Potential of Transplanted Seagrass Meadows on Wave Attenuation in a Fetch-Limited Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Framework
- Step 1. Analysis of the feasibility of using seagrass meadows at the selected site.
- Step 2. Assessment of the species suitable for this area and selection of the most appropriate.
- Step 3. Definition of different meadow configurations.
- Step 4. Simulation, using a numerical model of the wave propagation on the littoral area, considering the local wave climate corresponding to an average year.
- Step 5. Comparison of the numerical model results and selection, if applicable, of the best alternative.
2.3. Model Validation
2.4. Model Configuration
- -
- Scenario 0. Absence of seagrass meadows. This is used as reference scenario for comparing the amount of energy reaching the coastal area and, thus, the efficiency of the different meadow configurations in dissipating wave energy.
- -
- Scenario A. Existence of a meadow of P. oceanica in the study area, with an average meadow height of 0.5 m and a density of 150 stems/m2.
- -
- Scenario B. Existence of a meadow of P. oceanica in the study area, with an average prairie height of 0.25 m and a density of 150 stems/m2.
- -
- Scenario C. Existence of P. oceanica meadows in the study area, with an average meadow height of 0.5 m and a density of 500 stems/m2.
- -
- Meadow density: Studies carried out by Ruiz et al. [90] reported that the average density of P. oceanica meadows in the Catalan coast ranged between 150 and 1000 stems/m2. Some local studies of characterization showed a local density of 455 stems/m2, with a coverage of 30%. For this reason, a conservative value of 150 stems/m2 has been selected for scenarios A and B. For scenario C, a density of 500 stems/m2 has been assumed, simulating a successful case of seagrass artificial planting.
- -
- Canopy height: Although the leaf heights have up to 1 m in the study area [90], what matters is the canopy height, which is lower than the length of the leaves due to their bending. As indicated above, two values have been considered: 0.5 m and 0.25 m, corresponding, respectively to mature or young plants.
- -
- Plant diameter: For the three scenarios with plants, an equivalent diameter of 0.01 m has been assumed considering the data of Dalla Via et al. [113] and Zeller et al. [114]. Nevertheless, according to data of Ruiz et al. [90], this hypothesis is conservative, and the obtained results can be considered a lower bound of the wave attenuation obtained by the analyzed seagrass meadows.
- -
- Drag coefficient: The literature indicates that the coefficient of friction, defined as CD, is a function of the hydrodynamic conditions, water depth and intrinsic properties of the meadow (which determine the plant flexibility) [115]. In this study, CD has been obtained from the results of the calibration process.
3. Results
4. Discussion
4.1. Wave Attenuation Due to Seagrass
4.2. Limitations of the Study
4.3. Implications for Coastal Protection
5. Conclusions
- -
- The presence of seagrass meadows reduces the amount of energy reaching the beach, which contributes to its defense against flooding and erosion.
- -
- The seagrass meadow creation or restoration can be an effective coastal protection measure. In addition, such measures provide other ecosystem services that enhance their suitability,
- -
- The use of seagrass meadows as a coastal protection measure is especially suitable in fetch-limited areas, where the intensity of storms is conditioned by such bounded fetches.
- -
- Restoration and implantation of meadows are more likely to succeed and prevail if a large density of shoots or seeds is used. This, in turn, increases the effectiveness of the meadow to reduce wave heights reaching the coast, so the additional cost of planting more seagrass is widely compensated by its enhanced coastal protection function and the ecosystem services it provides.
- -
- Coastal managers can use the methodology described here to assess whether the use of seagrass meadows is feasible in their areas of jurisdiction and, if possible, decide on the optimal meadow layout to achieve the desired level of protection.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nicholls, R.J.; Marinova, N.; Lowe, J.A.; Brown, S.; Vellinga, P.; De Gusmão, D.; Hinkel, J.; Tol, R.S.J. Sea-level rise and its possible impacts given a ‘beyond 4 °C world’ in the twenty-first century. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2011, 369, 161–181. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sánchez-Arcilla, A.; Mösso, C.; Sierra, J.P.; Mestres, M.; Harzallah, A.; Senouci, M.; El Raey, M. Climate drivers of potential hazards in Mediterranean coasts. Reg. Environ. Chang. 2011, 11, 617–636. [Google Scholar] [CrossRef]
