Research on the Spatial Correlation Network and Driving Mechanism of Agricultural Green Development in China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Methods
2.1.1. Methodology for Analyzing AGTFP
2.1.2. Spatial Correlation Network Analysis Methods
2.2. Materials
3. Analysis of Spatial Correlation Network Characteristics of AGTFP in China
3.1. Measurement Results
3.2. Spatial Correlation Network Structure Characteristics
3.2.1. Overall Network Structural Characteristics
3.2.2. Individual Network Structural Characteristics
3.2.3. Spatial Clustering Analysis
4. Driving Mechanisms of the Spatial Correlation Network of AGTFP in China
Analysis of Regression Results Based on the QAP Method
5. Conclusions and Policy Implications
5.1. Conclusions
5.2. Policy Implications
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Zhou, Y.S.; Yin, Z.J. Does agricultural insurance promote agricultural green development in China? J. Huazhong Agric. Univ. Soc. Sci. Ed. 2024, 01, 49–61. (In Chinese) [Google Scholar]
- Wang, X.; Yang, C.; Qiao, C. Agricultural Service Trade and Green Development: A Perspective Based on China’s Agricultural Total Factor Productivity. Sustainability 2024, 16, 7963. [Google Scholar] [CrossRef]
- Liu, Y.W.; Ouyang, Y.; Cai, H.Y. Measurement and spatio-temporal evolution characteristics of agricultural green total factor productivity in China. J. Quant. Tech. Econ. 2021, 38, 39–56. (In Chinese) [Google Scholar]
- Huang, X.Q.; Feng, C.; Qin, J.H.; Wang, X.; Zhang, T. Measuring China’s agricultural green total factor productivity and its drivers during 1998–2019. Sci. Total Environ. 2022, 829, 154477. [Google Scholar] [CrossRef]
- Hamid, S.; Wang, Q.; Wang, K. The spatiotemporal dynamic evolution and influencing factors of agricultural green total factor productivity in Southeast Asia (ASEAN-6). Environ. Dev. Sustain. 2025, 27, 2469–2493. [Google Scholar] [CrossRef]
- Fang, L.; Hu, R.; Mao, H.; Chen, S.J. How crop insurance influences agricultural green total factor productivity: Evidence from Chinese farmers. J. Clean. Prod. 2021, 321, 128977. [Google Scholar]
- Song, M.L.; Du, J.T.; Tan, K.H. Impact of fiscal decentralization on green total factor productivity. Int. J. Prod. Econ. 2018, 205, 359–367. [Google Scholar]
- Chen, Y.F.; Miao, J.F.; Zhu, Z.T. Measuring green total factor productivity of China’s agricultural sector: A three-stage SBM-DEA model with non-point source pollution and CO2 emissions. J. Clean. Prod. 2021, 318, 128543. [Google Scholar]
- Tone, K. A slacks-based measure of efficiency in data envelopment analysis. Eur. J. Oper. Res. 2001, 130, 498–509. [Google Scholar] [CrossRef]
- Guo, H.H.; Liu, X.M. Spatio-temporal evolution of agricultural green total factor productivity in China. Chin. J. Manag. Sci. 2020, 28, 66–75. (In Chinese) [Google Scholar]
- Liu, Z.; Dai, X. Analysis on the Growth and Convergence of Agricultural Green Total Factor Productivity in Guangxi. Front. Humanit. Soc. Sci. 2023, 3, 94–102. [Google Scholar]
- Xiao, Q.; Zhou, Z.Y.; Luo, Q.Y. Agricultural green production efficiency and its spatio-temporal differentiation in the Yangtze River Economic Belt. Chin. J. Agric. Resour. Reg. Plan. 2020, 41, 15–24. (In Chinese) [Google Scholar]
- Wang, F.; Wang, H.; Liu, C. Does economic agglomeration improve agricultural green total factor productivity? Evidence from China’s Yangtze river delta. Sci. Prog. 2022, 105, 460. [Google Scholar]
