Perspective of Water-Use Programs in Agriculture in Guanajuato
Abstract
:1. Introduction
2. Review Methodology
2.1. Study Area
2.2. Information Search and Analysis
2.3. Quantitative Analysis of the Variables
3. Characteristics and Amounts of Budget Allocation of State Programs
4. Availability of Aquifers
5. Agricultural Surface
6. Multiple Linear Regression Models
7. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
References
- Ogbodo, S.G.; Aliegba, E.; Ruth, C. Effects of Budgetary Processes in Enhancing Agricultural Development in Ebonyi State. Afr. J. Politics Adm. Stud. 2023, 16, 153–170. [Google Scholar] [CrossRef]
- Job, C.; Ochoa, C.G.; Jarvis, W.T.; Kennedy, R.E. A Spatiotemporal Characterization of Water Resource Conditions and Demands as Influenced by the Hydrogeologic Framework of the Willcox Groundwater Basin, Southeastern Arizona, USA. Geosciences 2023, 13, 176. [Google Scholar] [CrossRef]
- Khara, D.S. Groundwater Governance in India: A Legal and Institutional Perspective. Indian J. Public Adm. 2022, 69, 204–220. [Google Scholar] [CrossRef]
- Basuki, A.T. Do Macroeconomic Variables and Effective Fiscal Policies Affect Indonesian Economic Development? Eur. J. Dev. Stud. 2023, 3, 95–102. [Google Scholar] [CrossRef]
- Groenfeldt, D. Multifuncionalidad del agua agrícola: Mirando más allá de la producción de alimentos y los servicios ecosistémicos. CID J. 2021, 55, 73–83. [Google Scholar]
- Sánchez Cohen, I.; Catalán Valencia, E.; González Cervantes, G.; Estrada Avalos, J.; García Arellano, D. Indicadores comparativos del uso del agua en la agricultura. Agric. Téc. Méx 2006, 32, 333–340. [Google Scholar]
- Cosgrove, W.J.; Loucks, D.P. Water Management: Current and Future Challenges and Research Directions. Water Resour. Res 2015, 51, 4823–4839. [Google Scholar] [CrossRef]
- Aguilar-Sánchez, G.; Cruz-Ángeles, J. Gestión del agua en el distrito 011, los módulos de riego de acámbaro y salvatierra, Guanajuato México. Rev. Geográfica América Cent. 2015, 2, 153–168. [Google Scholar] [CrossRef]
- OECD. Making Water Reform Happen in Mexico; OECD Studies on Water; OECD: Paris, France, 2013; ISBN 9789264187672. [Google Scholar]
- Guzmán, T.R. La gestión integrada del agua, una visión desde los Consejos de Cuenca. In Investigación y Gestión de los Recursos Naturales de la Cuenca del Rio Ayuquila-Armería; Centro Universitario de la Costa Sur: Jalisco, Mexico, 2021; pp. 1–333. [Google Scholar]
- Inter-American Institute for Global Change Research (IAI) Groundwater Use in Agriculture Risks Aquifer Overexploitation: Managing Water at the Local Level in Mexico to Buffer against Global Change. Science Snapshots 9. Available online: https://www.iai.int/en/post/detail/5151 (accessed on 10 July 2024).
- Marañon, B. La gestión del agua subterránea en Guanajuato. La experiencia de los COTAS. Estud. Agrar. 1999, 12, 1–21. [Google Scholar]
- Wester, P.; Minero, R.S.; Hoogesteger, J. Assessment of the Development of Aquifer Management Councils (COTAS) for Sustainable Groundwater Management in Guanajuato, Mexico. Hydrogeol. J. 2011, 19, 889–899. [Google Scholar] [CrossRef]
- Scott, C.A.; Shah, T. Groundwater Overdraft Reduction through Agricultural Energy Policy: Insights from India and Mexico. Int. J. Water Resour. Dev. 2004, 20, 149–164. [Google Scholar] [CrossRef]
- Hearne, R.R. Evolving Water Management Institutions in Mexico. Water Resour. Res. 2004, 40, 1–11. [Google Scholar] [CrossRef]
- CONAGUA Calidad del Agua en México/Guanajuato. Available online: https://www.gob.mx/conagua/articulos/calidad-del-agua (accessed on 9 July 2024).