- Sierra, J.P.; Casas-Prat, M. Analysis of potential impacts on coastal areas due to changes in wave conditions. Clim. Chang. 2014, 124, 861–876. [Google Scholar] [CrossRef] [Green Version]
- Neumann, B.; Vafeidis, A.T.; Zimmermann, J.; Nicholls, R. Future coastal population growth and exposure to sea-level rise and coastal flooding—A global assessment. PLoS ONE 2015, 10, e0118571. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Casas-Prat, M.; McInnes, K.L.; Hemer, M.A.; Sierra, J.P. Future wave-driven coastal sediment transport along the Catalan coast (NW Mediterranean). Reg. Environ. Chang. 2016, 16, 1739–1750. [Google Scholar] [CrossRef] [Green Version]
- Di Risio, M.; Bruschi, A.; Lisi, I.; Pesarino, V.; Pasquali, D. Comparative analysis of coastal flooding vulnerability and hazard assessment at national scale. J. Mar. Sci. Eng. 2017, 5, 51. [Google Scholar] [CrossRef] [Green Version]
- Wahl, T.; Haigh, I.D.; Nicholls, R.J.; Arns, A.; Dangendorf, S.; Hinkel, J.; Slangen, A.B.A. Understanding extreme sea levels for broad-scale coastal impact and adaptation analysis. Nat. Commun. 2017, 8, 16075. [Google Scholar] [CrossRef] [Green Version]
- Grases, A.; Gracia, V.; García-León, M.; Lin-Ye, J.; Sierra, J.P. Coastal flooding and erosion under a changing climate: Implications at a low-lying coast (Ebro Delta). Water 2020, 12, 346. [Google Scholar] [CrossRef] [Green Version]
- Molina, R.; Manno, G.; Lo Re, C.; Anfuso, G.; Ciraolo, G. A methodological approach to determine sound response modalities to coastal erosion processes in Mediterranean Andalusia (Spain). J. Mar. Sci. Eng. 2020, 8, 154. [Google Scholar] [CrossRef] [Green Version]
- Kron, W. Coasts: The high-risk areas of the world. Nat. Hazards 2013, 66, 1363–1382. [Google Scholar] [CrossRef]
- Sierra, J.P.; Dowding, D.D.; Persetto, V.; Oliveira, T.A.C.; Gironella, X.; Mösso, C.; Mestres, M. Wave reflection, transmission and spectral changes at permeable low-crested structures. J. Coast. Res. 2011, SI 64, 593–597. [Google Scholar]
- Linham, M.M.; Nicholls, R.J. Adaptation technologies for coastal erosion and flooding: A review. Proc. Inst. Civ. Eng. Marit. Eng. 2012, 165, 95–112. [Google Scholar] [CrossRef]
- Sauvé, P.; Bernatchez, P.; Glaus, M. Identification of coastal defence measures best adapted to mitigate hazards in specific coastal systems: Development of a dynamic literature meta-analysis methodology. J. Mar. Sci. Eng. 2022, 10, 394. [Google Scholar] [CrossRef]
- Qu, K.; Lie, Y.; Wang, X.; Li, X. Numerical analysis of influences of emergent vegetation patch on runup processes of focused wave groups. J. Mar. Sci. Eng. 2023, 11, 8. [Google Scholar] [CrossRef]
- Nguyen, T.P. Malaleuca entrapping microsites as a nature based solution to coastal erosion: A pilot study in Kien Giang, Vietnam. Ocean Coast. Manag. 2018, 155, 98–103. [Google Scholar] [CrossRef]
- Vieira, B.F.V.; Pinho, J.L.S.; Barros, J.A.O.; do Carmo, J.S.A. Hudrodynamics and morphodynamics performance assessment of three coastal protection structures. J. Mar. Sci. Eng. 2020, 8, 175. [Google Scholar] [CrossRef] [Green Version]
- Temmerman, S.; Meire, P.; Bouma, T.J.; Herman, P.M.; Ysebaert, T.; De Vriend, H.J. Ecosystem-based coastal defence in the face of global change. Nature 2013, 504, 79–83. [Google Scholar] [CrossRef]
- Patrick, C.J.; Weller, D.E.; Li, X.; Ryder, M. Effects of shoreline alteration and other stressors on submerged aquatic vegetation in subestuaries of Chesapeake Bay and the Mid-Atlantic coastal bays. Estuaries Coasts 2014, 37, 1516–1531. [Google Scholar] [CrossRef] [Green Version]
- Temmerman, S.; Kirwan, M.L. Building land with a rising sea. Science 2015, 349, 588–589. [Google Scholar] [CrossRef]
- Rangel-Buitrago, N.; Williams, A.; Anfuso, G. Hard protection structures as a principal coastal erosion management strategy along the Caribbean coast of Colombia. A chronicle of pitfalls. Ocean Coast. Manag. 2018, 156, 58–75. [Google Scholar] [CrossRef]
- Sutton-Grier, A.E.; Wowk, K.; Bamford, H. Future of our coasts: The potential for natural and hybrid infrastructure to enhance the resilience of our coastal communities, economies and ecosystems. Environ. Sci. Policy 2015, 51, 137–148. [Google Scholar] [CrossRef] [Green Version]
- Narayan, S.; Beck, M.W.; Reguero, B.G.; Losada, I.J.; Van Wesenbeeck, B.; Pontee, N.; Sanchirico, J.N.; Ingram, J.C.; Lange, G.M.; Burks-Copes, K.A. The effectiveness, costs and coastal protection benefits of natural and nature-based defences. PLoS ONE 2016, 11, e0154735. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saleh, F.; Weinstein, M.P. The role of nature-based infrastructure (NBI) in coastal resilience planning: A literature review. J. Environ. Manag. 2016, 183, 1088–1098. [Google Scholar] [CrossRef] [PubMed]
