Innovative Design and Application of Modern Agricultural Machinery Systems in Cropping Systems
Funding
Conflicts of Interest
References
- Ucgul, M.; Chang, C.L. Design and application of agricultural equipment in tillage systems. Agriculture 2023, 13, 790. [Google Scholar] [CrossRef]
- Wang, B.; Du, X.; Wang, Y.; Mao, H. Multi-machine collaboration realization conditions and precise and efficient production mode of intelligent agricultural machinery. Int. J. Agric. Biol. Eng. 2024, 17, 27–36. [Google Scholar] [CrossRef]
- Saiz-Rubio, V.; Rovira-Más, F. From smart farming towards agriculture 5.0: A review on crop data management. Agronomy 2020, 10, 207. [Google Scholar] [CrossRef]
- Reddy, R. Innovations in agricultural machinery: Assessing the impact of advanced technologies on farm efficiency. J. Artif. Intell. Big Data 2022, 2, 1. [Google Scholar] [CrossRef]
- Xie, D.; Chen, L.; Liu, L.; Chen, L.; Wang, H. Actuators and sensors for application in agricultural robots: A review. Machines 2022, 10, 913. [Google Scholar] [CrossRef]
- Chang, C.L.; Chen, H.W.; Ke, J.Y. Robust guidance and selective spraying based on deep learning for an advanced four-wheeled farming robot. Agriculture 2023, 14, 57. [Google Scholar] [CrossRef]
- Gao, J.; Jin, Z.; Ai, A. The optimized design of soil-touching parts of a greenhouse humanoid weeding shovel based on strain sensing and DEM–ADAMS coupling simulation. Sensors 2024, 24, 868. [Google Scholar] [CrossRef] [PubMed]
- Zhou, S.; He, F.; Deng, G.; Dai, Y.; Wang, X.; Yan, B.; Pan, D. Design and experimentation of a height-adjustable management platform for pineapple fields. Agriculture 2025, 15, 1420. [Google Scholar] [CrossRef]
- Li, J.; Zhong Lu, H.; Yang, Z.; Lü, E. Orchard facilities and equipment for litchi and longan in China. In Proceedings of the 2011 ASABE Annual International Meeting, Louisville, KY, USA, 7–10 August 2011; American Society of Agricultural and Biological Engineers: St. Joseph, MO, USA, 2011; p. 1. [Google Scholar]
- Li, Z.; Li, C.; Zeng, Y.; Mai, C.; Jiang, R.; Li, J. Design and realization of an orchard operation-aid platform: Based on planting patterns and topography. Agriculture 2024, 15, 48. [Google Scholar] [CrossRef]
- Wang, S.; Song, J.; Qi, P.; Yuan, C.; Wu, H.; Zhang, L.; He, X. Design and development of orchard autonomous navigation spray system. Front. Plant Sci. 2022, 13, 960686. [Google Scholar] [CrossRef]
- Yu, H.; Ding, Y.; Fu, X.; Liu, H.; Jin, M.; Yang, C.; Dou, X. A solid fertilizer and seed application rate measuring system for a seed-fertilizer drill machine. Comput. Electron. Agric. 2019, 162, 836–844. [Google Scholar] [CrossRef]
- Farooqui, N.A.; Haleem, M.; Khan, W.; Ishrat, M. Precision agriculture and predictive analytics: Enhancing agricultural efficiency and yield. In Intelligent Techniques for Predictive Data Analytics; Wiley-IEEE Press: Hoboken, NJ, USA; pp. 171–188.
- Li, M.; Chang, X.; Gu, Y.; Wang, P.; Shang, S. Design of dynamic deep sowing system for peanut planter with double-loop feedback fuzzy PID control. Agriculture 2025, 15, 808. [Google Scholar] [CrossRef]
- Wu, F.; Li, S.; He, Y.; Song, M.; Ma, F.; Teng, X.; Liang, Y. Optimized design and performance of pre-cutting vibrating sugarcane sett metering device. Sugar Tech. 2023, 25, 210–222. [Google Scholar] [CrossRef]
- Yan, B.; Liu, H.; He, F.; Deng, G.; Zheng, S.; Cui, Z.; Li, B. Analysis and testing of pre-cut sugarcane seed stalk sawing performance parameters. Agriculture 2024, 14, 953. [Google Scholar] [CrossRef]
- Zhang, L.; Yuan, W.; Jin, C.; Feng, Y.; Liu, G.; Hu, Y. Research progress on key mechanical components of the pneumatic centralized fertilizer discharge system. Appl. Sci. 2024, 14, 3884. [Google Scholar] [CrossRef]
- Dong, W.; Zhang, X.; Jiang, Z.; Hu, X.; Ge, Y.; Zhang, L. Study on structure design and parameter optimization of diversion rifled feeder based on CFD–DEM. Agriculture 2025, 15, 351. [Google Scholar] [CrossRef]
- Li, Y.; Qu, Y.; Fang, Y.; Yang, J.; Lu, Y. Design and experiment of autonomous shield-cutting end-effector for dual-zone maize field weeding. Agriculture 2025, 15, 1549. [Google Scholar] [CrossRef]
- Squires, N.R.W.; Haggar, R.J.; Elliott, J.G. A one-pass seeder for introducing grasses, legumes and fodder crops into swards. J. Agric. Eng. Res. 1979, 24, 199–208. [Google Scholar] [CrossRef]
- Zhou, L.; Ma, Y.; Zhou, H.; Niu, K.; Zhao, B.; Wei, L.; Zhang, W. Design and test of sowing depth measurement and control system for no-till corn seeder based on integrated electro-hydraulic drive. Appl. Sci. 2023, 13, 5823. [Google Scholar] [CrossRef]
