Linking Microstructure and Hydraulic Behavior in Cocopeat–Based Substrates Using Pore-Scale Flow Simulation and Micro-CT
Abstract
1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Experimental Methods
2.2.1. CT Scanning
2.2.2. Image Processing and Pore Structure Reconstruction
2.3. Equivalent Pore Network Modeling (PNM)
2.4. Pore-Scale Flow Simulation
2.4.1. Governing Equations
2.4.2. Boundary Conditions
2.4.3. Fractal Dimension and Tortuosity
2.4.4. Absolute Permeability
3. Results and Discussion
3.1. Quantitative Analysis of Pore Microstructure Parameters
3.2. Influence of Pore Structure Parameters on Permeability
3.3. Visualization of Velocity Fields
3.4. Flow Velocity Response to Pore Structure Heterogeneity
4. Conclusions
- (1)
- Pore structure characteristics: Over 90% of pore diameters in all substrates were concentrated within 0–400 μm, with coordination number generally increasing with pore size. Coarse cocopeat contained a higher fraction of macropores (>400 μm), while perlite addition increased average pore size but reduced pore count.
- (2)
- Hydraulic properties: Porosity (Por) was positively correlated with permeability (K0), whereas fractal dimension (FD) and tortuosity (τ) were negatively correlated with K0. Compared with fine cocopeat, perlite addition decreased pore-space complexity (lower FD) and enhanced permeability, highlighting its role in improving hydraulic conductivity.
- (3)
- Flow distribution: Approximately 90% of velocities were below 5Uin. Lower Por and higher τ promoted the formation of high-velocity zones (HVZ), while higher FD increased stagnant zones (SVZ). Perlite particles introduced spatial heterogeneity by concentrating flow along external surfaces and inducing stagnation within internal pores, thereby jointly enhancing drainage and residual water retention.
- (4)
- This study demonstrates how substrate microstructure governs water transport in soilless cultivation systems, providing direct insights for optimizing irrigation management. Nevertheless, the present work has several limitations. All simulations were performed under saturated conditions, while in practice, horticultural substrates typically function under unsaturated states dominated by thin water films. In addition, the exclusion of substrates with larger particles (e.g., vermiculite, expanded clay) constrains the generality of the conclusions, and the physical and chemical changes that cocopeat undergoes during repeated irrigation cycles (e.g., compaction, decomposition, salinity accumulation) may further alter hydraulic behavior over time. To address these issues, future research should integrate macroscopic hydraulic tests, such as water retention curves fitted with the van Genuchten model and simulations based on the Richards equation, to investigate seepage processes in limited-volume containers under variably saturated conditions. Moreover, combining periodic micro-CT measurements with time-evolving simulations would enable the capture of long-term dynamics, thereby strengthening the link between pore-scale mechanisms and real cultivation scenarios.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Massa, D.; Magan, J.J.; Montesano, F.F.; Tzortzakis, N. Review Minimizing Water and Nutrient Losses from Soilless Cropping in Southern Europe. Agric. Water Manag. 2020, 241, 106395. [Google Scholar] [CrossRef]