- Gracia, V.; Sierra, J.P.; Caballero, A.; García-León, M.; Mösso, C. A methodological framework for selecting an optimal sediment source within a littoral cell. J. Environ. Manag. 2021, 296, 113207. [Google Scholar] [CrossRef]
- Cheong, S.M.; Silliman, B.; Wong, P.P.; Van Wesenbeeck, B.; Kim, C.K.; Guannel, G. Coastal adaptation with ecological engineering. Nat. Clim. Chang. 2013, 3, 787–791. [Google Scholar] [CrossRef]
- Belhassen, Y.; Rousseau, M.; Tynyakov, J.; Shashar, N. Evaluating the attractiveness and effectiveness of artificial coral reefs as a recreational ecosystem service. J. Environ. Manag. 2017, 203, 448–456. [Google Scholar] [CrossRef]
- Varin, M.; Théau, J.; Fournier, R.A. Mapping ecosystem services provided by wetlands at multiple spatiotemporal scales: A case study in Quebec, Canada. J. Environ. Manag. 2019, 246, 334–344. [Google Scholar] [CrossRef]
- Hafezi, M.; Stewart, R.A.; Sahin, O.; Giffin, A.L.; Mackey, B. Evaluating coral reef ecosystem services outcomes from climate change adaptation strategies using integrative system dynamics. J. Environ. Manag. 2021, 285, 112082. [Google Scholar] [CrossRef]
- Gacia, E.; Duarte, C.M. Sediment retention by a Mediterranean Posidonia oceanica meadow: The balance between deposition and resuspension. Estuar. Coast. Shelf Sci. 2001, 52, 505–514. [Google Scholar] [CrossRef]
- Mendez, F.J.; Losada, I.J. An empirical model to estimate the propagation of random breaking and nonbreaking waves over vegetation fields, Coast. Eng. 2004, 51, 103–118. [Google Scholar]
- Lentz, S.J.; Churchill, J.H.; Davis, K.A.; Farrar, J.T. Surface gravity wave transformation across a platform coral reef in the Red Sea. J. Geophys. Res. Oceans 2016, 121, 693–705. [Google Scholar] [CrossRef] [Green Version]
- Reguero, B.G.; Beck, M.W.; Agostini, V.N.; Kramer, P.; Hancock, B. Coral reefs for coastal protection: A new methodological approach and engineering case study in Grenada. J. Environ. Manag. 2018, 210, 146–161. [Google Scholar] [CrossRef] [PubMed]
- La Hausse de Lalouvière, C.; Gracia, V.; Sierra, J.P.; Lin-Ye, J.; García-León, M. Impact of climate change on nearshore waves at a beach protected by a barrier reef. Water 2020, 12, 1681. [Google Scholar] [CrossRef]
- Piazza, B.P.; Banks, P.D.; La Peyre, M.K. The potential for created oyster shell reefs as a sustainable shoreline protection strategy in Lousiana. Restor. Ecol. 2005, 13, 499–506. [Google Scholar] [CrossRef]
- Scyphers, S.B.; Powers, S.P.; Heck, K.L., Jr.; Byron, D. Oyster reefs as natural breakwaters mitigate shoreline loss and facilitate fisheries. PLoS ONE 2011, 6, e22396. [Google Scholar] [CrossRef] [Green Version]
- Donker, J.J.A.; van der Vegt, M.; Hoekstra, P. Wave forcing over an intertidal mussel bed. J. Sea Res. 2013, 82, 54–66. [Google Scholar] [CrossRef]
- Gedan, K.B.; Kirwan, M.L.; Wolanski, E.; Barbier, E.B.; Silliman, B.R. The present and future role of coastal wetland vegetation in protecting shorelines: Answering recent challenges to the paradigm. Clim. Chang. 2011, 106, 7–29. [Google Scholar] [CrossRef]
- Vuik, V.; Jonkman, S.N.; Borsje, B.W.; Suzuki, T. Nature-based flood protection: The efficiency of vegetated foreshores for reducing wave loads on coastal dikes. Coast. Eng. 2016, 116, 42–56. [Google Scholar] [CrossRef] [Green Version]
- Gijsman, R.; Horstman, E.M.; van der Wal, D.; Friess, D.A.; Swales, A.; Wijnberg, K.M. Nature-based engineering: A review on reducing coastal flood risk with mangroves. Front. Mar. Sci. 2021, 8, 702412. [Google Scholar] [CrossRef]
- Das, S.; Vincent, J.R. Mangroves protected villages and reduced death toll during Indian super cyclone. Proc. Natl. Acad. Sci. USA 2009, 106, 7357–7360. [Google Scholar] [CrossRef] [Green Version]
- Zhang, K.; Liu, H.; Li, Y.; Xu, H.; Shen, J.; Rhome, J.; Smith III, T.J. The role of mangroves in attenuating storm surges. Estuar. Coast. Shelf Sci. 2012, 102–103, 11–23. [Google Scholar] [CrossRef]
- Kelty, K.; Tomiczek, T.; Cox, D.T.; Lomonaco, P.; Mitchell, W. Prototype-scale ophysical model of wave attenuation through a mangrove forest of moderate cross-shore thickness: LiDAR-based characterization and Reynolds scaling for engineering with Nature. Front. Mar. Sci. 2022, 8, 780946. [Google Scholar] [CrossRef]
- Hemminga, M.; Duarte, C.M. Seagrass Ecology; Cambridge University Press: Cambridge, UK, 2000. [Google Scholar]
- Vacchi, M.; De Falco, G.; Simeone, S.; Montefalcone, M.; Morri, C.; Ferrari, M.; Bianchi, C.N. Biogeomorphology of the Mediterranean Posidonia oceanica seagrass meadows. Earth Surf. Proc. Landf. 2017, 42, 42–54. [Google Scholar] [CrossRef] [Green Version]
