia affinis. Anim. Behav. 1969, 17, 636–640. [Google Scholar] [CrossRef]
- Winn, H.; Salmon, M.; Roberts, N. Sun-Compass Orientation by Parrot Fishes. Ethology 2010, 21, 798–812. [Google Scholar] [CrossRef]
- Faillettaz, R.; Blandin, A.; Koubbi, P.; Irisson, J.-O. Sun-Compass Orientation in Mediterranean Fish Larvae. PLoS ONE 2015, 10, e0135213. [Google Scholar] [CrossRef]
- Foster, J.; Temple, S.; How, M.; Daly, I.; Sharkey, C.; Wilby, D.; Roberts, N. Polarization Vision—Overcoming Challenges of Working with a Property of Light We Barely See. Sci. Nat. 2018, 105, 27. [Google Scholar] [CrossRef]
- Berenshtein, I.; Kiflawi, M.; Shashar, N.; Wieler, U.; Agiv, H. Polarized Light Sensitivity and Orientation in Coral Reef Fish Post-Larvae. PLoS ONE 2014, 9, e88468. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.A.; Ferrari, A.; Vallortigara, G.; Sovrano, V.A. Boundary Primacy in Spatial Mapping: Evidence from Zebrafish (Danio rerio). Behav. Process. 2015, 119, 116–122. [Google Scholar] [CrossRef]
- Kasumyan, A. The Lateral Line in Fish: Structure, Function, and Role in Behavior. J. Ichthyol. 2003, 43, S175–S213. [Google Scholar]
- Bleckmann, H. The Lateral Line System of Fish. In Sensory Systems Neuroscience; Academic Press: Oxford, UK, 2006; Volume 25, pp. 411–453. [Google Scholar]
- Jiang, Y.; Ma, Z.; Zhang, D. Flow Field Perception Based on the Fish Lateral Line System. Bioinspiration Biomim. 2019, 14, 041001. [Google Scholar] [CrossRef] [PubMed]
- Coombs, S.; Bleckmann, H.; Fay, R.R.; Popper, A.N. (Eds.) The Lateral Line System; Springer: New York, NY, USA, 2014; ISBN 978-1-4614-8851-4. [Google Scholar]
- Montgomery, J.; Baker, C.; Carton, A. The Lateral Line Can Mediate Rheotaxis in Fish. Nature 1997, 389, 960–963. [Google Scholar] [CrossRef]
- Lloyd, E.; Olive, C.; Stahl, B.A.; Jaggard, J.B.; Amaral, P.; Duboué, E.R.; Keene, A.C. Evolutionary Shift Towards Lateral Line Dependent Prey Capture Behavior in the Blind Mexican Cavefish. Dev. Biol. 2018, 441, 328–337. [Google Scholar] [CrossRef]
- Rodríguez-Morales, R. Sensing in the Dark: Constructive Evolution of the Lateral Line System in Blind Populations of Astyanax mexicanus. Ecol. Evol. 2024, 14, e11286. [Google Scholar] [CrossRef]
- Veith, J.; Chaigne, T.; Svanidze, A.; Dressler, L.E.; Hoffmann, M.; Gerhardt, B.; Judkewitz, B. The Mechanism for Directional Hearing in Fish. Nature 2024, 631, 118–124. [Google Scholar] [CrossRef]
- Ladich, F.; Schulz-Mirbach, T. Diversity in Fish Auditory Systems: One of the Riddles of Sensory Biology. Front. Ecol. Evol. 2016, 4, 28. [Google Scholar] [CrossRef]
- Deng, X.; Wagner, H.J.; Popper, A.N. The Inner Ear and Its Coupling to the Swim Bladder in the Deep-Sea Fish Antimora rostrata (Teleostei: Moridae). Deep. Sea Res. Part I Oceanogr. Res. Pap. 2011, 58, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Vickers, N. Mechanisms of Animal Navigation in Odor Plumes. Biol. Bull. 2000, 198, 203–212. [Google Scholar] [CrossRef] [PubMed]
- Dittman, A.H.; Quinn, T.P. Homing in Pacific Salmon: Mechanisms and Ecological Basis. J. Exp. Biol. 1996, 199, 83–91. [Google Scholar] [CrossRef]
- Hasler, A.D.; Scholz, A.T. Olfactory Imprinting and Homing in Salmon: Investigations into the Mechanism of the Imprinting Process; Springer: Berlin/Heidelberg, Germany, 1983; ISBN 978-3-642-82070-0. [Google Scholar]
- Lohmann, K.; Lohmann, C.; Putman, N. Magnetic Maps in Animals: Nature’s GPS. J. Exp. Biol. 2007, 210, 3697–3705. [Google Scholar] [CrossRef]