- Pandey, K.; Singh, K.G.; Singh, A. Multi-Sensors Based Smart Nutrient Reuse Management System for Closed Soilless Culture under Protected Cultivation. Comput. Electron. Agric. 2023, 204, 107495. [Google Scholar] [CrossRef]
- Sodini, M.; Cacini, S.; Navarro, A.; Traversari, S.; Massa, D. Estimation of Pore-Water Electrical Conductivity in Soilless Tomatoes Cultivation Using an Interpretable Machine Learning Model. Comput. Electron. Agric. 2024, 218, 108746. [Google Scholar] [CrossRef]
- Ahn, T.I.; Yang, J.-S.; Park, S.H.; Im, Y.-H.; Lee, J.Y. Nutrient Recirculating Soilless Culture System as a Predictable and Stable Way of Microbial Risk Management. J. Clean. Prod. 2021, 298, 126747. [Google Scholar] [CrossRef]
- Incrocci, L.; Thompson, R.B.; Dolores Fernandez-Fernandez, M.; De Pascale, S.; Pardossi, A.; Stanghellini, C.; Rouphael, Y.; Gallardo, M. Irrigation Management of European Greenhouse Vegetable Crops. Agric. Water Manag. 2020, 242, 106393. [Google Scholar] [CrossRef]
- Papadimitriou, D.M.; Daliakopoulos, I.N.; Louloudakis, I.; Savvidis, T.I.; Sabathianakis, I.; Savvas, D.; Manios, T. Impact of Container Geometry and Hydraulic Properties of Coir Dust, Perlite, and Their Blends Used as Growing Media, on Growth, Photosynthesis, and Yield of Golden Thistle (S. hispanicus L.). Sci. Hortic. 2024, 323, 112425. [Google Scholar] [CrossRef]
- Caputo, S.; Rumble, H.; Schaefer, M. “I like to Get My Hands Stuck in the Soil”: A Pilot Study in the Acceptance of Soil-Less Methods of Cultivation in Community Gardens. J. Clean. Prod. 2020, 258, 120585. [Google Scholar] [CrossRef]
- Fornes, F.; Belda, R.M.; Lidon, A. Analysis of Two Biochars and One Hydrochar from Different Feedstock: Focus Set on Environmental, Nutritional and Horticultural Considerations. J. Clean. Prod. 2015, 86, 40–48. [Google Scholar] [CrossRef]
- Mahjoor, F.; Ghaemi, A.A.; Golabi, M.H. Interaction Effects of Water Salinity and Hydroponic Growth Medium on Eggplant Yield, Water-Use Efficiency, and Evapotranspiration. Int. Soil Water Conserv. Res. 2016, 4, 99–107. [Google Scholar] [CrossRef]
- Lu, B.; Wang, X.; Hu, C.; Li, X. Rapid and High-Performance Analysis of Total Nitrogen in Coco-Peat Substrate by Coupling Laser-Induced Breakdown Spectroscopy with Multi-Chemometrics. Agriculture 2024, 14, 946. [Google Scholar] [CrossRef]
- Feng, J.; Zhi, Y.; Zhang, D.; Chi, C.P.; Chu, S.; Hayat, K.; Zhou, P. Rice Straw as Renewable Components of Horticultural Growing Media for Purple Cabbage. Sci. Total Environ. 2020, 747, 141274. [Google Scholar] [CrossRef]
- Petropoulos, S.; Fernandes, A.; Stojkovic, D.; Pereira, C.; Taofiq, O.; Di Gioia, F.; Tzortzakis, N.; Sokovic, M.; Barros, L.; Ferreira, I.C.F.R. Cotton and Cardoon Byproducts as Potential Growing Media Components for Cichorium spinosum L. Commercial Cultivation. J. Clean. Prod. 2019, 240, 118254. [Google Scholar] [CrossRef]
- Paoli, R.; Feofilovs, M.; Kamenders, A.; Romagnoli, F. Peat Production for Horticultural Use in the Latvian Context: Sustainability Assessment through LCA Modeling. J. Clean. Prod. 2023, 413, 137395. [Google Scholar] [CrossRef]
