# Modeling and Adaptive Boundary Robust Control of Active Heave Compensation Systems

^{*}

## Abstract

**:**

## 1. Introduction

## 2. Dynamic Modeling

#### Vibration Control Equations

- Ignoring the effect of system piping pressure loss and dynamic properties;
- Neglecting servo valve flow leakage;
- The system supply pressure is stable and unchanging and oil tank pressure is 0.

## 3. Control Design

#### 3.1. Trajectory Planning

#### 3.2. Nonlinear Disturbance Observer

#### 3.3. Controller Design

#### 3.4. Stability Analysis

## 4. Simulation Results

^{2}. The initial length of the umbilical cable is 10 m, and the final length is 1000 m. The umbilical cable and the robot are initially static: $u\left(x,0\right)=0$ m and ${u}_{t}\left(x,0\right)=0$ m/s. The key physical parameters of the system are selected as ${m}_{t}=500$ kg, $\rho =900$ kg/m

^{3}, ${A}_{p}=0.01767$ m

^{2}, ${k}_{v}=1$, ${C}_{d}=0.7$, ${w}_{v}=0.002$, ${C}_{tp}=2.3\times {10}^{-10}$ m

^{3}/(s·pa), ${B}_{p}=7500$, ${p}_{s}=15$ Mpa, and ${\beta}_{e}=1.2\times {10}^{9}$ pa.