- Yang, Q.; Wang, J.; Li, C.; Liu, X.P. Spatial differentiation and driving factors of agricultural green total factor productivity in China. J. Quant. Tech. Econ. 2019, 36, 21–37. (In Chinese) [Google Scholar]
- Wang, S.; Zhu, J.; Wang, L. The inhibitory effect of agricultural fiscal expenditure on agricultural green total factor productivity. Sci. Rep. 2022, 12, 20933. [Google Scholar]
- Gu, Y.; Qi, C.; He, Y.; Liu, F.; Luo, B. Spatial Correlation Network Structure of and Factors Influencing Technological Progress in Citrus-Producing Regions in China. Agriculture 2023, 13, 2118. [Google Scholar] [CrossRef]
- Yang, W.P.; Zhang, Q. Impact of biased technological progress on agricultural total factor productivity growth in China. J. Bus. Econ. 2024, 52–66. (In Chinese) [Google Scholar]
- Xu, L.; Jiang, J.; Du, J. The Dual Effects of Environmental Regulation and Financial Support for Agriculture on Agricultural Green Development: Spatial Spillover Effects and Spatio-Temporal Heterogeneity. Appl. Sci. 2022, 12, 11609. [Google Scholar] [CrossRef]
- Shi, C.L. Impact of land transfer on agricultural high-quality development: A perspective of green total factor productivity. J. Nat. Resour. 2024, 39, 1418–1433. (In Chinese) [Google Scholar]
- Zhan, Y.Q.; Wang, W.; Ren, Y.H. Inspection supervision and corporate green total factor productivity. Financ. Res. Lett. 2024, 67, 105805. [Google Scholar]
- Zhang, C.Y.; Zhu, H.; Li, X.Z. Which productivity can promote clean energy transition-total factor productivity or green total factor productivity? J. Environ. Manag. 2024, 366, 121899. [Google Scholar] [CrossRef]
- Xiao, B.Y.; Li, H.B. Financial efficiency, green innovation and green total factor productivity. Financ. Res. Lett. 2025, 76, 107005. [Google Scholar] [CrossRef]
- Du, J.; Wang, R.; Wang, X.H. Environmental total factor productivity and agricultural growth: A two-stage analysis based on DEA-GML index and panel Tobit model. Chin. Rural. Econ. 2016, 65–81. (In Chinese) [Google Scholar] [CrossRef]
- Gelb, J.; Apparicio, P. Temporal Network Kernel Density Estimation. Geogr. Anal. 2024, 56, 62–78. [Google Scholar] [CrossRef]
- Zhao, L.; Cao, N.G.; Han, Z.L.; Gao, X.T. Evolution Characteristics and Influencing Factors of the Spatial Correlation Network of Green Economic Efficiency in China. Resour. Sci. 2021, 43, 1933–1946. (In Chinese) [Google Scholar]
- Ge, P.F.; Wang, S.J.; Huang, X.L. Measurement of China’s agricultural green total factor productivity. China Popul. Resour. Environ. 2018, 28, 66–74. (In Chinese) [Google Scholar]
- Song, Y.P.; Fan, X.Q.; Geng, P.P. Scale operation and agricultural green development: Observations based on agricultural green total factor productivity. J. Huazhong Agric. Univ. Soc. Sci. Ed. 2024, 57–70. (In Chinese) [Google Scholar] [CrossRef]
- Zhu, H.G.; Cao, B.; Zhao, W.C. Temporal evolution and spatial convergence characteristics of agricultural total factor carbon emission performance in China. Stat. Decis. 2022, 38, 63–68. (In Chinese) [Google Scholar]
- Qian, Z.Y.; Liu, S.J. Spatial Correlation Network Structure Characteristics and Driving Factors Identification of Agricultural Green Low-Carbon Production Efficiency in the Yellow River Basin. J. Arid Land Resour. Environ. 2024, 38, 27–38. (In Chinese) [Google Scholar]
