Suitability of Slovakian Landscapes for Vegetable Growing
Abstract
1. Introduction
2. Materials and Methods
- Databases and vector digital layers delineating basic (stable over the long-term) soil parameters (Research Institute of Soil Science and Soil Protection Bratislava, Slovakia)
- GSAA databases containing actual cultivation data for the time period between 2020 and 2024 (Ministry of Agriculture and Regional Development of Slovakia, Bratislava, Slovakia).
- For the period between the years 2020 and 2024, we evaluated the following vegetable species:
- Brassica vegetables: Cabbage (Brassica oleracea var. capitala L.), Kale (Brassica oleracea var. sabauda L.), Kohlrabi (Brassica oleracea var. gongylodes L.)
- Root vegetables: Carrot (Daucus carota L.), Parsley (Petroselinum crispum L.)
- Fruiting vegetables: Cucumber (Cucumis sativum L.), Pepper (Capsicum annuum L.), Tomato (Solanum lycopersicum L.)
- Onion vegetables: Onion (Allium cepa L.), Garlic (Allium sativum L.), Leek (Allium porrum L.)
2.1. Identifying Soils Suitable for Vegetable Growing
2.2. Identification of Actual Vegetable Cultivation Areas
3. Results
3.1. Pedogeographic Specifics of Vegetable Cultivation in Slovakia
3.1.1. Brassica Vegetables
3.1.2. Root Vegetables
3.1.3. Fruit Vegetables
3.1.4. Allium Vegetables
3.2. Optimal Area Selection for Vegetable Growing
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Gruda, N.S.; Samuolienė, G.; Dong, J.; Li, X. Environmental conditions and nutritional quality of vegetables in protected cultivation. Compr. Rev. Food Sci. Food Saf. 2025, 24, e70139. [Google Scholar] [CrossRef]
- Divya; Shrama, D.; Chauhan, A.; Madhvi. Effect of environmental factors on vegetables production. J. Pharmacogn. Phytochem. 2020, 9, 610–612. [Google Scholar]
- Dornik, A.; Cheţan, M.A.; Crişan, T.E.; Heciko, R.; Gora, A.; Drăguţ, L.; Panagos, P. Geospatial evaluation of the agricultural suitability and land use compatibility in Europe’s temperate continental climate region. Int. Soil Water Conserv. Res. 2024, 12, 908–919. [Google Scholar] [CrossRef]
- Babincová, Z. Súpis Plôch Osiatych Poľnohospodárskymi Plodinami k 20. 5. 2024; Štatistický úrad Slovenskej republiky: Bratislava, Slovakia, 2024; Volume 050324, p. 33. [Google Scholar]
- Brodová, M. Zelenina a Ovocie—Komoditná Situačná a Výhľadová Správa k 31. 12. 2023; MPRV SR: Bratislava, Slovakia, 2024; Volume XXVI, p. 77. [Google Scholar]
- Vilček, J.; Bedrna, Z. Vhodnosť Poľnohospodárskych pôd a Krajiny Slovenska na Pestovanie Rastlín; VÚPOP: Bratislava, Slovakia, 2007; p. 248. [Google Scholar]
- Pevná, V. Záhradníctvo; Príroda: Bratislava, Slovakia, 1984; p. 541. [Google Scholar]
- Demo, M.; Hričovský, I. Trvalo Udržateľné Technológie v Záhradníctve; SPU: Nitra, Slovakia, 2002; p. 662. [Google Scholar]
- Džatko, M.; Sobocká, J. Príručka pre Používanie Máp Pôdnoekologických Jednotiek; Soil Science and Conservation Research Institute: Bratislava, Slovakia, 2009; p. 102. [Google Scholar]
- Tomlain, J. Klimatický Ukazovateľ Zavlaženia. In Atlas Slovenskej Socialistickej Republiky; Slovak Academy of Science: Bratislava, Slovakia, 1980; p. 63. [Google Scholar]
- Škvarenina, J.; Križová, E.; Tomlain, J.N. Impact of the climate change on the water balance of altitudinal vegetation stages in Slovakia. Ekológia 2004, 23, 13–29. [Google Scholar]