- Ampatzidis, Y.G.; Vougioukas, S.G.; Whiting, M.D.; Zhang, Q. Applying the machine repair model to improve efficiency of harvesting fruit. Biosyst. Eng. 2014, 120, 25–33. [Google Scholar] [CrossRef]
- Zhou, L.; Jin, S.; Wang, J.; Zhang, H.; Shi, M.; Zhou, H. 3D positioning of Camellia oleifera fruit-grabbing points for robotic harvesting. Biosyst. Eng. 2024, 246, 110–121. [Google Scholar] [CrossRef]
- Wang, G.; Jin, C.; Zhang, M.; Wu, C.; Tang, Q.; Yang, Y. Reducing grain damage in moist corn threshing via corncob division. Agriculture 2024, 14, 1648. [Google Scholar] [CrossRef]
- Yin, J.; Chen, Z.; Lv, S.; Wu, H.; Gao, Y.; Wu, L. Design and fatigue life analysis of the rope-clamping drive mechanism in a knotter. Agriculture 2024, 14, 1254. [Google Scholar] [CrossRef]
- Jiang, J.; Han, X.; Liu, Q.; Xu, H.; Wu, T.; Feng, J.; Zou, X.; Li, Y. Structural improvement of sugarcane harvester for reducing field loss when harvesting lodged canes. Agriculture 2025, 15, 1759. [Google Scholar] [CrossRef]
- Li, Z.; Thomas, C. Quantitative evaluation of mechanical damage to fresh fruits. Trends Food Sci. Technol. 2014, 35, 138–150. [Google Scholar] [CrossRef]
- Chang, C.L.; Huang, C.C. Design and implementation of an AI-based robotic arm for strawberry harvesting. Agriculture 2024, 14, 2057. [Google Scholar] [CrossRef]
- Cameron, J.T.; Brennan, S.N. Vehicle Dynamic Modeling for the Prediction and Prevention of Vehicle Rollover. Ph.D. Thesis, Pennsylvania State University, University Park, PA, USA, 2005. [Google Scholar]
- Wang, F.; Chen, Y. Vehicle rollover propensity detection based on a mass-center-position metric: A continuous and completed method. IEEE Trans. Veh. Technol. 2019, 68, 8652–8662. [Google Scholar] [CrossRef]
- Yang, Y.J.; Jang, M.K.; Nam, J.S. Dynamic simulation model of miniature tracked forestry tractor for overturning and rollover safety evaluation. Agriculture 2024, 14, 1991. [Google Scholar] [CrossRef]
- Kim, S.-J.; Jang, M.-K.; Hwang, S.-J.; Lee, W.S.; Nam, J.-S. Development of a prediction model for specific fuel consumption in rotary tillage based on actual operation. Agriculture 2024, 14, 1993. [Google Scholar] [CrossRef]
- Li, W.; Cheng, Z.; Yang, M. Configurational comparison of a binary logic transmission unit applicable to agricultural tractor hydro-mechanical continuously variable transmissions and its wet clutch optimization design based on an improved general regression neural network. Agriculture 2025, 15, 877. [Google Scholar] [CrossRef]
- Shaheb, M.R.; Venkatesh, R.; Shearer, S.A. A review on the effect of soil compaction and its management for sustainable crop production. J. Biosyst. Eng. 2021, 46, 417–439. [Google Scholar] [CrossRef]
- Owusu-Sekyere, E.; Chen, Y. The effect of varying compaction levels on soil dynamic properties and the growth of canola (Brassica napus L.). Agriculture 2024, 14, 1976. [Google Scholar] [CrossRef]
- Zeng, H.; Zhao, C.; Chen, S.; Xu, W.; Zang, M. Numerical simulations of tire–soil interactions: A comprehensive review. Arch. Comput. Methods Eng. 2023, 30, 4801–4829. [Google Scholar] [CrossRef]
- Shokanbi, A.; Jasoliya, D.; Untaroiu, C. Parameter identification of soil material model for soil compaction under tire loading: Laboratory vs. in-situ cone penetrometer test data. Agriculture 2025, 15, 2142. [Google Scholar] [CrossRef]
- Wang, M.; Lai, W.; Sun, P.; Li, H.; Song, Q. Severity estimation of inter-turn short-circuit fault in PMSM for agricultural machinery using Bayesian optimization and enhanced convolutional neural network architecture. Agriculture 2024, 14, 2214. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chang, C.-L.; Ucgul, M. Innovative Design and Application of Modern Agricultural Machinery Systems in Cropping Systems. Agriculture 2025, 15, 2371. https://doi.org/10.3390/agriculture15222371
Chang C-L, Ucgul M. Innovative Design and Application of Modern Agricultural Machinery Systems in Cropping Systems. Agriculture. 2025; 15(22):2371. https://doi.org/10.3390/agriculture15222371
Chicago/Turabian StyleChang, Chung-Liang, and Mustafa Ucgul. 2025. "Innovative Design and Application of Modern Agricultural Machinery Systems in Cropping Systems" Agriculture 15, no. 22: 2371. https://doi.org/10.3390/agriculture15222371
APA StyleChang, C.-L., & Ucgul, M. (2025). Innovative Design and Application of Modern Agricultural Machinery Systems in Cropping Systems. Agriculture, 15(22), 2371. https://doi.org/10.3390/agriculture15222371