- Yang, X.; Li, D.T.; Cao, J.M. Spatial Correlation Analysis of Beef Cattle Production in Southern China and Industrial Development Pathways. Chin. J. Agric. Resour. Reg. Plan. 2023, 44, 214–223. (In Chinese) [Google Scholar]
- Wang, F.; Wu, L.; Zhang, F. Network Structure and Influencing Factors of Agricultural Science and Technology Innovation Spatial Correlation Network—A Study Based on Data from 30 Provinces in China. Symmetry 2020, 12, 1773. [Google Scholar] [CrossRef]
- Matias, R.; Paloma, B.; Ian, C.; Ivan, H. The role of social networks in the inclusion of small-scale producers in agri-food developing clusters. Food Policy 2018, 77, 59–70. [Google Scholar]
- He, W.; Wang, F.; Feng, N. Research on the characteristics and influencing factors of the spatial correlation network of cultivated land utilization ecological efficiency in the upper reaches of the Yangtze River, China. PLoS ONE 2024, 19, e0297933. [Google Scholar]
- Liu, P.; Qin, Y.; Luo, Y.Y.; Wang, X.X.; Guo, X.W. Structure of low-carbon economy spatial correlation network in urban agglomeration. J. Clean. Prod. 2023, 394, 136359. [Google Scholar]
- He, Y.; Li, Z.F.; Fang, G.Z.; Qi, C.J. Spatial Correlation Effects of Citrus Prices in Major Production Areas: Based on VAR Model and Social Network Analysis Method. Chin. J. Agric. Resour. Reg. Plan. 2023, 44, 174–183. (In Chinese) [Google Scholar]
- Han, X.Y.; Zhang, X.; Lei, H. Analysis of the spatial association network structure of water-intensive utilization efficiency and its driving factors in the Yellow River Basin. Ecol. Indic. 2024, 158, 111400. [Google Scholar]
- Bai, R.; Lin, B.Q. An in-depth analysis of green innovation efficiency: New evidence based on club convergence and spatial correlation network. Energy Econ. 2024, 132, 107424. [Google Scholar] [CrossRef]
- Liu, S.; Yuan, J. Spatial correlation network structure of energy-environment efficiency and its driving factors: A case study of the Yangtze River Delta Urban Agglomeration. Sci. Rep. 2023, 13, 20790. [Google Scholar]
- Fang, H.; Chai, J.; Wang, Z.; Zhang, R.; Huang, C.; Luo, M. Exploring the Spatial Correlation Network and Its Formation Mechanisms in Urban Land Use Performance: A Case Study of the Yangtze River Economic Belt. Land 2024, 13, 1019. [Google Scholar] [CrossRef]
- Wang, Z.S.; Xie, W.C.; Zhang, C.Y. Towards COP26 targets: Characteristics and influencing factors of spatial correlation network structure on U.S. carbon emission. Resour. Policy 2023, 81, 103285. [Google Scholar]
- Liu, H.J.; Liu, C.M.; Sun, Y.N. Spatial correlation network structure characteristics and effects of energy consumption in China. China Ind. Econ. 2015, 83–95. (In Chinese) [Google Scholar] [CrossRef]
- Tan, R.H.; Liu, H.M. Spatial Correlation Network Characteristics Evolution and Influencing Factors of Agricultural Green Total Factor Productivity in China. Chin. J. Eco-Agric. 2022, 30, 2011–2026. (In Chinese) [Google Scholar]
Variable | Observations | Mean | Std. Dev. | Minimum | Maximum |
---|---|---|---|---|---|
Irrigation input | 600 | 2061 | 1565 | 89.30 | 6178 |
Pesticide input | 600 | 5.246 | 4.142 | 0.100 | 17.35 |
Film input | 600 | 7.422 | 6.483 | 0.0959 | 34.35 |
Machine input | 600 | 3071 | 2796 | 94 | 13,353 |
Labor input | 600 | 868.6 | 644.8 | 21 | 3332 |
Fertilizer input | 600 | 179.8 | 139.0 | 4.700 | 716.1 |