- Yamaya, M.; Nakayama, K.; Hosoda, M.; Yanai, M.; Sasaki, H. A Rockwool Fibre Worker with Lung Fibrosis. Lancet 2000, 355, 1723–1724. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Li, P.; Hu, Y.; Wang, J. Wetting Patterns and Water Distributions in Cultivation Media under Drip Irrigation. Comput. Electron. Agric. 2015, 112, 200–208. [Google Scholar] [CrossRef]
- Deepagoda, T.K.K.C.; Lopez, J.C.C.; Moldrup, P.; de Jonge, L.W.; Tuller, M. Integral Parameters for Characterizing Water, Energy, and Aeration Properties of Soilless Plant Growth Media. J. Hydrol. 2013, 502, 120–127. [Google Scholar] [CrossRef]
- Gohardoust, M.R.; Šimůnek, J.; Hardelauf, H.; Tuller, M. Adaptation and Validation of the ParSWMS Numerical Code for Simulation of Water Flow and Solute Transport in Soilless Greenhouse Substrates. J. Hydrol. 2021, 596, 126053. [Google Scholar] [CrossRef]
- Smet, S.; Beckers, E.; Plougonven, E.; Leonard, A.; Degre, A. Can The Pore Scale Geometry Explain Soil Sample Scale Hydrodynamic Properties? Front. Environ. Sci. 2018, 6, 20. [Google Scholar] [CrossRef]
- Zhang, H.; He, H.; Gao, Y.; Mady, A.; Filipovic, V.; Dyck, M.; Lv, J.; Liu, Y. Applications of Computed Tomography (CT) in Environmental Soil and Plant Sciences. Soil Tillage Res. 2023, 226, 105574. [Google Scholar] [CrossRef]
- Liu, W.; Feng, Q.; Chen, W.; Wei, W.; Deo, R.C. The Influence of Structural Factors on Stormwater Runoff Retention of Extensive Green Roofs: New Evidence from Scale-Based Models and Real Experiments. J. Hydrol. 2019, 569, 230–238. [Google Scholar] [CrossRef]
- Qiao, J.; Liu, X.; Zhu, Y.; Jia, X.; Shao, M. Three-Dimensional Quantification of Soil Pore Structure in Wind-Deposited Loess under Different Vegetation Types Using Industrial X-Ray Computed Tomography. Catena 2021, 199, 105098. [Google Scholar] [CrossRef]
- Rooney, E.C.; Bailey, V.L.; Patel, K.F.; Dragila, M.; Battu, A.K.; Buchko, A.C.; Gallo, A.C.; Hatten, J.; Possinger, A.R.; Qafoku, O.; et al. Soil Pore Network Response to Freeze-Thaw Cycles in Permafrost Aggregates. Geoderma 2022, 411, 115674. [Google Scholar] [CrossRef]
- Wu, Y.; Tahmasebi, P.; Lin, C.; Munawar, M.J.; Cnudde, V. Effects of Micropores on Geometric, Topological and Transport Properties of Pore Systems for Low-Permeability Porous Media. J. Hydrol. 2019, 575, 327–342. [Google Scholar] [CrossRef]
- Zhao, Z.; Zhou, X.-P. Pore-Scale Diffusivity and Permeability Evaluations in Porous Geomaterials Using Multi-Types Pore-Structure Analysis and X-μCT Imaging. J. Hydrol. 2022, 615, 128704. [Google Scholar] [CrossRef]
- Fan, N.; Wang, J.; Deng, C.; Fan, Y.; Wang, T.; Guo, X. Quantitative Characterization of Coal Microstructure and Visualization Seepage of Macropores Using CT-Based 3D Reconstruction. J. Nat. Gas Sci. Eng. 2020, 81, 103384. [Google Scholar] [CrossRef]
- Guo, X.; Liu, Y.; Zhang, L.; Deng, C.; Song, L.; Zhang, Y. Regulatory Mechanism of Microscopic Pore Structure on Anisotropy of Gas Multimodal Seepage in Original Coals. Energy 2024, 300, 131611. [Google Scholar] [CrossRef]
- Ge, M.; Chen, G.; Liu, W.; Liu, C.; Zheng, D. Study on the Pore Structure Characteristics of Maize Grain Piles and Their Effects on Air Flow Distribution. Comput. Electron. Agric. 2024, 224, 109136. [Google Scholar] [CrossRef]