## 5. Conclusions

## Author Contributions

## Funding

## Institutional Review Board Statement

## Informed Consent Statement

## Data Availability Statement

## Conflicts of Interest

## Appendix A

Symbol | Definition | Numerical |
---|---|---|

${m}_{p}$ | Quality of the robot | 2000 kg |

$u\left(x,t\right)$ | Vibration of cable at x | \ |

${u}_{t}\left(x,t\right)$ | Partial differentiation with t | \ |

${u}_{x}\left(x,t\right)$ | Partial differentiation with x | \ |

$l\left(t\right)$ | Time-varying length | 10~1000 m |

${\rho}_{l}$ | Linear density | 2 kg/m |

$c$ | Viscous damping | 10 Ns/m^{2} |

${\beta}_{e}$ | Hydraulic oil bulk modulus of elasticity | 1.2 × 10^{9} pa |

${p}_{s}$ | Supply pressure | 15 Mpa |

${B}_{p}$ | Damping coefficient | 7500 |

$\rho $ | Hydraulic oil density | 900 kg/m^{3} |

${A}_{p}$ | Active area | 0.01767 m^{2} |

${x}_{v}$ | Valve spool displacement (Initial position) | 0 m |

${K}_{q}$ | Flow Gain | \ |

${K}_{c}$ | Flow-pressure coefficient | \ |

${C}_{d}$ | Flow coefficient | 0.7 |

${w}_{v}$ | Throttle window area gradient | 0.002 |

${C}_{tp}$ | Total leakage coefficient | 2.3 × 10^{−10} m^{3}/(s·pa) |

${m}_{t}$ | Quality of the piston | 500 kg |

${x}_{p}$ | Piston displacement | \ |

${E}_{k}$ | Total kinetic energy of the system | \ |

${E}_{p}$ | Total potential energy of the system | \ |

$W$ | Total virtual work of the system | \ |

$\widehat{u}\left(\xi ,t\right)$ | Modal function | \ |

${\psi}_{i}\left(\xi \right)$ | Trial functions | \ |

${q}_{i}\left(t\right)$ | Generalized coordinates | \ |

$EA$ | Axial tensile stiffness of the umbilical cable | 2 × 10^{7} N |

${Q}_{L}$ | Servo valve flow | \ |

${F}_{p}$ | External load force | \ |

${k}_{v}$ | Spool conversion factor | 1 |

${y}_{d}$ | Tracking target | 0 |

${\alpha}_{i}$ | Virtual control variables | \ |

${e}_{i}$ | Tracking errors | \ |

${V}_{i}\left(t\right)$ | Lyapunov functions | \ |

${d}_{i}\left(t\right)$ | Unknown disturbances | \ |

${\delta}_{i}\left(t\right)$ | Robust control term | \ |

${c}_{1}$ | Controller design parameters | 42 |

${c}_{2}$ | Controller design parameters | 20 |

${c}_{3}$ | Controller design parameters | 4 |

${c}_{4}$ | Controller design parameters | 2 |

${c}_{5}$ | Controller design parameters | 100 |

${\tau}_{i}$ | Filter factor | 0.01 |

$\epsilon $ | A small positive constant | 0.21 |

${\gamma}_{1},{\gamma}_{2}$ | Design parameters | 0.002 |

$L$ | Disturbance observer gain | 80 |

${\delta}_{\mathrm{max}}$ | The upper bound of the robust term | 0.01 |

${\delta}_{\mathrm{max}}$ | The lower bound of the robust term | 0 |

## References

- Wu, N.L.; Wang, X.Y.; Ge, T.; Wu, C.; Yang, R. Parametric identification and structure searching for underwater vehicle model using symbolic regression. J. Mar. Sci. Technol.
**2017**, 22, 51–60. [Google Scholar] [CrossRef] - Azis, F.A.; Aras, M.S.M.; Rashid, M.Z.A.; Othman, M.N.; Abdullah, S.S. Problem identification for underwater remotely operated vehicle (ROV): A case study. Procedia Eng.
**2012**, 41, 554–560. [Google Scholar] [CrossRef] [Green Version] - Jiang, C.M.; Wan, L.; Sun, Y.S. Design of motion control system of pipeline detection AUV. J. Cent. South Univ.
**2017**, 24, 637–646. [Google Scholar] [CrossRef] - Petillot, Y.R.; Antonelli, G.; Casalino, G.; Ferreira, F. Underwater robots: From remotely operated vehicles to intervention-autonomous underwater vehicles. IEEE Robot. Autom. Mag.
**2019**, 26, 94–101. [Google Scholar] [CrossRef] - Woodacre, J.K.; Bauer, R.J.; Irani, R.A. A review of vertical motion heave compensation systems. Ocean Eng.
**2015**, 104, 140–154. [Google Scholar] [CrossRef] - Quan, W.; Liu, Y.; Zhang, Z.; Li, X.; Liu, C. Scale model test of a semi-active heave compensation system for deep-sea tethered ROVs. Ocean Eng.
**2016**, 126, 353–363. [Google Scholar] [CrossRef] - Lubis, M.B.; Kimiaei, M.; Efthymiou, M. Alternative configurations to optimize tension in the umbilical of a work class ROV performing ultra-deep-water operation. Ocean Eng.
**2021**, 225, 108786. [Google Scholar] [CrossRef] - Woodacre, J.K.; Bauer, R.J.; Irani, R. Hydraulic valve-based active-heave compensation using a model-predictive controller with non-linear valve compensations. Ocean Eng.
**2018**, 152, 47–56. [Google Scholar] [CrossRef] - Ren, Z.; Skjetne, R.; Verma, A.S.; Jiang, Z.; Gao, Z.; Halse, K.H. Active heave compensation of floating wind turbine installation using a catamaran construction vessel. Mar. Struct.
**2021**, 75, 102868. [Google Scholar] [CrossRef] - Liu, J.; Zhao, H.; Liu, Q.; He, Y.; Wang, G.; Wang, C. Dynamic behavior of a deepwater hard suspension riser under emergency evacuation conditions. Ocean Eng.
**2018**, 150, 138–151. [Google Scholar] [CrossRef] - Lee, D.H.; Kim, T.W.; Ji, S.W.; Kim, Y.B. A study on load position control and vibration attenuation in crane operation using sub-actuator. Meas. Control.
**2019**, 52, 794–803. [Google Scholar] [CrossRef] [Green Version] - Li, S.; Wei, J.; Guo, K.; Zhu, W.L. Nonlinear robust prediction control of hybrid active–passive heave compensator with extended disturbance observer. IEEE Trans. Ind. Electron.
**2017**, 64, 6684–6694. [Google Scholar] [CrossRef] - Gu, P.; Walid, A.A.; Iskandarani, Y.; Karimi, H.R. Modeling, simulation and design optimization of a hoisting rig active heave compensation system. Int. J. Mach. Learn. Cybern.
**2013**, 4, 85–98. [Google Scholar] [CrossRef] [Green Version] - Cao, Y.; Wen, C.; Song, Y. Prescribed performance control of strict-feedback systems under actuation saturation and output constraint via event-triggered approach. Int. J. Robust Nonlinear Control.
**2019**, 29, 6357–6373. [Google Scholar] [CrossRef] - Qu, Z. Robust Control of Nonlinear Uncertain Systems; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 1998. [Google Scholar]
- Xing, X.; Liu, J. Modeling and robust adaptive iterative learning control of a vehicle-based flexible manipulator with uncertainties. Int. J. Robust Nonlinear Control.
**2019**, 29, 2385–2405. [Google Scholar] [CrossRef] - Islam, S.; Liu, X.P. Robust sliding mode control for robot manipulators. IEEE Trans. Ind. Electron.
**2010**, 58, 2444–2453. [Google Scholar] [CrossRef] - Li, Z.; Ma, X.; Li, Y.; Meng, Q.; Li, J. ADRC-ESMPC active heave compensation control strategy for offshore cranes. Ships Offshore Struct.
**2020**, 15, 1098–1106. [Google Scholar] [CrossRef] - Yu, H.; Chen, Y.; Shi, W.; Xiong, Y.; Wei, J. State constrained variable structure control for active heave compensators. IEEE Access
**2019**, 7, 54770–54779. [Google Scholar] [CrossRef] - Kwon, S.; Chung, W.K. A discrete-time design and analysis of perturbation observer for motion control applications. IEEE Trans. Control. Syst. Technol.
**2003**, 11, 399–407. [Google Scholar] [CrossRef] - Chen, W.H.; Yang, J.; Guo, L.; Li, S. Disturbance-observer-based control and related methods—An overview. IEEE Trans. Ind. Electron.
**2015**, 63, 1083–1095. [Google Scholar] [CrossRef] [Green Version] - Li, S.; Yang, J.; Chen, W.H.; Chen, X. Generalized extended state observer based control for systems with mismatched uncertainties. IEEE Trans. Ind. Electron.
**2011**, 59, 4792–4802. [Google Scholar] [CrossRef] [Green Version] - Sun, N.; Yang, T.; Chen, H.; Fang, Y. Dynamic feedback antiswing control of shipboard cranes without velocity measurement: Theory and hardware experiments. IEEE Trans. Ind. Inform.
**2018**, 15, 2879–2891. [Google Scholar] [CrossRef] - Swaroop, D.; Hedrick, J.K.; Yip, P.P.; Gerdes, J.C. Dynamic surface control for a class of nonlinear systems. IEEE Trans. Autom. Control.
**2000**, 45, 1893–1899. [Google Scholar] [CrossRef] [Green Version] - Kim, S.K.; Ahn, C.K.; Shi, P. Performance recovery tracking-controller for quadcopters via invariant dynamic surface approach. IEEE Trans. Ind. Inform.
**2019**, 15, 5235–5243. [Google Scholar] [CrossRef] - Shi, M.; Guo, S.; Jiang, L.; Huang, Z. Active-passive combined control system in crane type for heave compensation. IEEE Access
**2019**, 7, 159960–159970. [Google Scholar] [CrossRef] - Hou, M.; Duan, G.; Guo, M. New versions of Barbalat’s lemma with applications. J. Control. Theory Appl.
**2010**, 8, 545–547. [Google Scholar] [CrossRef]