- IUSS Working Group WRB. World Reference Base for Soil Resources. In International Soil Classification System for Naming Soils and Creating Legends for Soil Maps, 4th ed.; International Union of Soil Sciences (IUSS): Vienna, Austria, 2022. [Google Scholar]
- Mazúr, E.; Lukniš, M. Regionálne geomorfologické členenie Slovenskej socialistickej republiky. Geogr. J. 1978, 30, 101–125. [Google Scholar]
- Džatko, M. Hodnotenie Produkčného Potenciálu Poľnohospodárskych pôd a Pôdno-Ekologických Regiónov Slovenska; Soil Science and Conservation Research Institute: Bratislava, Slovakia, 2002; p. 88. [Google Scholar]
- Vilček, J.; Torma, S. Winter wheat (Triticum aestivum L.) growth potential in the Slovak rural landscape. Arch. Agron. Soil Sci. 2016, 62, 235–245. [Google Scholar] [CrossRef]
- Koco, Š.; Vilček, J.; Torma, S.; Michaeli, E.; Solár, V. Optimising Potato (Solanum tuberosum L.) Cultivation by Selection of Proper Soils. Agriculture 2020, 10, 155. [Google Scholar] [CrossRef]
- Lörincová, M.; Vilček, J.; Koco, Š. Parametre plôch cukrovej repy pestovanej na Slovensku. Listy Cukrov. Řepařské 2024, 140, 416–419. [Google Scholar]
- Chaudhari, V.M.; Barot, D.C.; Patel, R.J.; Masaye, S.S. Precision Cultivation of Vegetable Crops to Increase Productivity: A Review. Asian Res. J. Agric. 2024, 17, 235–245. [Google Scholar] [CrossRef]
- de Sousa, K.; Solberg, S.Ø. Conservation Gaps in Traditional Vegetables Native to Europe and Fennoscandia. Agriculture 2020, 10, 340. [Google Scholar] [CrossRef]
- Antisari, L.V.; Orsini, F.; Marchetti, L.; Vianello, G.; Gianquinto, G. Heavy Metal Accumulation in Vegetables Grown in Urban Gardens. Agron. Sustain. Dev. 2015, 35, 1139–1147. [Google Scholar] [CrossRef]
- Bosiacki, M.; Bednorz, L.; Fedenczak, K.; Górecki, T.; Mizgajski, A.; Ponizy, L.; Spizewski, T. Soil Quality as a Key Factor in Producing Vegetables for Home Consumption—A Case Study of Urban Allotments in Gorzów Wielkopolski (Poland). Agronomy 2021, 11, 1836. [Google Scholar] [CrossRef]
- Bretzel, F.; Calderisi, M.; Scatena, M.; Pini, R. Soil Quality Is Key for Planning and Managing Urban Allotments Intended for the Sustainable Production of Home-Consumption Vegetables. Environ. Sci. Pollut. Res. 2016, 23, 17753–17760. [Google Scholar] [CrossRef] [PubMed]
- Divyabharathi, M.C.; Gokulapriya, T.; Sundarrajan, R.V. Soil management practices for optimal vegetable production. In Vegetable Science Frontiers: Insights of Olericulture, 1st ed.; Jawadagi, R., Hadimani, H., Evoor, S., Kishorkumar, G.K., Eds.; Stella International Publication: Kurukshetra, India, 2024; pp. 415–432. [Google Scholar]
- Haynes, R.J.; Tregurtha, R. Effects of increasingperiods under intensive arable vegetable production on biological, chemical and physical indices of soil quality. Biol. Fertil. Soils 1999, 28, 259–266. [Google Scholar] [CrossRef]
- Dass, A.; Lenka, N.K.; Patnaik, U.S.; Sudhishri, S. Integrated Nutrient Management for Production, Economics, and Soil Improvement in Winter Vegetables. Int. J. Veg. Sci. 2008, 14, 104–120. [Google Scholar] [CrossRef]
- Olowolaju, E.D.; Okunlola, G.O.; Ayeotan, O.J. Growth, yield and uptake of some nutrients by tomato as affected by iron concentration. Int. J. Veg. Sci. 2020, 27, 378–387. [Google Scholar] [CrossRef]