- Li, J.; Cao, S.; Song, W.; Sun, L. Visualization and Quantification of Pore Structure in Cement Tailings Waste Rock Composites Using X-Ray Computed Tomography and Deep Learning. Constr. Build. Mater. 2025, 476, 141341. [Google Scholar] [CrossRef]
- Bird, M.B.; Butler, S.L.; Hawkes, C.D.; Kotzer, T. Numerical Modeling of Fluid and Electrical Currents through Geometries Based on Synchrotron X-Ray Tomographic Images of Reservoir Rocks Using Avizo and COMSOL. Comput. Geosci. 2014, 73, 6–16. [Google Scholar] [CrossRef]
- Gharedaghloo, B.; Price, J.S.; Rezanezhad, F.; Quinton, W.L. Evaluating the Hydraulic and Transport Properties of Peat Soil Using Pore Network Modeling and X-Ray Micro Computed Tomography. J. Hydrol. 2018, 561, 494–508. [Google Scholar] [CrossRef]
- Ji, Y.; Zhou, J.; Xie, L.; Shen, L.; Zheng, Y.; Ma, S. Quantitative Microstructural Characterization and Seepage Visualization of Biocemented Sand. Comput. Geotech. 2024, 174, 106594. [Google Scholar] [CrossRef]
- Zhang, Z.; Liu, K.; Zhou, H.; Lin, H.; Li, D.; Peng, X. Linking Saturated Hydraulic Conductivity and Air Permeability to the Characteristics of Biopores Derived from X-Ray Computed Tomography. J. Hydrol. 2019, 571, 1–10. [Google Scholar] [CrossRef]
- Jiang, X.; Zhong, X.; Yu, G.; Zhang, X.; Liu, J. Different Effects of Taproot and Fibrous Root Crops on Pore Structure and Microbial Network in Reclaimed Soil. Sci. Total Environ. 2023, 901, 165996. [Google Scholar] [CrossRef]
- Budhathoki, S.; Lamba, J.; Srivastava, P.; Malhotra, K.; Way, T.R.; Katuwal, S. Using X-Ray Computed Tomography to Quantify Variability in Soil Macropore Characteristics in Pastures. Soil Tillage Res. 2022, 215, 105194. [Google Scholar] [CrossRef]
- Prodanovic, V.; Zhang, K.; Hatt, B.; McCarthy, D.; Deletic, A. Optimisation of Lightweight Green Wall Media for Greywater Treatment and Reuse. Build. Environ. 2018, 131, 99–107. [Google Scholar] [CrossRef]
- Giuliani, L.M.; Hallett, P.D.; Loades, K.W. Effects of Soil Structure Complexity to Root Growth of Plants with Contrasting Root Architecture. Soil Tillage Res. 2024, 238, 106023. [Google Scholar] [CrossRef]
- Baetens, J.M.; Verbist, K.; Cornelis, W.M.; Gabriels, D.; Soto, G. On the Influence of Coarse Fragments on Soil Water Retention. Water Resour. Res. 2009, 45, W07408. [Google Scholar] [CrossRef]
- Zhao, L.; Guanhua, N.; Yan, W.; Hehe, J.; Yongzan, W.; Haoran, D.; Mao, J. Semi-Homogeneous Model of Coal Based on 3D Reconstruction of CT Images and Its Seepage-Deformation Characteristics. Energy 2022, 259, 125044. [Google Scholar] [CrossRef]
- Luo, L.; Lin, H.; Li, S. Quantification of 3-D Soil Macropore Networks in Different Soil Types and Land Uses Using Computed Tomography. J. Hydrol. 2010, 393, 53–64. [Google Scholar] [CrossRef]
- Qian, Y.; Yang, X.; Zhang, Z.; Li, X.; Zheng, J.; Peng, X. Estimating the Permeability of Soils under Different Tillage Practices and Cropping Systems: Roles of the Three Percolating Pore Radii Derived from X-Ray CT. Soil Tillage Res. 2024, 235, 105903. [Google Scholar] [CrossRef]
- Fukumasu, J.; Jarvis, N.; Koestel, J.; Larsbo, M. Links between Soil Pore Structure, Water Flow and Solute Transport in the Topsoil of an Arable Field: Does Soil Organic Carbon Matter? Geoderma 2024, 449, 117001. [Google Scholar] [CrossRef]