- Lohmann, K.; Goforth, K.; Mackiewicz, A.; Lim, D.; Lohmann, C. Magnetic Maps in Animal Navigation. J. Comp. Physiol. A 2022, 208, 41–67. [Google Scholar] [CrossRef]
- Putman, N.F.; Scanlan, M.M.; Billman, E.J.; O’Neil, J.P.; Couture, R.B.; Quinn, T.P.; Lohmann, K.J.; Noakes, D.L. An Inherited Magnetic Map Guides Ocean Navigation in Juvenile Pacific Salmon. Curr. Biol. 2014, 24, 446–450. [Google Scholar] [CrossRef]
- Bullock, T.H. Electroreception. Annu. Rev. Neurosci. 1982, 5, 121–170. [Google Scholar] [CrossRef]
- Kalmijn, A.J. The Electric Sense of Sharks and Rays. J. Exp. Biol. 1971, 55, 371–383. [Google Scholar] [CrossRef]
- Emde, G. von der Active Electrolocation of Objects in Weakly Electric Fish. J. Exp. Biol. 1999, 202, 1205–1215. [Google Scholar] [CrossRef]
- Bullock, T.H.; Hopkins, C.D.; Popper, A.N.; Fay, R.R. (Eds.) Electroreception, 1st ed.; Springer: New York, NY, USA, 2005; ISBN 978-0-387-23192-1. [Google Scholar]
- Catania, K. The Shocking Predatory Strike of the Electric Eel. Science 2014, 346, 1231–1234. [Google Scholar] [CrossRef]
- Ueda, H. Physiological Mechanism of Homing Migration in Pacific Salmon from Behavioral to Molecular Biological Approaches. Gen. Comp. Endocrinol. 2011, 170, 222–232. [Google Scholar] [CrossRef] [PubMed]
- Klimley, A.P. Highly Directional Swimming by Scalloped Hammerhead Sharks, Sphyrna lewini, and Subsurface Irradiance, Temperature, Bathymetry, and Geomagnetic Field. Mar. Biol. 1993, 117, 1–22. [Google Scholar] [CrossRef]
- Simpson, S.; Meekan, M.; Montgomery, J.; McCauley, R.; Jeffs, A. Homeward Sound. Science 2005, 308, 221. [Google Scholar] [CrossRef]
- Walton, A.G.; Moller, P. Maze Learning and Recall in a Weakly Electric Fish, Mormyrus rume proboscirostris Boulenger (Mormyridae, Teleostei). Ethology 2010, 116, 904–919. [Google Scholar] [CrossRef]
- Aronson, L.R. Further Studies on Orientation and Jumping Behavior in the Gobiid Fish, Bathygobius soporator. Ann. N. Y. Acad. Sci. 1971, 188, 378–392. [Google Scholar] [CrossRef]
- Teyke, T. Learning and Remembering the Environment in the Blind Cave Fish Anoptichthys jordani. J. Comp. Physiol. A 1989, 164, 655–662. [Google Scholar] [CrossRef]
- Sato, H.; Berry, C.W.; Casey, B.E.; Lavella, G.; Yao, Y.; VandenBrooks, J.M.; Maharbiz, M.M. A Cyborg Beetle: Insect Flight Control Through an Implantable, Tetherless Microsystem. In Proceedings of the 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems, Tucson, AZ, USA, 13–17 January 2008; pp. 164–167. [Google Scholar]
- Fitzgerald, L.; Le, H.N.; Wilson, R.S.; Nguyen, H.D.; Do, T.N.; Vo-Doan, T.T. Zoborg: On-Demand Climbing Control for Cyborg Beetles. Adv. Sci. 2025, 12, e02095. [Google Scholar] [CrossRef]
- Ma, S.; Chen, Y.; Yang, S.; Liu, S.; Tang, L.; Li, B.; Li, Y. The Autonomous Pipeline Navigation of a Cockroach Bio-Robot with Enhanced Walking Stimuli. Cyborg Bionic Syst. 2023, 4, 0067. [Google Scholar] [CrossRef]
- Ariyanto, M.; Refat, C.M.M.; Yamamoto, K.; Morishima, K. Feedback Control of Automatic Navigation for Cyborg Cockroach Without External Motion Capture System. Heliyon 2024, 10, e26987. [Google Scholar] [CrossRef]
- Sato, H.; Berry, C.W.; Peeri, Y.; Baghoomian, E.; Casey, B.E.; Lavella, G.; VandenBrooks, J.M.; Harrison, J.F.; Maharbiz, M.M. Remote Radio Control of Insect Flight. Front. Integr. Neurosci. 2009, 3, 24. [Google Scholar] [CrossRef]