Symbol | Definition | Symbol | Definition |
---|---|---|---|

${m}_{p}$ | Quality of the robot | ${m}_{t}$ | Quality of the piston |

$u\left(x,t\right)$ | Vibration of cable at x | ${x}_{p}$ | Piston displacement |

${u}_{t}\left(x,t\right)$ | Partial differentiation with t | $\rho $ | Hydraulic oil density |

${u}_{x}\left(x,t\right)$ | Partial differentiation with x | ${A}_{p}$ | Active area |

$l\left(t\right)$ | Time-varying length | ${x}_{v}$ | Valve spool displacement |

${\rho}_{l}$ | Linear density | ${K}_{q}$ | Flow Gain |

$c$ | Viscous damping | ${K}_{c}$ | Flow-pressure coefficient |

${\beta}_{e}$ | Hydraulic oil bulk modulus of elasticity | ${C}_{d}$ | Flow coefficient |

${p}_{s}$ | Supply pressure | ${w}_{v}$ | Throttle window area gradient |

${B}_{p}$ | Damping coefficient | ${C}_{tp}$ | Total leakage coefficient |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Du, R.; Wang, N.; Rao, H.
Modeling and Adaptive Boundary Robust Control of Active Heave Compensation Systems. *J. Mar. Sci. Eng.* **2023**, *11*, 484.
https://doi.org/10.3390/jmse11030484

**AMA Style**

Du R, Wang N, Rao H.
Modeling and Adaptive Boundary Robust Control of Active Heave Compensation Systems. *Journal of Marine Science and Engineering*. 2023; 11(3):484.
https://doi.org/10.3390/jmse11030484

**Chicago/Turabian Style**

Du, Rui, Naige Wang, and Hangyu Rao.
2023. "Modeling and Adaptive Boundary Robust Control of Active Heave Compensation Systems" *Journal of Marine Science and Engineering* 11, no. 3: 484.
https://doi.org/10.3390/jmse11030484