- Secretaría de Desarrollo Agroalimentario y Rural (SDAYR) Evaluación Especifica de Desempeño y Resultados Ejercicio 2019, Programa Mi Cuenca Sustentable. Available online: https://iplaneg.guanajuato.gob.mx/wp-content/uploads/2020/12/Q0168-Informe-Evaluaci%C3%B3n-EDR-Mi-Cuenca-Sustentable-2019-SDAyR.pdf (accessed on 12 February 2024).
- Gómez-Cruz, M.; Rivas, M.A.P. Empresas transnacionales y la comercialización del sorgo en El Bajío. Geogr. Agrícola 1981, 1, 81–96. [Google Scholar]
- Marañón, B. Tension between Agricultural Growth and Sustainability the El Bajío Case, Mexico. Hum. Dev. Rep. 2006, 1–7. Available online: https://hdr.undp.org/system/files/documents/maranonboris.pdf (accessed on 24 July 2024).
- Marañón, B. La agroexportación no tradicional de México y Perú. Comer. Exter. 1997, 47, 41006–47997. [Google Scholar]
- Secretaría de Agricultura y Desarrollo Rural (SADER) Informe de Evaluación Estatal, Tecnificación del Riego, Guanajuato. Available online: https://sdayr.guanajuato.gob.mx/contenido/adjuntos/evaluaciones/2020/Evaluacion_de_la_Tecnificacion_del_Riego_en_el_Estado_de_Guanajuato.pdf (accessed on 23 July 2024).
- Comisión Estatal del Agua de Guanajuato (CEAG). Programa Estatal Hidraulico del Estado de Guanajuato. Available online: https://agua.guanajuato.gob.mx/pdf/resumenejecutivo.pdf (accessed on 10 February 2024).
- Singh, A.; Patel, S.; Bhadani, V.; Kumar, V.; Gaurav, K. AutoML-GWL: Automated Machine Learning Model for the Prediction of Groundwater Level. Eng. Appl. Artif. Intell. 2024, 127, 107405. [Google Scholar] [CrossRef]
- Gupta, P.K.; Yadav, B.; Yadav, B.K. Assessment of Lnapl in Subsurface under Fluctuating Groundwater Table Using 2d Sand Tank Experiments. J. Environ. Eng. 2019, 145, 4019048. [Google Scholar] [CrossRef]
- Hill, M.C.; Tiedeman, C.R. Effective Groundwater Model Calibration: With Analysis of Data, Sensitivities, Predictions, and Uncertainty; John Wiley & Sons: Hoboken, NJ, USA, 2015. [Google Scholar]
- Tao, H.; Hameed, M.M.; Marhoon, H.A.; Zounemat-Kermani, M.; Heddam, S.; Sungwon, K.; Sulaiman, S.O.; Tan, M.L.; Sa’adi, Z.; Mehr, A.D.; et al. Groundwater Level Prediction Using Machine Learning Models: A Comprehensive Review. Neurocomputing 2022, 489, 271–308. [Google Scholar] [CrossRef]
- Seidenfaden, I.K.; Mansour, M.; Bessiere, H.; Pulido-Velazquez, D.; Højberg, A.; Atanaskovic Samolov, K.; Baena-Ruiz, L.; Bishop, H.; Dessì, B.; Hinsby, K.; et al. Evaluating Recharge Estimates Based on Groundwater Head from Different Lumped Models in Europe. J. Hydrol. Reg. Stud. 2023, 47, 101399. [Google Scholar] [CrossRef]
- González-Ortigoza, S.; Hernández-Espriú, A.; Arciniega-Esparza, S. Regional Modeling of Groundwater Recharge in the Basin of Mexico: New Insights from Satellite Observations and Global Data Sources. Hydrogeol. J. 2023, 31, 1971–1990. [Google Scholar] [CrossRef]
- Servicio de Información Agroalimentaria y Pesquera (SIAP). Datos de Anuario Estadístico de la Producción Agrícola. Available online: https://nube.siap.gob.mx/cierreagricola/ (accessed on 12 February 2024).