- Githaiga, M.N.; Frouws, A.M.; Kairo, J.G.; Huxham, M. Seagrass removal leads to rapid changes in fauna and loss of carbon. Front. Ecol. Evol. 2019, 7, 62. [Google Scholar] [CrossRef] [Green Version]
- Nguyen, H.M.; Yadav, N.S.; Barak, S.; Lima, F.P.; Sapir, Y.; Winters, G. Responses of invasive and native populations of the seagrass Halophila stipulacea to simulated climate change. Front. Mar. Sci. 2020, 6, 812. [Google Scholar] [CrossRef]
- Valdez, S.R.; Zhang, Y.S.; van der Heide, T.; Vanderklift, M.A.; Tarquinio, F.; Orth, R.J.; Solliman, B.R. Positive ecological interactions and the success of seagrass restoration. Front. Mar. Sci. 2020, 7, 91. [Google Scholar] [CrossRef] [Green Version]
- Infantes, E.; Orfila, A.; Simarro, G.; Terrados, J.; Luhar, M.; Nepf, H. Effect of seagrass (Posidonia oceánica) meadow on wave propagation. Mar. Ecol. Prog. Ser. 2012, 456, 63–72. [Google Scholar] [CrossRef] [Green Version]
- Manca, E.; Cáceres, I.; Alsina, J.M.; Stratigaki, V.; Townend, I.; Amos, C.L. Wave energy and wave-induced flow reduction by full-scale model Posidonia oceanica seagrass. Cont. Shelf Res. 2012, 50–51, 100–116. [Google Scholar] [CrossRef]
- Koftis, T.; Prinos, P.; Stratigaki, V. Wave damping over artificial Posidonia oceanica meadow: A large-scale experimental study. Coast. Eng. 2013, 73, 71–83. [Google Scholar] [CrossRef]
- Reidenbach, M.A.; Thomas, E.L. Influence of the seagrass Zoostera marina, on wave attenuation and bed shear stress within a shallow bay. Front. Mar. Sci. 2018, 5, 397. [Google Scholar] [CrossRef]
- Hansen, J.C.R.; Reidenbach, M.A. Wave and tidally driven flows in eelgrass beds and their effect on sediment suspension. Mar. Ecol. Prog. Ser. 2012, 448, 271–287. [Google Scholar] [CrossRef] [Green Version]
- Christianen, M.J.A.; van Belzen, J.; Herman, P.M.J.; van Katwijk, M.M.; Lamers, L.P.M.; van Leent, P.J.M.; Bouma, T.J. Low-canopy seagrass beds still provide important coastal protection services. PLoS ONE 2013, 8, e62413. [Google Scholar] [CrossRef] [Green Version]
- James, R.K.; Lynch, A.; Herman, P.M.J.; van Katwijk, M.M.; van Tussenbroek, B.I.; Dijkstra, H.A.; van Westen, R.M.; van der Boog, C.G.; Klees, R.; Pietrzak, J.D.; et al. Tropical biogeomorphic seagrass landscapes for coastal protection: Persistence and wave attenuation during major storm events. Ecosystems 2021, 24, 301–318. [Google Scholar] [CrossRef]
- De Boer, W.F. Seagrass–sediment interactions, positive feedbacks and critical thresholds for occurrence: A review. Hydrobiologia 2007, 591, 5–24. [Google Scholar] [CrossRef]
- Hendriks, I.E.; Bouma, T.J.; Morris, E.P.; Duarte, C.M. Effects of seagrasses and algae of the Caulerpa family on hydrodynamics and particle-trapping rates. Mar. Biol. 2010, 157, 473–481. [Google Scholar] [CrossRef]
- Ondiviela, B.; Losada, I.J.; Lara, J.L.; Maza, M.; Galván, C.; Bouma, T.J.; van Belzen, J. The role of seagrasses in coastal protection in a changing climate. Coast. Eng. 2014, 87, 158–168. [Google Scholar] [CrossRef]
- Potouroglou, M.; Bull, J.C.; Krauss, K.W.; Kennedy, H.A.; Fusi, M.; Daffonchio, D.; Mangora, M.M.; Githaiga, M.N.; Diele, K.; Huxham, M. Measuring the role of seagrasses in regulating sediment surface elevation. Sci. Rep. 2017, 7, 11917. [Google Scholar] [CrossRef] [Green Version]
- Paul, M. The protection of sandy shores—Can we afford to ignore the contribution of seagrass? Mar. Pollut. Bull. 2018, 134, 152–159. [Google Scholar] [CrossRef] [PubMed]
- James, R.K.; Silva, R.; van Tussenbroek, B.I.; Escudero-Castillo, M.; Mariño-Tapia, I.; Dijkstra, H.A.; van Westen, R.M.; Pietrzak, J.D.; Candy, A.S.; Katsman, C.A.; et al. Maintaining tropical beaches with seagrass and algae: A promising alternative to engineering solutions. Bioscience 2019, 69, 136–142. [Google Scholar] [CrossRef] [Green Version]
- Astudillo, C.; Gracia, V.; Cáceres, I.; Sierra, J.P.; Sánchez-Arcilla, A. Beach profile changes induced by surrogate Posidonia oceánica: Laboratory experiments. Coast. Eng. 2022, 175, 104144. [Google Scholar] [CrossRef]
- Duarte, C.M.; Dennison, W.C.; Orth, R.J.W.; Carruthers, T.J.B. The charisma of coastal ecosystems: Addressing the imbalance. Estuaries Coast 2008, 31, 233–238. [Google Scholar] [CrossRef] [Green Version]
- Nordlund, L.; de la Torre-Castro, M.; Erlandsson, J.; Conand, C.; Muthiga, N.; Jiddawi, N.; Gullström, M. Intertidal zone management in the western Indian Ocean: Assessing current status and future possibilities using expert opinions. Ambio 2014, 43, 1006–1019. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nordlund, L.M.; Jackson, E.L.; Nakaoka, M.; Samper-Villareal, J.; Beca-Carretero, P.; Creed, J.C. Seagrass ecosystem services—What’s next? Mar. Pollut. Bull. 2018, 134, 145–151. [Google Scholar] [CrossRef] [PubMed]