Land input | 600 | 5371 | 3760 | 88.55 | 15,209 |
Capital input | 600 | 552.5 | 735.8 | 1.605 | 4950 |
Carbon output | 600 | 270.8 | 192.9 | 10.75 | 867.4 |
Agricultural output | 600 | 161.4 | 52.00 | 63.29 | 327.1 |
Structural Characteristic | Indicator | Formula | Description |
---|---|---|---|
Overall network | Network density | is the number of association relationships and is the number of nodes | |
Network connectedness | is the number of unreachable pairs of points in the network | ||
Network efficiency | is the number of redundant links between nodes | ||
Network hierarchy | is the number of symmetrically reachable pairs of points in the network | ||
Individual network | Degree centrality | is the number of directly associated nodes and is the maximum possible number of associated nodes | |
Closeness centrality | is the shortcut distance between node and node , | ||
Betweenness centrality | where , and ; is the number of shortcut paths |
Sector Classification | Description |
---|---|
Net-beneficiary section | A sector that receives significantly more relations from external sectors than it spills over to them. |
Net-spillover section | A sector that spills over significantly more relations to external sectors than it receives from them. |
Bidirectional spillover section | A sector with a high number of both outgoing and incoming relations with external sectors. |
“Broker” section | A sector with relatively low internal relations, but a high number of both incoming and outgoing relations with external sectors. |
Areas | Degree Centrality | Closeness Centrality | Betweenness Centrality | |||||
---|---|---|---|---|---|---|---|---|
Out Degree | In Degree | Centrality | Rank | Centrality | Rank | Centrality | Rank | |
Anhui | 6 | 3 | 24.138 | 10 | 56.863 | 9 | 1.055 | 9 |
Beijing | 5 | 19 | 65.517 | 3 | 74.359 | 3 | 9.867 | 4 |
Fujian | 9 | 1 | 31.034 | 7 | 59.184 | 5 | 1.174 | 8 |
Gansu | 3 | 2 | 10.345 | 25 | 50.877 | 25 | 0.077 | 26 |
Guangdong | 7 | 2 | 24.138 | 10 | 56.863 | 9 | 0.798 | 11 |
Guangxi | 5 | 1 | 17.241 | 15 | 54.717 | 15 | 0.621 | 16 |
Guizhou | 6 | 2 | 20.690 | 13 | 55.769 | 13 | 0.798 | 11 |
Hainan | 7 | 10 | 34.483 | 6 | 47.541 | 30 | 1.848 | 6 |
Hebei | 2 | 3 | 10.345 | 25 | 50.000 | 27 | 0.032 | 29 |
Henan | 5 | 3 | 17.241 | 15 | 53.704 | 17 | 0.331 | 18 |
Heilongjiang | 5 | 0 | 17.241 | 15 | 53.704 | 17 | 0.331 | 18 |
Hubei | 6 | 4 | 24.138 | 10 | 56.863 | 9 | 0.798 | 11 |
Hunan | 6 | 3 | 27.586 | 8 | 58.000 | 7 | 0.834 | 10 |
Jilin | 5 | 0 | 17.241 | 15 | 53.704 | 17 | 0.331 | 18 |
Jiangsu | 2 | 2 | 10.345 | 25 | 50.000 | 27 | 0.052 | 28 |
Jiangxi | 7 | 0 | 24.138 | 10 | 56.863 | 9 | 0.798 | 11 |
Liaoning | 3 | 1 | 10.345 | 25 | 50.000 | 27 | 0.032 | 29 |
Neimenggu | 4 | 1 | 13.793 | 20 | 51.786 | 21 | 0.120 | 23 |
Ningxia | 9 | 21 | 75.862 | 2 | 78.378 | 2 | 16.639 | 2 |
Qinghai | 8 | 19 | 65.517 | 3 | 67.442 | 4 | 10.833 | 3 |
Shandong | 4 | 4 | 13.793 | 20 | 51.786 | 21 | 0.187 | 21 |
Shanxi | 4 | 3 | 13.793 | 20 | 51.786 | 21 | 0.120 | 23 |
Shaanxi | 4 | 2 | 13.793 | 20 | 51.786 | 21 | 0.120 | 23 |
Shanghai | 4 | 16 | 55.172 | 5 | 59.184 | 5 | 8.152 | 5 |
Sichuan | 5 | 4 | 17.241 | 15 | 54.717 | 15 | 0.380 | 17 |
Tianjin | 6 | 25 | 86.207 | 1 | 87.879 | 1 | 25.668 | 1 |
Xinjiang | 3 | 1 | 10.345 | 25 | 50.877 | 25 | 0.077 | 26 |
Yunnan | 6 | 2 | 20.690 | 13 | 55.769 | 13 | 0.798 | 11 |