- Liu, J.; Lu, S. Amendment of Different Biochars Changed Pore Characteristics and Permeability of Ultisol Macroaggregates Identified by X-Ray Computed Tomography (CT). Geoderma 2023, 434, 116470. [Google Scholar] [CrossRef]
- Carlile, W.R.; Raviv, M.; Prasad, M. Chapter 8—Organic Soilless Media Components. In Soilless Culture, 2nd ed.; Raviv, M., Lieth, J.H., Bar-Tal, A., Eds.; Elsevier: Cambridge, MA, USA, 2019; pp. 303–378. ISBN 978-0-444-63696-6. [Google Scholar]
- Kumar, M.A.; Moghal, A.A.B.; Vydehi, K.V.; Almajed, A. Embodied Energy in the Production of Guar and Xanthan Biopolymers and Their Cross-Linking Effect in Enhancing the Geotechnical Properties of Cohesive Soil. Buildings 2023, 13, 2304. [Google Scholar] [CrossRef]
- Al Naddaf, O.; Livieratos, I.; Stamatakis, A.; Tsirogiannis, I.; Gizas, G.; Savvas, D. Hydraulic Characteristics of Composted Pig Manure, Perlite, and Mixtures of Them, and Their Impact on Cucumber Grown on Bags. Sci. Hortic. 2011, 129, 135–141. [Google Scholar] [CrossRef]
- Ge, M.; Chen, G.; Liu, W.; Liu, C.; Zheng, D. Study of Air Flow and Heat Transfer in Soybean Piles Based on CT. J. Food Eng. 2024, 369, 111954. [Google Scholar] [CrossRef]
- Lanzon, M.; Cnudde, V.; de Kock, T.; Dewanckele, J. X-Ray Microtomography (μ-CT) to Evaluate Microstructure of Mortars Containing Low Density Additions. Cem. Concr. Compos. 2012, 34, 993–1000. [Google Scholar] [CrossRef]
- Liu, Y.; Deng, H.; Jiang, Z.; Tian, G.; Wang, P.; Yu, S. Research on Influence Laws of Aggregate Sizes on Pore Structures and Mechanical Characteristics of Cement Mortar. Constr. Build. Mater. 2024, 442, 137606. [Google Scholar] [CrossRef]
- Sun, L.; Wan, F.; Wang, G.; Duan, S.; Huang, Q.; Li, W. Pore-Fracture Structures and Seepage Flow Characteristics during Spontaneous Coal Combustion Based on CT 3D Reconstruction. Energy 2024, 305, 132398. [Google Scholar] [CrossRef]
- Dong, J.; Dai, P.; Liu, W.; Xu, H.; Sui, S. Characterizing Disintegrated Dolomite Pore Structure and Seepage: CT Scanning and Numerical Approach. J. Rock Mech. Geotech. Eng. 2024, 17, 4386–4399. [Google Scholar] [CrossRef]
- Ferreira, T.R.; Archilha, N.L.; Pires, L.F. An Analysis of Three XCT-Based Methods to Determine the Intrinsic Permeability of Soil Aggregates. J. Hydrol. 2022, 612, 128024. [Google Scholar] [CrossRef]
- Yan, F.; Zeng, T.; Yang, M.; Peng, S.; Gao, C.; Yang, Y. Study on Pore-Crack Evolution and Connectivity of Coal Subjected to Controlled Electrical Pulse Based on CT Scanning Technology. Energy 2024, 296, 131200. [Google Scholar] [CrossRef]
- Gackiewicz, B.; Lamorski, K.; Kochiieru, M.; Sławiński, C.; Hsu, S.-Y.; Chang, L.-C. Hybrid Modelling of Saturated Water Flow in Percolating and Non-Percolating Macroporous Soil Media. Geoderma 2022, 406, 115467. [Google Scholar] [CrossRef]
- Liu, J.; Wang, Y.; Tian, Y.; Zhuang, Y.; Lu, S. Pore Structure Analysis via X-Ray μCT: Enhancing Soil Macroaggregate Models for Water Permeability and Carbon Sequestration. Geoderma Reg. 2024, 36, e00764. [Google Scholar] [CrossRef]
- Narsilio, G.A.; Kress, J.; Yun, T.S. Characterisation of Conduction Phenomena in Soils at the Particle-Scale: Finite Element Analyses in Conjunction with Synthetic 3D Imaging. Comput. Geotech. 2010, 37, 828–836. [Google Scholar] [CrossRef]