- Zabarte-Maeztu, I.; Matheson, F.; Manley-Harris, M.; Davies-Colley, R.; Oliver, M.; Hawes, I. Effects of fine sediment on seagrass meadows: A case study of Zostera muelleri in Pauatahanui Inlet, New Zealand. J. Mar. Sci. Eng. 2020, 8, 645. [Google Scholar] [CrossRef]
- Grech, A.; Chartrand-Miller, K.; Erftemeijer, P.; Fonseca, M.; McKenzie, L.; Rasheed, M.; Taylor, H.; Coles, R.A. comparison of threats, vulnerabilities and management approaches in global seagrass bioregions. Environ. Res. Lett. 2012, 7, 024006. [Google Scholar] [CrossRef]
- Montefalcone, M.; Parravicini, V.; Vacchi, M.; Albertelli, G.; Ferrari, M.; Morri, C.; Bianchi, C.N. Human influence on seagrass hábitat fragmentation in NW Mediterranean Sea. Estuar. Coast. Shelf Sci. 2010, 86, 292–298. [Google Scholar] [CrossRef]
- Boudouresque, C.F.; Bernard, G.; Pergent, G.; Shili, A.; Verlaque, M. Regression of Mediterranean seagrasses caused by natural processes and anthropogenic disturbances and stress: A critical review. Bot. Mar. 2009, 52, 395–418. [Google Scholar] [CrossRef]
- Costanza, R.; de Groot, R.; Sutton, P.; van der Ploeg, S.; Anderson, S.J.; Kubiszewski, I.; Farber, S.; Turner, R.K. Changes in the global value of ecosystem services. Glob. Environ. Chang. 2014, 26, 152–158. [Google Scholar] [CrossRef]
- Arias-Ortiz, A.; Serrano, O.; Masqué, P.; Lavery, P.S.; Mueller, U.; Kendrick, G.A.; Rozaimi, M.; Esteban, A.; Fourqurean, J.W.; Marbà, N.; et al. A marine heatwave drives massive losses from the world’s largest seagrass carbon stocks. Nat. Clim. Chang. 2018, 8, 338–344. [Google Scholar] [CrossRef] [Green Version]
- Park, J.I.; Lee, K.S. Site-specific success of three transplanting methods and the effect of planting time on the establishment of Zostera marina transplants. Mar. Pollut. Bull. 2007, 54, 1238–1248. [Google Scholar] [CrossRef]
- Li, W.T.; Kim, Y.K.; Park, J.I.; Zhang, X.; Du, G.Y.; Lee, K.S. Comparison of seasonal growth responses of Zostera marina transplants to determine the optimal transplant season for habitat restoration. Ecol. Eng. 2014, 71, 56–65. [Google Scholar] [CrossRef]
- Park, H.J.; Park, T.H.; Kang, H.Y.; Lee, K.S.; Kim, Y.K.; Kang, C.K. Assessment of restoration success in a transplanted seagrass bed based on isotopic niche metrics. Ecol. Eng. 2021, 166, 106239. [Google Scholar] [CrossRef]
- Ruckelshaus, M.; Guannel, G.; Arkema, K.; Verutes, G.; Griffin, R.; Guerry, A.; Silver, J.; Faries, J.; Brenner, J.; Rosenthal, A. Evaluating the benefits of green infrastructure for coastal areas: Location, location, location. Coast. Manag. 2016, 44, 504–516. [Google Scholar] [CrossRef]
- Oprandi, A.; Mucerino, L.; De Leo, F.; Bianchi, C.N.; Morri, C.; Azzola, A.; Benelli, F.; Besio, G.; Ferrari, M.; Montefalcone, M. Effects of severe storm on seagrass meadows. Sci. Total Environ. 2020, 748, 141373. [Google Scholar] [CrossRef]
- Uhrin, A.V.; Turner, M.G. Physical drivers of seagrass spatial configuration: The role of thresholds. Landsc. Ecol. 2018, 33, 2253–2272. [Google Scholar] [CrossRef]
- Fourqurean, J.W.; Rutten, L.M. The impact of Hurricane Georges on soft-bottom, back reef communities: Site- and species-specific effects in south Florida. Bull. Mar. Sci. 2004, 75, 239–257. [Google Scholar]
- Van Tussenbroek, B.I.; Barba Santos, M.G.; van Dijk, J.K.; Sanabria Alcaraz, S.N.M.; Téllez Calderón, M.L. Selective elimination of rooted plants from a tropical seagrass bed in a back-reef lagoon: A hypothesis tested by Hurricane Wilma (2005). J. Coast. Res. 2008, 241, 278–281. [Google Scholar] [CrossRef]
- Van Tussenbroek, B.I.; Cortés, J.; Collin, R.; Fonseca, A.C.; Gayle, P.M.H.; Guzmán, H.M.; Jácome, G.E.; Juman, R.; Koltes, K.H.; Oxenford, H.A.; et al. Caribbean-wide, long-term study of seagrass beds reveals local variations, shifts in community structure and occasional collapse. PLoS ONE 2014, 9, e89377. [Google Scholar] [CrossRef] [Green Version]
- Paul, M.; Amos, C.L. Spatial and seasonal variation in wave attenuation over Zoostera nolti. J. Geophys. Res. 2011, 116, C08019. [Google Scholar] [CrossRef]
- Bouma, T.J.; van Beelzen, J.; Balke, T.; Zhu, Z.; Airoldi, L.; Blight, A.J.; Davies, A.J.; Galvan, C.; Hawkins, S.J.; Hoggart, S.P.G.; et al. Identifying knowledge gaps hampering application of intertidal habitats in coastal protection: Opportunities & steps to take. Coast. Eng. 2014, 87, 147–157. [Google Scholar]
- Pinsky, M.L.; Guannel, G.; Arkema, K.K. Quantifying wave attenuation to inform coastal habitat conservation. Ecosphere 2013, 4, 95. [Google Scholar] [CrossRef]