- Cao, F.; Zhang, C.; Vo Doan, T.T.; Li, Y.; Sangi, D.H.; Koh, J.S.; Huynh, N.A.; Bin Aziz, M.F.; Choo, H.Y.; Ikeda, K.; et al. A Biological Micro Actuator: Graded and Closed-Loop Control of Insect Leg Motion by Electrical Stimulation of Muscles. PLoS ONE 2014, 9, e105389. [Google Scholar] [CrossRef] [PubMed]
- Tsang, W.M.; Stone, A.L.; Otten, D.; Aldworth, Z.N.; Daniel, T.L.; Hildebrand, J.G.; Levine, R.B.; Voldman, J. Insect-machine interface: A carbon nanotube-enhanced flexible neural probe. J. Neurosci. Methods 2012, 204, 355–365. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Mei, H.; Li, R.; Wang, C.; Fang, K.; Wang, W.; Tang, Y.; Dai, Z. Progresses of Animal Robots: A Historical Review and Perspectiveness. Heliyon 2022, 8, e11499. [Google Scholar] [CrossRef] [PubMed]
- Shik, M.; Severin, F.; Orlovsky, G. Control of Walking and Running by Means of Electrical Stimulation of the Mesencephalon. Electroencephalogr. Clin. Neurophysiol. 1969, 26, 549. [Google Scholar]
- Grillner, S. Some Aspects on the Descending Control of the Spinal Circuits Generating Locomotor Movements. In Neural control of Locomotion; Herman, R.M., Grillner, S., Stein, P.S.G., Stuart, D.G., Eds.; Springer US: Boston, MA, USA, 1976; pp. 351–375. ISBN 978-1-4757-0964-3. [Google Scholar]
- Talwar, S.K.; Xu, S.; Hawley, E.S.; Weiss, S.A.; Moxon, K.A.; Chapin, J.K. Rat Navigation Guided by Remote Control. Nature 2002, 417, 37–38. [Google Scholar] [CrossRef]
- Xu, S.; Talwar, S.K.; Hawley, E.S.; Li, L.; Chapin, J.K. A Multi-Channel Telemetry System for Brain Microstimulation in Freely Roaming Animals. J. Neurosci. Methods 2004, 133, 57–63. [Google Scholar] [CrossRef]
- Graziano, M.S.A.; Taylor, C.S.R.; Moore, T. Complex Movements Evoked by Microstimulation of Precentral Cortex. Neuron 2002, 34, 841–851. [Google Scholar] [CrossRef]
- Ekeberg, Ö.; Grillner, S. Simulations of Neuromuscular Control in Lamprey Swimming. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 1999, 354, 895–902. [Google Scholar] [CrossRef]
- Sirota, M.G.; Di Prisco, G.V.; Dubuc, R. Stimulation of the Mesencephalic Locomotor Region Elicits Controlled Swimming in Semi-Intact Lampreys. Eur. J. Neurosci. 2000, 12, 4081–4092. [Google Scholar] [CrossRef]
- Arrenberg, A.B.; Bene, F.D.; Baier, H. Optical Control of Zebrafish Behavior with Halorhodopsin. Proc. Natl. Acad. Sci. USA 2009, 106, 17968–17973. [Google Scholar] [CrossRef]
- Kobayashi, N.; Yoshida, M.; Matsumoto, N.; Uematsu, K. Artificial Control of Swimming in Goldfish by Brain Stimulation: Confirmation of the Midbrain Nuclei as the Swimming Center. Neurosci. Lett. 2009, 452, 42–46. [Google Scholar] [CrossRef] [PubMed]
- Vinepinsky, E.; Cohen, L.; Perchik, S.; Las, L.; Netser, S. Representation of Edges, Head Direction, and Swimming Kinematics in the Brain of Freely-Navigating Fish. Sci. Rep. 2020, 10, 14762. [Google Scholar] [CrossRef] [PubMed]
- Ricotti, L.; Trimmer, B.; Feinberg, A.; Raman, R.; Parker, K.; Sitti, M.; Martel, S.; Dario, P.; Menciassi, A. Biohybrid Actuators for Robotics: A Review of Devices Actuated by Living Cells. Sci. Robot. 2017, 2, eaaq0495. [Google Scholar] [CrossRef]
- Kajiura, S.M.; Fitzgerald, T.P. Response of Juvenile Scalloped Hammerhead Sharks to Electric Stimuli. Zoology 2009, 112, 241–250. [Google Scholar] [CrossRef] [PubMed]
- Lee, S.; Kim, C.-H.; Kim, D.-G.; Kim, H.-G.; Lee, P.-S.; Myung, H. Remote Guidance of Untrained Turtles by Controlling Voluntary Instinct Behavior. PLoS ONE 2013, 8, e0061798. [Google Scholar] [CrossRef]