- Sun, X.; Gao, Y.; Pan, S. Differences in enrichment and soil safety thresholds of five vegetables grown in Cd-polluted soil of Chengdu Plain, China. Environ. Geochem. Health 2025, 47, 229. [Google Scholar] [CrossRef]
- Feng, J.J.; Liao, J.X.; Jiang, Q.W.; Mo, L. Heavy metal contamination of vegetables in China: Status, causes, and impacts. Environ. Sci. Pollut. Res. 2025, 32, 864–873. [Google Scholar] [CrossRef]
- da Silva, C.S.R.; da Silva Araújo, E.; Costa, L.S.; de Araújo, S.N.; da Silva Junior, J.B.; Ziviani, M.M.; de Andrade da Silva, M.S.R.; Guerra, J.G.M.; Espindola, J.A.A. No-till system organic vegetable production under green manure: Effect on yield and soil properties. Org. Agr. 2024, 14, 231–244. [Google Scholar] [CrossRef]
- Sharma, R.P.; Singh, R.S.; Singh, S.K.; Naik, P.S.; Singh, B. Health of Soil Supporting Vegetable Cultivation in Peri-Urban Areas. Int. J. Veg. Sci. 2015, 22, 35–47. [Google Scholar] [CrossRef]
- Suleiman, R.; Jimoh, I.A.; Aliyu, J. Assessment of soil physical and chemical properties undervegetable cultivation in Abuja metropolitan area, Nigeria. Zaria Geogr. 2017, 24, 89–99. [Google Scholar]
- Larkin, R.P. Effects of Selected Soil Amendments and Mulch Type on Soil Properties and Productivity in Organic Vegetable Production. Agronomy 2020, 10, 795. [Google Scholar] [CrossRef]
- Ladaru, G.R.; Ilie, D.M.; Diaconeasa, M.C.; Petre, I.; Marin, F.; Lazar, V. Influencing factors of a sustainable vegetable choice, The Romanian consumers’ case. Sustainability 2020, 12, 9991. [Google Scholar] [CrossRef]
- Sterie, C.M. Trends in area and production of vegetables, future projections in Romania. In Agrarian Economy and Rural Development—Trends and Challenges. International Symposium, 14th ed.; Rodino, S.D.V., Ed.; The Research Institute for Agricultural Economy and Rural Development (ICEADR): Bucharest, Romania, 2023; pp. 195–200. [Google Scholar]
- de Putter, H.; Koesveld, M.J.; Visser, C.L.M. Overview of the Vegetable Sector in Tanzania; Afriveg: Wageningen, The Netherlands, 2007; p. 32. [Google Scholar]
- Swai, R.E.A. Horticultural production and marketing in Tanzania. Acta Hortic. 1991, 270, 33–38. [Google Scholar] [CrossRef]
Code | Characteristics | TS > 10 °C | CMI (mm) | T Veget (°C) |
---|---|---|---|---|
00 | very warm, very dry, flat | >3000 | 200 | 16–17 |
01 | warm, very dry, flat | 3000–2800 | 200–150 | 15–17 |
02 | sufficiently warm, dry, hilly | 2800–2500 | 150–100 | 15–16 |
03 | warm, very dry, flat, continental | 3160–2800 | 200–150 | 15–17 |
04 | warm, very dry, basin-like, continental | 3030–2800 | 200–100 | 15–16 |
05 | relatively warm, dry, basin-like, continental | 2800–2500 | 150–100 | 14–15 |
06 | relatively warm, moderately dry, highland-like continental | 2800–2500 | 100–50 | 14–15 |
07 | moderately warm, moderately moist | 2500–2200 | 100–0 | 13–15 |
08 | moderately cold, moderately moist | 2200–2000 | 100–0 | 12–14 |
09 | cold, moist | 2000–1800 | 60–50 | 12–13 |
10 | very cold, moist | <1800 | <50 | 10–11 |
Vegetable | Parameters | Soil for Growing | ||
---|---|---|---|---|
Very Suitable | Suitable | Less Suitable | ||
Cabbage, Kale, Kohlrabi | Climatic regions | 00 to 07 | 00 to 10 | 00 to10 |
Soil groups | CH, FL | CH, FL | LV, CM | |
Slope | P | P | P | |
Gravel | WI | WI and WE | WI and ME | |
Depth | D | MD | MD | |
Texture | SL to CL | SL to CL | SL to CL | |