- de Andrade, E.; Ferreira, T.R.; Gaspareto, J.V.; Pires, L.F. Intra-Aggregate Pore Network Stability Following Wetting-Drying Cycles in a Subtropical Oxisol Under Contrasting Managements. Agriculture 2025, 15, 1725. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Wang, F.; Zhang, X. Comparison of Soil Tortuosity Calculated by Different Methods. Geoderma 2021, 402, 115358. [Google Scholar] [CrossRef]
- Duda, A.; Koza, Z.; Matyka, M. Hydraulic Tortuosity in Arbitrary Porous Media Flow. Phys. Rev. E 2011, 84, 036319. [Google Scholar] [CrossRef] [PubMed]
- Gohardoust, M.R.; Bar-Tal, A.; Effati, M.; Tuller, M. Characterization of Physicochemical and Hydraulic Properties of Organic and Mineral Soilless Culture Substrates and Mixtures. Agronomy 2020, 10, 1403. [Google Scholar] [CrossRef]
- Londra, P.; Paraskevopoulou, A.; Psychogiou, M. Hydrological Behavior of Peat- and Coir-Based Substrates and Their Effect on Begonia Growth. Water 2018, 10, 722. [Google Scholar] [CrossRef]
- Wang, D.; Gabriel, M.Z.; Legard, D.; Sjulin, T. Characteristics of Growing Media Mixes and Application for Open-Field Production of Strawberry (Fragaria ananassa). Sci. Hortic. 2016, 198, 294–303. [Google Scholar] [CrossRef]
- Konduru, S.; Evans, M.R.; Stamps, R.H. Coconut Husk and Processing Effects on Chemical and Physical Properties of Coconut Coir Dust. Hortscience 1999, 34, 88–90. [Google Scholar] [CrossRef]
- Wen, T.; Chen, X.; Luo, Y.; Shao, L.; Niu, G. Three-Dimensional Pore Structure Characteristics of Granite Residual Soil and Their Relationship with Hydraulic Properties under Different Particle Gradation by X-Ray Computed Tomography. J. Hydrol. 2023, 618, 129230. [Google Scholar] [CrossRef]
- Luo, Y.; Wen, T.; Lin, X.; Chen, X.; Shao, L. Quantitative Analysis of Pore-Size Influence on Granite Residual Soil Permeability Using CT Scanning. J. Hydrol. 2024, 645, 132133. [Google Scholar] [CrossRef]
- Pires, L.F.; Ghanbarian, B.; Lin, Q. Physical, Topological and Hydraulic Properties of an Oxisol under Conservation Practices: X-Ray Tomography Imaging and Pore-Network Simulation. Soil Tillage Res. 2024, 239, 106055. [Google Scholar] [CrossRef]
- Wen, T.; Chen, X.; Shao, L. Effect of Multiple Wetting and Drying Cycles on the Macropore Structure of Granite Residual Soil. J. Hydrol. 2022, 614, 128583. [Google Scholar] [CrossRef]
- Sun, X.; She, D.; Fei, Y.; Wang, H.; Gao, L. Three-Dimensional Fractal Characteristics of Soil Pore Structure and Their Relationships with Hydraulic Parameters in Biochar-Amended Saline Soil. Soil Tillage Res. 2021, 205, 104809. [Google Scholar] [CrossRef]
- Qi, J.; Fei, W.; Narsilio, G.A. An LBM Study on the Local Fluid Flow in Irregular Monodisperse Granular Assemblies from DEM: Effects of Particle Shape. Comput. Geotech. 2025, 177, 106817. [Google Scholar] [CrossRef]
- Gan, L.; Fan, H.; Wu, W.; Liu, H.; Ma, F.; Niu, Y. Water Retention Parameters of Soilless-culture Substrates. Trans. Chin. Soc. Agric. Mach. 2013, 44, 113–118, 142. [Google Scholar]
- Li, B.; Zhou, H.; Wang, G.; Liu, G.; Gao, W.; Zhu, K.; Chen, C. Explore the “Transparent” Soils: Soilporelogy Has Sailed. Acta Pedol. Sin. 2023, 60, 1221–1230. [Google Scholar] [CrossRef]