- Kim, C.-H.; Choi, B.; Kim, D.-G.; Lee, S.; Jo, S.; Lee, P.-S. Remote Navigation of Turtle by Controlling Instinct Behavior via Human Brain-Computer Interface. J. Bionic Eng. 2016, 13, 491–503. [Google Scholar] [CrossRef]
- Kim, D.-G.; Lee, S.; Kim, C.-H.; Jo, S.; Lee, P.-S. Parasitic Robot System for Waypoint Navigation of Turtle. J. Bionic Eng. 2017, 14, 327–335. [Google Scholar] [CrossRef]
- Romano, D.; Donati, E.; Benelli, G.; Stefanini, C. A review on animal–robot interaction: From bio-hybrid organisms to mixed societies. Biol. Cybern. 2019, 113, 201–225. [Google Scholar] [CrossRef]
- Russell, W.M.S.; Burch, R.L. The Principles of Humane Experimental Technique. Med. J. Aust. 1960, 1, 500–502. [Google Scholar]
- Ashwood, Z.; Jha, A.; Pillow, J.W. Dynamic Inverse Reinforcement Learning for Characterizing Animal Behavior. In Proceedings of the Advances in Neural Information Processing Systems, New Orleans, LA, USA, 28 November–9 December 2022; Koyejo, S., Mohamed, S., Agarwal, A., Belgrave, D., Cho, K., Oh, A., Eds.; Curran Associates, Inc.: Red Hook, NY, USA, 2022; Volume 35, pp. 29663–29676. [Google Scholar]
- Xu, X.; Scott-Scheiern, T.; Kempker, L.; Simons, K. Active Avoidance Conditioning in Zebrafish (Danio rerio). Neurobiol. Learn. Mem. 2007, 87, 72–77. [Google Scholar] [CrossRef]
- Furton, K.; Myers, L. The Scientific Foundation and Efficacy of the Use of Canines as Chemical Detectors for Explosives. Talanta 2001, 54, 487–500. [Google Scholar] [CrossRef]
- Moore, P.W. Mine-Hunting Dolphins of the Navy. In Proceedings of the Detection and Remediation Technologies for Mines and Mine-like Targets II; SPIE: Bellingham, WA, USA, 1997; Volume 3079, pp. 2–6. [Google Scholar]
- Poling, A.; Weetjens, B.J.; Cox, C.; Beyene, N.; Bach, H.; Sully, A. Teaching Giant African Pouched Rats to Find Landmines: Operant Conditioning with Real Consequences. Behav. Anal. Pract. 2010, 3, 19–25. [Google Scholar] [CrossRef] [PubMed]
- Webb, E.K.; Saccardo, C.C.; Poling, A.; Cox, C.; Fast, C.D. Rapidly Training African Giant Pouched Rats (Cricetomys ansorgei) with Multiple Targets for Scent Detection. Behav. Process. 2020, 174, 104085. [Google Scholar] [CrossRef] [PubMed]
- Pritchett, D.; Brennan, C.H. Chapter 7—Classical and Operant Conditioning in Larval Zebrafish. In Behavioral and Neural Genetics of Zebrafish; Gerlai, R.T., Ed.; Academic Press: Cambridge, MA, USA, 2020; pp. 107–122. ISBN 978-0-12-817528-6. [Google Scholar]
- Barreiros, M.d.O.; Barbosa, F.G.; Dantas, D.d.O.; Santos, D.d.M.L.d.; Ribeiro, S.; Santos, G.C.d.O.; Barros, A.K. Zebrafish Automatic Monitoring System for Conditioning and Behavioral Analysis. Sci. Rep. 2021, 11, 9330. [Google Scholar] [CrossRef] [PubMed]
- Braubach, O.R.; Wood, H.-D.; Gadbois, S.; Fine, A.; Croll, R.P. Olfactory Conditioning in the Zebrafish (Danio rerio). Behav. Brain Res. 2009, 198, 190–198. [Google Scholar] [CrossRef]
- Zippel, H.P.; Voigt, R.; Knaust, M.; Luan, H.L.E. Spontaneous Behavior, Training and Discrimination Training in Goldfish Using Chemosensory Stimuli. J. Comp. Physiol. A 1993, 172, 81–90. [Google Scholar] [CrossRef]
- Givon, S.; Samina, M.; Ben-Shahar, O.; Segev, R. From Fish Out of Water to New Insights on Navigation Mechanisms in Animals. Behav. Brain Res. 2022, 419, 113711. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).