Carrot, Parsley | Climatic regions | 00 to 06 | 00 to 06 | 00 to 06 |
Soil groups | CH, LV, FL | CH, LV, FL | CH, LV, FL, RG, LP | |
Slope | P | P and MO | P and MO | |
Gravel | WI | WI to WE | WI to WE | |
Depth | D | D | D | |
Texture | SL to L | SL to L | S to CL | |
Cucumber | Climatic regions | 00 to 04 | 00 to 04 | 05 and 06 |
Soil groups | CH, LV, FL | CH, LV, FL | LV, FL, LP | |
Slope | P | P and MO | P and MO | |
Gravel | WI | WI and WE | WI and WE | |
Depth | D | D | D | |
Texture | SL to L | SL to CL | SL to CL | |
Pepper | Climatic regions | 00 | 00 and 01 | 01 |
Soil groups | CH, LV, FL | CH, LV, FL | CH, LV, FL | |
Slope | P | P | P and MO | |
Gravel | WI | WI | WI and WE | |
Depth | D | D | D | |
Texture | SL to L | S to L | S to L | |
Tomato | Climatic regions | 00 to 04 | 00 to 04 | 05 to 06 |
Soil groups | CH, LV, FL | CH, LV, FL, RG, CM | CH, LV, FL, CM | |
Slope | P | P | P | |
Gravel | WI | WI | WI | |
Depth | D | D | D | |
Texture | SL to CL | S to CL | SL to CL | |
Onion, Garlic, Leek | Climatic regions | 00 to 04 | 00 to 06 | 00 to 07 |
Soil groups | CH, LV, FL, CM | CH, LV, FL, RG, CM | CH, LV, FL, RG, CM, LP | |
Slope | P | P | P | |
Gravel | WI and WE. | WI and WE | WI to ME | |
Depth | D | D and MD | D to S | |
Texture | PH to H | PH to H | PH to IH |
Crop | Soil Category (%) | |||
---|---|---|---|---|
Very Suitable | Suitable | Less Suitable | Unsuitable | |
onion | 4.89 | 24.82 | 2.54 | 67.75 |
beetroot | 27.72 | 6.59 | 5.61 | 60.07 |
beans | 30.92 | 17.79 | 3.14 | 48.15 |
cabbage | 8.06 | 6.05 | 35.24 | 50.65 |
cauliflower | 35.01 | 4.40 | 8.88 | 51.71 |
carrot | 26.96 | 3.63 | 6.58 | 62.84 |
pepper | 1.26 | 4.94 | 13.64 | 80.16 |
tomato | 23.71 | 8.38 | 0.35 | 67.56 |
asparagus | 3.57 | 2.05 | 0.56 | 93.83 |
pumpkin | 23.37 | 8.51 | 0.86 | 67.25 |
cucumber | 19.83 | 8.84 | 0.15 | 71.17 |
celery | 32.61 | 5.07 | 2.93 | 59.39 |
Crop | Soil Category (%) | |||
---|---|---|---|---|
Very Suitable | Suitable | Less Suitable | Unsuitable | |
onion | 9.28 | 60.31 | 7.67 | 22.75 |
beetroot | 9.90 | 4.39 | 6.35 | 79.40 |
beans | 26.61 | 25.99 | 0.01 | 47.36 |
cabbage | 2.26 | 11.16 | 65.53 | 21.04 |
cauliflower | 55.87 | 15.21 | 0.49 | 28.36 |
carrot | 54.21 | 1.18 | 11.10 | 33.52 |
pepper | 0.48 | 2.68 | 67.74 | 29.07 |
tomato | 58.73 | 17.35 | - | 23.85 |
asparagus | - | 57.61 | - | 42.42 |
pumpkin | 10.15 | 7.76 | 1.23 | 80.85 |
cucumber | 39.87 | 17.16 | - | 43.19 |
celery | 74.92 | 2.36 | 2.47 | 20.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vilček, J.; Koco, Š.; Kupec, A.; Torma, S.; Maxin, M. Suitability of Slovakian Landscapes for Vegetable Growing. Agriculture 2025, 15, 1962. https://doi.org/10.3390/agriculture15181962
Vilček J, Koco Š, Kupec A, Torma S, Maxin M. Suitability of Slovakian Landscapes for Vegetable Growing. Agriculture. 2025; 15(18):1962. https://doi.org/10.3390/agriculture15181962
Chicago/Turabian StyleVilček, Jozef, Štefan Koco, Adam Kupec, Stanislav Torma, and Matúš Maxin. 2025. "Suitability of Slovakian Landscapes for Vegetable Growing" Agriculture 15, no. 18: 1962. https://doi.org/10.3390/agriculture15181962
APA StyleVilček, J., Koco, Š., Kupec, A., Torma, S., & Maxin, M. (2025). Suitability of Slovakian Landscapes for Vegetable Growing. Agriculture, 15(18), 1962. https://doi.org/10.3390/agriculture15181962