Size-Dependent Microplastic Fragmentation Model
Abstract
1. Introduction
2. Numerical Model
3. Results
4. Discussion
Supplementary Materials
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A. Sinusoidal-Shear Flow Model
References
- Isobe, A.; Iwasaki, S. The fate of missing ocean plastics: Are they just a marine environmental problem? Sci. Total Environ. 2022, 825, 153935. [Google Scholar] [CrossRef]
- Kaandorp, M.L.A.; Lobelle, D.; Kehl, C.; Dijkstra, H.A.; van Sebille, E. Global mass of buoyant marine plastics dominated by large long-lived debris. Nat. Geosci. 2023, 16, 689–694. [Google Scholar] [CrossRef]
- Cole, M.; Lindeque, P.; Halsband, C.; Galloway, T.S. Microplastics as contaminants in the marine environment: A review. Mar. Pollut. Bull. 2011, 62, 2588–2597. [Google Scholar] [CrossRef] [PubMed]
- Cózar, A.; Echevarría, F.; González-Gordillo, J.I.; Irigoien, X.; Úbeda, B.; Hernández-León, S.; Palma, Á.T.; Navarro, S.; de Lomas, J.G.; Ruiz, A.; et al. Plastic debris in the open ocean. Proc. Natl. Acad. Sci. USA 2014, 111, 10239–10244. [Google Scholar] [CrossRef]
- van Sebille, E.; Aliani, S.; Law, K.L.; Maximenko, N.; Alsina, J.M.; Bagaev, A.; Bergmann, M.; Chapron, B.; Chubarenko, I.; Cózar, A.; et al. The physical oceanography of the transport of floating marine debris. Environ. Res. Lett. 2020, 15, 023003. [Google Scholar] [CrossRef]
- George, M.; Fabre, P. Floating plastics in oceans: A matter of size. Curr. Opin. Green Sustain. Chem. 2021, 32, 100543. [Google Scholar] [CrossRef]
- Kaandorp, M.L.A.; Dijkstra, H.A.; van Sebille, E. Modelling size distributions of marine plastics under the influence of continuous cascading fragmentation. Environ. Res. Lett. 2021, 16, 054075. [Google Scholar] [CrossRef]
- Thompson, R.C.; Olsen, Y.; Mitchell, R.P.; Davis, A.; Rowland, S.J.; John, A.W.G.; McGonigle, D.; Russell, A.E. Lost at Sea: Where Is All the Plastic? Science 2004, 304, 838. [Google Scholar] [CrossRef] [PubMed]
- Setälä, O.; Fleming-Lehtinen, V.; Lehtiniemi, M. Ingestion and transfer of microplastics in the planktonic food web. Environ. Pollut. 2014, 185, 77–83. [Google Scholar] [CrossRef]
- Kooi, M.; Nes, E.H.v.; Scheffer, M.; Koelmans, A.A. Ups and Downs in the Ocean: Effects of Biofouling on Vertical Transport of Microplastics. Environ. Sci. Technol. 2017, 51, 7963–7971. [Google Scholar] [CrossRef]
- Jalón-Rojas, I.; Wang, X.H.; Fredj, E. A 3D numerical model to track marine plastic debris (TrackMPD): Sensitivity of microplastic trajectories and fates to particle dynamical properties and physical processes. Mar. Pollut. Bull. 2019, 141, 256–272. [Google Scholar] [CrossRef]
- Sutherland, B.R.; DiBenedetto, M.; Kaminski, A.; van den Bremer, T. Fluid dynamics challenges in predicting plastic pollution transport in the ocean: A perspective. Phys. Rev. Fluids 2023, 8, 070701. [Google Scholar] [CrossRef]
- Cai, C.; Zhu, L.; Hong, B. A review of methods for modeling microplastic transport in the marine environments. Mar. Pollut. Bull. 2023, 193, 115136. [Google Scholar] [CrossRef] [PubMed]