- Silver, J.M.; Arkema, K.K.; Griffin, R.M.; Lashley, B.; Lemay, M.; Maldonado, S.; Moultrie, S.H.; Ruckelhaus, M.; Schill, S.; Thomas, A.; et al. Advancing coastal risk reduction science and implementation by accounting for climate, ecosystems and people. Front. Mar. Sci. 2019, 6, 556. [Google Scholar] [CrossRef] [Green Version]
- Pillai, U.P.A.; Pinardi, N.; Alessandri, J.; Federico, I.; Causio, S.; Unguendoli, S.; Valentini, A.; Staneva, J. A Digital Twin modelling framework for the assessment of seagrass Nature Based Solutions against storm surges. Sci. Total Environ. 2022, 847, 157603. [Google Scholar] [CrossRef] [PubMed]
- Stratigaki, V.; Manca, E.; Prinos, P.; Losada, I.J.; Lara, J.L.; Sclavo, M.; Amos, C.L.; Cáceres, I.; Sánchez-Arcilla, A. Large-scale experiments on wave propagation over Posidonia oceánica. J. Hydraul. Res. 2011, 49 (Suppl. S1), 31–43. [Google Scholar] [CrossRef]
- Maza, M.; Lara, J.L.; Losada, I.J. A coupled model of submerged vegetation under oscillatory flow using Navier–Stokes equations. Coast. Eng. 2013, 80, 16–34. [Google Scholar] [CrossRef]
- Chen, W.L.; Muller, P.; Grabowski, R.C.; Dodd, N. Green nourishment: An innovative nature-based solution for coastal erosion. Front. Mar. Sci. 2022, 8, 814589. [Google Scholar] [CrossRef]
- Vacchi, M.; Montefalcone, M.; Bianchi, C.N.; Morri, C.; Ferrari, M. Hydrodynamic constraints to the seaward development of Posidonia Oceanica meadows. Estuar. Coast. Shelf Sci. 2012, 97, 58–65. [Google Scholar] [CrossRef]
- Vacchi, M.; Montefalcone, M.; Schiaffino, C.F.; Parravicini, V.; Bianchi, C.N.; Morri, C.; Ferrari, M. Towards a predictive model to assess the natural position of the Posedonia oceanica seagrass meadows upper limit. Mar. Pollut. Bull. 2014, 83, 458–466. [Google Scholar] [CrossRef]
- Ruiz, J.M.; Guillén, J.E.; Ramos-Segura, A.; Otero, M.M. (Eds.) . Atlas de las Praderas Marinas de España; IEO/IEL/UICN: Murcia-Alicante-Málaga, Spain, 2015. [Google Scholar]
- Romero, J.; Pérez, M.; Alcoverro, T. The seagrass (Posidonia oceánica) meadows in the Catalán coast: Past trends and present status. In Proceedings of the 3rd Mediterranean Symposium on Marine Vegetation, Marseilles, France, 27–29 March 2007. [Google Scholar]
- Pinedo, S.; Zabala, M.; Ballesteros, E. Long-term changes in sublitoral macroalgal assemblages related to water quality improvement. Bot. Mar. 2013, 56, 461–469. [Google Scholar] [CrossRef] [Green Version]
- Casas-Prat, M.; Sierra, J.P. Trend analysis of wave storminess: Wave direction and its impact on harbour agitation. Nat. Hazards Earth Syst. Sci. 2010, 10, 2327–2340. [Google Scholar] [CrossRef] [Green Version]
- Bertotti, L.; Cavaleri, L. The predictability of the “Voyager” accident. Nat. Hazards Earth Syst. Sci. 2008, 8, 533–537. [Google Scholar] [CrossRef]
- Sánchez-Arcilla, A.; González-Marco, D.; Bolaños, R. A review of wave climate and prediction along the Spanish Mediterranean coast. Nat. Hazards Earth Syst. Sci. 2008, 8, 1217–1228. [Google Scholar] [CrossRef] [Green Version]
- Sánchez-Arcilla, A.; Lin-Ye, J.; García-León, M.; Gracia, V.; Pallarés, E. The land-sea coastal border: A quantitative definition by considering the wind and wave conditions in a wave-dominated, micro-tidal environment. Ocean Sci. 2019, 15, 113–126. [Google Scholar] [CrossRef] [Green Version]
- Paul, M.; Bouma, T.J.; Amos, C.L. Wave attenuation by submerged vegetation: Combining the effect of organism traits and tidal current. Mar. Ecol. Prog. Ser. 2012, 444, 31–41. [Google Scholar] [CrossRef] [Green Version]
- Luhar, M.; Infantes, E.; Orfila, A.; Terrados, J.; Nepf, H.M. Field observations of wave-induced streaming through a submerged seagrass (Posidonia oceanica) meadow. J. Geophys. Res. Oceans 2013, 118, 1955–1968. [Google Scholar] [CrossRef] [Green Version]
- Colomer, J.; Soler, M.; Serra, T.; Casamitjana, X.; Oldham, C. Impact of anthropogenically created canopy gaps on wave attenuation in a Posidonia oceanica seagrass meadow. Mar. Ecol. Prog. Ser. 2017, 569, 103–116. [Google Scholar] [CrossRef] [Green Version]
- Abadie, A.; Richir, J.; Lejeune, P.; Leduc, M.; Gobert, S. Structural changes of seagrass seascapes driven by natural and anthropogenic factors: A multidisciplinary approach. Front. Ecol. Evol. 2019, 7, 190. [Google Scholar] [CrossRef] [Green Version]
- Gao, J.; Ma, X.; Zang, J.; Dong, G.; Ma, X.; Zhu, Y.; Zhou, L. Numerical investigation of harbor oscillations induced by focused transient wave groups. Coast. Eng. 2020, 158, 103670. [Google Scholar] [CrossRef]
- Gao, J.; Ma, X.; Dong, G.; Chen, H.; Liu, Q.; Zang, J. Investigation on the effects of Bragg reflection qon harbor oscillations. Coast. Eng. 2021, 170, 103977. [Google Scholar] [CrossRef]