- Pessoa, T.N.; Ferreira, T.R.; Pires, L.F.; Cooper, M.; Uteau, D.; Peth, S.; Vaz, C.M.P.; Libardi, P.L. X-Ray Microtomography for Investigating Pore Space and Its Relation to Water Retention and Conduction in Highly Weathered Soils. Agriculture 2023, 13, 28. [Google Scholar] [CrossRef]
- Xia, Y.; Cai, J.; Perfect, E.; Wei, W.; Zhang, Q.; Meng, Q. Fractal Dimension, Lacunarity and Succolarity Analyses on CT Images of Reservoir Rocks for Permeability Prediction. J. Hydrol. 2019, 579, 124198. [Google Scholar] [CrossRef]
- Meng, A.; Tan, Y.; Xing, C.; Lv, H.; Xiao, S. Investigation on Preferential Path of Fluid Flow by Using Topological Network Model of Permeable Asphalt Mixture. Constr. Build. Mater. 2020, 242, 118163. [Google Scholar] [CrossRef]
- Zhao, C.; Zang, Y.; Xie, P.; Xu, Z. Effects of Vortices Trapped in a Dead End on Resistance to Pore-Scale Flow. J. Pet. Sci. Eng. 2021, 207, 109177. [Google Scholar] [CrossRef]
- Wang, Y.; Li, J.; Feng, F.; Qu, C.; Tang, C.; Wang, Q.; Zhang, W.; Yan, X.; Lin, Z. Unveiling the Role of Pore Characteristics in Sludge Dewatering: Visualization by Nano-CT and Micromodel Study. Water Res. 2024, 252, 121191. [Google Scholar] [CrossRef] [PubMed]
ROI | Porosity | Voxel Size (12.77 μm) | Source | XY-Cross-Section |
---|---|---|---|---|
CC1 | 0.653 | 400 × 400 × 400 | Coarse Cocopeat1 | |
CC2 | 0.656 | 400 × 400 × 400 | Coarse Cocopeat2 | |
CC3 | 0.649 | 400 × 400 × 400 | Coarse Cocopeat3 | |
PC1 | 0.510 | 400 × 400 × 400 | Mixed substrate1 | |
PC2 | 0.549 | 400 × 400 × 400 | Mixed substrate2 | |
PC3 | 0.542 | 400 × 400 × 400 | Mixed substrate3 | |
FC1 | 0.560 | 400 × 400 × 400 | Mixed substrate1 | |
FC2 | 0.530 | 400 × 400 × 400 | Mixed substrate2 | |
FC3 | 0.548 | 400 × 400 × 400 | Mixed substrate3 |
Pressure Gradient (Pa) | ROI Number | ||||||||
---|---|---|---|---|---|---|---|---|---|
CC1 | CC2 | CC3 | PC1 | PC2 | PC3 | FC1 | FC2 | FC3 | |
0.1 | 0.617 | 0.461 | 0.357 | 0.224 | 0.258 | 0.260 | 0.086 | 0.081 | 0.083 |
1 | 6.176 | 4.607 | 3.575 | 2.243 | 2.586 | 2.603 | 0.861 | 0.813 | 0.838 |
10 | 60.891 | 45.875 | 35.531 | 22.442 | 25.871 | 26.045 | 8.615 | 8.141 | 8.374 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yao, K.; Li, T.; Fu, Q.; Wang, J.; Li, W.; Zhang, X.; Li, J. Linking Microstructure and Hydraulic Behavior in Cocopeat–Based Substrates Using Pore-Scale Flow Simulation and Micro-CT. Agriculture 2025, 15, 2154. https://doi.org/10.3390/agriculture15202154
Yao K, Li T, Fu Q, Wang J, Li W, Zhang X, Li J. Linking Microstructure and Hydraulic Behavior in Cocopeat–Based Substrates Using Pore-Scale Flow Simulation and Micro-CT. Agriculture. 2025; 15(20):2154. https://doi.org/10.3390/agriculture15202154
Chicago/Turabian StyleYao, Kai, Tianxiao Li, Qiang Fu, Jing Wang, Weikang Li, Xuan Zhang, and Jing Li. 2025. "Linking Microstructure and Hydraulic Behavior in Cocopeat–Based Substrates Using Pore-Scale Flow Simulation and Micro-CT" Agriculture 15, no. 20: 2154. https://doi.org/10.3390/agriculture15202154
APA StyleYao, K., Li, T., Fu, Q., Wang, J., Li, W., Zhang, X., & Li, J. (2025). Linking Microstructure and Hydraulic Behavior in Cocopeat–Based Substrates Using Pore-Scale Flow Simulation and Micro-CT. Agriculture, 15(20), 2154. https://doi.org/10.3390/agriculture15202154