Zhejiang | 4 | 2 | 13.793 | 20 | 52.727 | 20 | 0.148 | 22 |
Chongqing | 8 | 2 | 27.586 | 8 | 58 | 7 | 1.217 | 7 |
Mean | 5 | 5 | 27.126 | - | 57.038 | - | 2.808 | - |
Section | Spillover Ties | Receiving Ties | Expected Intra-Section Ratio (%) | Actual Intra-Section Ratio (%) | Section Type | ||
---|---|---|---|---|---|---|---|
Intra- Section | Inter- Section | Intra- Section | Inter- Section | ||||
Section I | 11 | 64 | 11 | 22 | 51.72% | 17.19% | Net spillover |
Section II | 3 | 28 | 3 | 24 | 24.14% | 10.71% | “Brokerage” |
Section III | 2 | 32 | 2 | 57 | 10.34% | 6.25% | Net beneficiary |
Section IV | 1 | 17 | 1 | 38 | 3.45% | 5.88% | Bidirectional spillover |
Section | Density Matrix | Image Matrix | ||||||
---|---|---|---|---|---|---|---|---|
Section I | Section II | Section III | Section IV | Section I | Section II | Section III | Section IV | |
Section I | 0.514 | 0.406 | 0.859 | 0.750 | 1 | 1 | 1 | 1 |
Section II | 0.183 | 0.176 | 0.750 | 0.313 | 1 | 0 | 1 | 1 |
Section III | 0.094 | 0.500 | 0.095 | 0.167 | 0 | 1 | 1 | 0 |
Section IV | 0.375 | 0.188 | 0.184 | 0.019 | 1 | 1 | 1 | 0 |
Variable | 2004 | 2008 | 2012 | 2016 | 2020 | 2022 | Mean |
---|---|---|---|---|---|---|---|
0.2564 *** (0.728) | 0.2843 *** (0.670) | 0.2573 *** (0.734) | 0.2940 *** (0.674) | 0.1884 *** (0.541) | 0.2836 *** (0.743) | 0.2001 *** (0.691) | |
0.2969 *** (1.000) | 0.2426 *** (0.997) | 0.3296 *** (1.000) | 0.1411 ** (0.961) | 0.1168 * (0.940) | 0.1534 ** (0.796) | 0.2189 *** (0.993) | |
0.1837 *** (0.992) | 0.2437 ** (0.978) | 0.2287 *** (0.995) | 0.3101 *** (1.000) | 0.3247 *** (0.999) | 0.1823 *** (0.820) | 0.2507 ** (0.974) | |
0.2797 *** (0.997) | 0.2235 *** (0.991) | 0.1718 ** (0.980) | 0.1043 * (0.922) | 0.3259 *** (0.966) | 0.2532 *** (0.770) | 0.1641 ** (0.966) | |
0.1802 ** (0.843) | −0.1183 ** (0.023) | −0.1530 *** (0.000) | −0.1301 *** (0.002) | −0.1433 *** (0.046) | −0.1761 *** (0.077) | −0.1198 ** (0.015) | |
0.2074 *** (0.994) | 0.1384 *** (0.903) | −0.1478 *** (0.389) | 0.1259 * (0.933) | −0.1031 ** (0.022) | −0.1678 *** (0.151) | 0.2217 ** (0.985) | |
0.145 | 0.118 | 0.166 | 0.125 | 0.119 | 0.261 | 0.180 | |
0.140 | 0.113 | 0.161 | 0.119 | 0.114 | 0.258 | 0.174 | |
p value | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 | 0.000 |
Observation | 870 | 870 | 870 | 870 | 870 | 870 | 870 |
Permutation | 5000 | 5000 | 5000 | 5000 | 5000 | 5000 | 5000 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, Y.; Fang, G.; Qi, C.; Gu, Y. Research on the Spatial Correlation Network and Driving Mechanism of Agricultural Green Development in China. Agriculture 2025, 15, 693. https://doi.org/10.3390/agriculture15070693
He Y, Fang G, Qi C, Gu Y. Research on the Spatial Correlation Network and Driving Mechanism of Agricultural Green Development in China. Agriculture. 2025; 15(7):693. https://doi.org/10.3390/agriculture15070693
Chicago/Turabian StyleHe, Yu, Guozhu Fang, Chunjie Qi, and Yumeng Gu. 2025. "Research on the Spatial Correlation Network and Driving Mechanism of Agricultural Green Development in China" Agriculture 15, no. 7: 693. https://doi.org/10.3390/agriculture15070693
APA StyleHe, Y., Fang, G., Qi, C., & Gu, Y. (2025). Research on the Spatial Correlation Network and Driving Mechanism of Agricultural Green Development in China. Agriculture, 15(7), 693. https://doi.org/10.3390/agriculture15070693