- Gao, J.; Zhou, X.; Zhou, L.; Zang, J.; Chen, H. Numerical investigation on effects of fringing reefs on low-frequency oscillations within a harbor. Ocean Eng. 2019, 172, 86–95. [Google Scholar] [CrossRef]
- Booij, N.; Ris, R.C.; Holthuijsen, L.H. A third-generation wave model for coastal regions: 1. Model description and validation. J. Geophys. Res. Oceans 1999, 104, 7649–7666. [Google Scholar] [CrossRef] [Green Version]
- Ris, R.C.; Holthuijsen, L.H.; Booij, N. A third-generation wave model for coastal regions: 2. Verification. J. Geophys. Res. Oceans 1999, 104, 7667–7681. [Google Scholar] [CrossRef]
- Suzuki, T.; Zijlema, M.; Burger, B.; Meijer, M.C.; Narayan, S. Wave dissipation by vegetation with layer schematization in SWAN. Coast. Eng. 2012, 59, 64–71. [Google Scholar] [CrossRef]
- Alomar, M. Improving wave forecasting in variable wind conditions: The effect of resolution and growth rate for the Catalan coast. Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2012. [Google Scholar]
- Pallarés, E. High-resolution wave forecasting. The Catalan coast case modelling, coupling and validation. Ph.D. Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2016. [Google Scholar]
- Russek, N. Influence of seagrass meadows on hydrodynamics: A modelling approach. Master’s Thesis, Universitat Politècnica de Catalunya, Barcelona, Spain, 2020. [Google Scholar]
- Sánchez-González, J.F.; Sánchez-Rojas, V.; Memos, C.D. Wave attenuation due to Posidonia oceanica meadows. J. Hydraul. Res. 2011, 49, 503–514. [Google Scholar] [CrossRef]
- Cavallaro, L.; Viviano, A.; Paratore, G.; Foti, E. Experiments on surface waves interacting with flexible aquatic vegetation. Ocean Sci. J. 2018, 53, 461–474. [Google Scholar] [CrossRef] [Green Version]
- Twomey, A.J.; O’Brien, K.R.; Callaghan, D.P.; Saunders, M.I. Synthesising wave attenuation for seagrass: Drag coefficient as a unifying indicator. Mar. Pollut. Bull. 2020, 160, 111661. [Google Scholar] [CrossRef]
- Dalla Via, J.; Sturmbauer, C.; Schönweger, G.; Sötz, E.; Mathekowitsch, S.; Stifter, M.; Rieger, R. Light gradients and meadow structure in Posidonia oceanica: Ecomorphological and functional correlates. Mar. Ecol. Prog. Ser. 1998, 163, 267–278. [Google Scholar] [CrossRef]
- Zeller, R.B.; Weitzman, J.S.; Abbett, M.E.; Zarama, F.J.; Fringer, O.B.; Koseff, J.R. Improved parametrizations of seagrass blade dynamics and wave attenuation based on numerical and laboratory experiments. Limnol. Oceanogr. 2014, 59, 251–266. [Google Scholar] [CrossRef]
- Myrhaug, D.; Holmedal, L.E. Drag force on a vegetation field due to long-crested and short-crested nonlinear random waves. Coast. Eng. 2011, 58, 562–566. [Google Scholar] [CrossRef]
- EPPE. Clima Medio de Oleaje. Boya de Tarragona; Puertos del Estado: Madrid, Spain, 2022. [Google Scholar]
- Cao, H.; Feng, W.; Hu, Z.; Suzuki, T.; Stive, M.J.F. Numerical modeling of vegetation-induced dissipation using an extended mild-slope equation. Ocean Eng. 2015, 110, 258–269. [Google Scholar] [CrossRef]
- Sierra, J.P.; García-León, M.; Gracia, V.; Sánchez-Arcilla, A. Green measures for Mediterranean harbours under a changing climate. Proc. Inst. Civ. Eng. Mar. Eng. 2017, 170, 55–66. [Google Scholar] [CrossRef] [Green Version]
- Vu, M.T.; Lacroix, Y.; Nguyen, V.T. Investigating the impacts of the regression of Posidonia oceanica on hydrodynamics and sediment transport in Giens Gulf. Ocean Eng. 2017, 146, 70–86. [Google Scholar] [CrossRef]
- Chastel, T.; Botten, K.; Durand, N.; Goutal, N. Bulk drag coefficient of a subaquatic vegetation subjected to irregular waves: Influence of Reynolds and Keulegan-Carpenter numbers. Houille Blanche 2020, 2, 34–42. [Google Scholar] [CrossRef]
- Dijkstra, J.; Uittenbogaard, R. Modeling the interaction between flow and highly flexible aquatic vegetation. Water Resour. Res. 2010, 46, W12547. [Google Scholar] [CrossRef] [Green Version]
- Bradley, K.; Houser, C. Relative velocity of seagrass blades: Implications for wave attenuation in low energy environments. J. Geophys. Res. 2009, 114, F01004.g. [Google Scholar] [CrossRef]
- Paulo, D.; Cunha, A.H.; Boavida, J.; Serrão, E.A.; Gonçalves, E.J.; Fonseca, M. Open coast seagrass restoration. Can we do it? Large scale seagrass transplants. Front. Mar. Sci. 2019, 6, 52. [Google Scholar] [CrossRef] [Green Version]
- Paling, E.I.; van Keulen, M.; Wheeler, K.D.; Phillips, J.; Dyhrberg, R. Influence of spacing on mechanically transplanted seagrass survival in a high wave energy regime. Restor. Ecol. 2003, 11, 56–61. [Google Scholar] [CrossRef]