- Gilvarry, J. Fragment size in single fracture—A review of theory and experiment. Wear 1964, 7, 227–243. [Google Scholar] [CrossRef]
- Oddershede, L.; Dimon, P.; Bohr, J. Self-organized criticality in fragmenting. Phys. Rev. Lett. 1993, 71, 3107–3110. [Google Scholar] [CrossRef] [PubMed]
- Kadono, T. Fragment Mass Distribution of Platelike Objects. Phys. Rev. Lett. 1997, 78, 1444–1447. [Google Scholar] [CrossRef]
- Kadono, T.; Arakawa, M. Crack propagation in thin glass plates caused by high velocity impact. Phys. Rev. E 2002, 65, 035107. [Google Scholar] [CrossRef]
- Salman, A.; Biggs, C.; Fu, J.; Angyal, I.; Szabó, M.; Hounslow, M. An experimental investigation of particle fragmentation using single particle impact studies. Powder Technol. 2002, 128, 36–46. [Google Scholar] [CrossRef]
- Timár, G.; Blömer, J.; Kun, F.; Herrmann, H.J. New Universality Class for the Fragmentation of Plastic Materials. Phys. Rev. Lett. 2010, 104, 095502. [Google Scholar] [CrossRef]
- Brouzet, C.; Guiné, R.; Dalbe, M.J.; Favier, B.; Vandenberghe, N.; Villermaux, E.; Verhille, G. Laboratory model for plastic fragmentation in the turbulent ocean. Phys. Rev. Fluids 2021, 6, 024601. [Google Scholar] [CrossRef]
- Wu, X.; Liu, P.; Shi, H.; Wang, H.; Huang, H.; Shi, Y.; Gao, S. Photo aging and fragmentation of polypropylene food packaging materials in artificial seawater. Water Res. 2021, 188, 116456. [Google Scholar] [CrossRef]
- Chamas, A.; Moon, H.; Zheng, J.; Qiu, Y.; Tabassum, T.; Jang, J.H.; Abu-Omar, M.; Scott, S.L.; Suh, S. Degradation Rates of Plastics in the Environment. ACS Sustain. Chem. Eng. 2020, 8, 3494–3511. [Google Scholar] [CrossRef]
- ter Halle, A.; Ladirat, L.; Gendre, X.; Goudouneche, D.; Pusineri, C.; Routaboul, C.; Tenailleau, C.; Duployer, B.; Perez, E. Understanding the Fragmentation Pattern of Marine Plastic Debris. Environ. Sci. Technol. 2016, 50, 5668–5675. [Google Scholar] [CrossRef] [PubMed]
- Lindeque, P.K.; Cole, M.; Coppock, R.L.; Lewis, C.N.; Miller, R.Z.; Watts, A.J.; Wilson-McNeal, A.; Wright, S.L.; Galloway, T.S. Are we underestimating microplastic abundance in the marine environment? A comparison of microplastic capture with nets of different mesh-size. Environ. Pollut. 2020, 265, 114721. [Google Scholar] [CrossRef] [PubMed]
- Lebreton, L.; Egger, M.; Slat, B. A global mass budget for positively buoyant macroplastic debris in the ocean. Sci. Rep. 2019, 9, 12922. [Google Scholar] [CrossRef] [PubMed]
- Turcotte, D.L. Fractals and fragmentation. J. Geophys. Res. Solid Earth 1986, 91, 1921–1926. [Google Scholar] [CrossRef]
- Åström, J.A. Statistical models of brittle fragmentation. Adv. Phys. 2006, 55, 247–278. [Google Scholar] [CrossRef]
- Bird, N.R.A.; Watts, C.W.; Tarquis, A.M.; Whitmore, A.P. Modeling Dynamic Fragmentation of Soil. Vadose Zone J. 2009, 8, 197–201. [Google Scholar] [CrossRef]