- Villanueva, R.; Paul, M.; Schlurmann, T. Anchor forces on coir-based artificial seagrass mats: Dependence on wave dynamics and their potential use in seagrass restoration. Front. Mar. Sci. 2022, 9, 802343. [Google Scholar] [CrossRef]
- Villanueva, R.; Thom, M.; Visscher, J.; Paul, M.; Schlurmann, T. Wake length of an artificial seagrass meadow: A study of shelter and its feasibility for restoration. J. Ecohydraul. 2021, 7, 77–91. [Google Scholar] [CrossRef]
- Valdemarsen, T.; Canal-Vergés, P.; Kristensen, E.; Holmer, M.; Kristiansen, M.D.; Flindt, M.R. Vulnerability of Zostera marina seedlings to physical stress. Mar. Ecol. Prog. Ser. 2010, 418, 119–130. [Google Scholar] [CrossRef] [Green Version]
- Kendrick, G.A.; Waycott, M.; Carruthers, T.J.B.; Cambridge, M.L.; Hovey, R.K.; Krauss, S.L.; Lavery, P.S.; Les, D.H.; Lowe, R.J.; Mascaró I Vidal, O.; et al. The central role of dispersal in the maintenance and persistence of seagrass populations. Bioscience 2012, 62, 56–65. [Google Scholar] [CrossRef] [Green Version]
- Carstensen, J.; Krause-Jensen, D.; Markager, S.; Timmermann, K.; Windolf, J. Water clarity and eelgrass responses to nitrogen reductions in the eutrophic Skive Fjord. Denmark. Hydrobiologia 2013, 704, 293–309. [Google Scholar] [CrossRef]
- van Katwijk, M.M.; van Thorhaug, A.; Marbà, N.; Orth, R.J.; Duarte, C.M.; Kendrick, G.A.; Althuizen, I.H.J.; Balestri, E.; Bernard, G.; Cambridge, M.L.; et al. Global analysis of seagrass restoration: The importance of large-scale planting. J. Appl. Ecol. 2016, 53, 567–578. [Google Scholar] [CrossRef] [Green Version]
- Orth, R.J.; Moore, K.A.; Marion, S.R.; Wilcox, D.J.; Parrish, D.P. Seed addition facilitates eelgrass recovery in a coastal bay system. Mar. Ecol. Prog. Ser. 2012, 448, 177–195. [Google Scholar] [CrossRef] [Green Version]
- Statton, J.; Kendrick, G.A.; Dixon, K.W.; Cambridge, M.L. Inorganic nutrient supplements constrain restoration potential of seedlings of the seagrass, Posidonia australis. Restor. Ecol. 2013, 22, 196–203. [Google Scholar] [CrossRef]
- Hotaling-Hagan, A.; Swett, R.; Ellis, L.R.; Frazer, T.K. A spatial model to improve site selection for seagrass restoration in shallow boating environments. J. Environ. Manag. 2017, 186, 42–54. [Google Scholar] [CrossRef]
- Rezek, R.J.; Furman, B.T.; Jung, R.P.; Hall, M.O.; Bell, S.S. Long-term performance of seagrass restoration projects in Florida, USA. Sci. Rep. 2019, 9, 15514. [Google Scholar] [CrossRef] [Green Version]
- Tan, Y.M.; Dalby, O.; Kendrick, G.A.; Statton, J.; Sinclair, E.A.; Fraser, M.W.; Macreadie, P.I.; Gillies, C.L.; Coleman, R.A.; Waycott, M.; et al. Seagrass restoration is possible: Insights and lessons from Australia and New Zealand. Front. Mar. Sci. 2020, 7, 617. [Google Scholar] [CrossRef]
- Sinclair, E.A.; Sherman, C.D.H.; Statton, J.; Copeland, C.; Matthews, A.; Waycott, M.; van Dijk, K.J.; Vergés, A.; Kajlich, L.; McLeod, I.M.; et al. Advances in approaches to seagrass restoration in Australia. Ecol. Manag. Restor 2021, 22, 10–21. [Google Scholar] [CrossRef]
- Borsje, B.W.; van Wesenbeeck, B.K.; Dekkerc, F.; Paalvastd, P.; Bouma, T.J.; van Katwijk, M.M.; de Vries, M.B. How ecological engineering can serve in coastal protection. Ecol. Eng. 2011, 37, 113–122. [Google Scholar] [CrossRef]
Hs (m) | ||||||
---|---|---|---|---|---|---|
Direction | 0–1 | 1–2 | 2–3 | 3–4 | 4–5 | >5 |
ENE | X (3) | X (3) | X (2) | X (2) | X (2) | X (1) |
E | X (3) | X (3) | X (2) | X (2) | X (2) | X (1) |
ESE | X (3) | X (3) | X (2) | X (2) | ||
SE | X (3) | X (3) | X (2) | X (2) | ||
SSE | X (3) | X (3) | X (2) | X (2) | ||
S | X (3) | X (3) | X (2) | X (2) | X (2) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sierra, J.P.; Gracia, V.; Castell, X.; García-León, M.; Mösso, C.; Lin-Ye, J. Potential of Transplanted Seagrass Meadows on Wave Attenuation in a Fetch-Limited Environment. J. Mar. Sci. Eng. 2023, 11, 1186. https://doi.org/10.3390/jmse11061186
Sierra JP, Gracia V, Castell X, García-León M, Mösso C, Lin-Ye J. Potential of Transplanted Seagrass Meadows on Wave Attenuation in a Fetch-Limited Environment. Journal of Marine Science and Engineering. 2023; 11(6):1186. https://doi.org/10.3390/jmse11061186
Chicago/Turabian StyleSierra, Joan Pau, Vicente Gracia, Xavier Castell, Manuel García-León, César Mösso, and Jue Lin-Ye. 2023. "Potential of Transplanted Seagrass Meadows on Wave Attenuation in a Fetch-Limited Environment" Journal of Marine Science and Engineering 11, no. 6: 1186. https://doi.org/10.3390/jmse11061186
APA StyleSierra, J. P., Gracia, V., Castell, X., García-León, M., Mösso, C., & Lin-Ye, J. (2023). Potential of Transplanted Seagrass Meadows on Wave Attenuation in a Fetch-Limited Environment. Journal of Marine Science and Engineering, 11(6), 1186. https://doi.org/10.3390/jmse11061186