- Eriksen, M.; Lebreton, L.C.M.; Carson, H.S.; Thiel, M.; Moore, C.J.; Borerro, J.C.; Galgani, F.; Ryan, P.G.; Reisser, J. Plastic Pollution in the World’s Oceans: More than 5 Trillion Plastic Pieces Weighing over 250,000 Tons Afloat at Sea. PLoS ONE 2014, 9, e111913. [Google Scholar] [CrossRef]
- George, M.; Nallet, F.; Fabre, P. A threshold model of plastic waste fragmentation: New insights into the distribution of microplastics in the ocean and its evolution over time. Mar. Pollut. Bull. 2024, 199, 116012. [Google Scholar] [CrossRef]
- Aoki, K.; Furue, R. A model for the size distribution of marine microplastics: A statistical mechanics approach. PLoS ONE 2021, 16, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Tsiaras, K.; Hatzonikolakis, Y.; Kalaroni, S.; Pollani, A.; Triantafyllou, G. Modeling the Pathways and Accumulation Patterns of Micro- and Macro-Plastics in the Mediterranean. Front. Mar. Sci. 2021, 8, 743117. [Google Scholar] [CrossRef]
- Zahnow, J.C.; Vilela, R.D.; Feudel, U.; Tél, T. Aggregation and fragmentation dynamics of inertial particles in chaotic flows. Phys. Rev. E 2008, 77, 055301. [Google Scholar] [CrossRef] [PubMed]
- Zahnow, J.C.; Maerz, J.; Feudel, U. Particle-based modeling of aggregation and fragmentation processes: Fractal-like aggregates. Phys. D Nonlinear Phenom. 2011, 240, 882–893. [Google Scholar] [CrossRef]
- Neufeld, Z.; Hernández-García, E. Chemical and Biological Processes in Fluid Flows: A Dynamical Systems Approach; Imperial College Press: London, UK, 2010. [Google Scholar]
- Spicer, P.T.; Pratsinis, S.E. Coagulation and fragmentation: Universal steady-state particle-size distribution. AIChE J. 1996, 42, 1612–1620. [Google Scholar] [CrossRef]
- Virkar, Y.; Clauset, A. Power-law distributions in binned empirical data. Ann. Appl. Stat. 2014, 8, 89–119. [Google Scholar] [CrossRef]
- Cózar, A.; Sanz-Martín, M.; Martí, E.; González-Gordillo, J.I.; Ubeda, B.; Gálvez, J.A.; Irigoien, X.; Duarte, C.M. Plastic Accumulation in the Mediterranean Sea. PLoS ONE 2015, 10, e0121762. [Google Scholar] [CrossRef]
- Ruiz-Orejón, L.F.; Sardá, R.; Ramis-Pujol, J. Now, you see me: High concentrations of floating plastic debris in the coastal waters of the Balearic Islands (Spain). Mar. Pollut. Bull. 2018, 133, 636–646. [Google Scholar] [CrossRef]
Domain | |
---|---|
Mediterranean Sea | 1.45 ± 0.03 |
Around Globe | 1.84 ± 0.08 |
Balearic Islands | 2.12 ± 0.11 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Muñuzuri, V. Size-Dependent Microplastic Fragmentation Model. J. Mar. Sci. Eng. 2024, 12, 1213. https://doi.org/10.3390/jmse12071213
Pérez-Muñuzuri V. Size-Dependent Microplastic Fragmentation Model. Journal of Marine Science and Engineering. 2024; 12(7):1213. https://doi.org/10.3390/jmse12071213
Chicago/Turabian StylePérez-Muñuzuri, Vicente. 2024. "Size-Dependent Microplastic Fragmentation Model" Journal of Marine Science and Engineering 12, no. 7: 1213. https://doi.org/10.3390/jmse12071213
APA StylePérez-Muñuzuri, V. (2024). Size-Dependent Microplastic Fragmentation Model. Journal of Marine Science and Engineering, 12(7), 1213. https://doi.org/10.3390/jmse12071213