- Comisión Nacional del Agua (CONAGUA) SIGA. Available online: https://sigagis.conagua.gob.mx/ (accessed on 17 January 2023).
- SIACON Sistema de Información Agroalimentaria de Consulta. Available online: https://www.gob.mx/siap/prensa/sistema-de-informacion-agroalimentaria-de-consulta-siacon (accessed on 6 February 2024).
- The Jamovi Project. Jamovi, Version 2.5. 2024. Available online: https://www.jamovi.org/about.html (accessed on 10 February 2024).
- CONAGUA NORMA Oficial Mexicana NOM-011-CONAGUA-2015, Conservación Del Recurso Agua-Que Establece Las Especificaciones y El Método Para Determinar La Disponibilidad Media Anual de Las Aguas Nacionales. Available online: https://www.dof.gob.mx/nota_detalle.php?codigo=5387027&fecha=27/03/2015#gsc.tab=0 (accessed on 21 December 2023).
- Gonzalez, M.D.L.A. Do Changes in Democracy Affect the Political Budget Cycle? Evidence from Mexico. Trab. Estds. Reg. Ec. Pob. Des 2002, 2, 204–224. [Google Scholar] [CrossRef]
- Periódico Oficial del Estado de Guanajuato. Available online: https://sdayr.guanajuato.gob.mx/contenido/adjuntos/marco_juridico/2020/Mi_Patio_Productivo_GTO_opt.pdf (accessed on 10 February 2024).
- Desarrollo Agropecuario, S. Libro Blanco Entrega Recepción 2012 Programa de Rehabilitación de Obras Hidroagrícolas del Agua Superficial. Available online: https://strc.guanajuato.gob.mx/templates/COMUNICACION/LIBROSBLANCOS/SDA/LB_SDA_SOC_Programa%20de%20Rehabilitaci%C3%B3n%20de%20Obras%20Hidroagr%C3%ADcolas%20del%20Agua%20Superficial_3.pdf (accessed on 8 February 2024).
- Prensa No, C. 338-11. Available online: https://www.cmic.org.mx/comisiones/Sectoriales/infraestructurahidraulica/normatividad/boletinesCONAGUA__octubre_2011.htm (accessed on 10 February 2024).
- PRESUPUESTO GENERAL DE EGRESOS del Estado de Guanajuato para el Ejercicio Fiscal 2020 Análisis Programático del eje de Gobierno Economía Para Todos, Campo Sustentable en el Uso del Agua. Available online: https://desarrollosocial.guanajuato.gob.mx/files/SIMEG/Monitoreo/Seguimiento_indicadores/MML/2020/Q0168.pdf (accessed on 10 February 2024).
- Caldera-Ortega, A.R. Policy Networks and Strategy Design to Overcome the Water Crisis. The Cases of the Aquifers of the Valley of León, Guanajuato, and the Valley of Aguascalientes (México). Water Land 2013, 2, 56–66. [Google Scholar]
- Castro, J.E. Agua y gobernabilidad: Entre la ideología neoliberal y la memoria histórica. Cuad CENDES 2005, 22, 1–21. [Google Scholar]
- Congreso Gto. Boletín 6208. Available online: https://siad.congresogto.gob.mx/oficialiapartes/DocsRecepcion/HO-LXV-15285.pdf (accessed on 15 December 2023).
- Diario Oficial de la Federación (DOF) del 09 de Noviembre de 2023. Disponibilidad Media Anual de Agua Subterránea de los 653 Acuíferos de los Estados Unidos Mexicanos. Available online: https://dof.gob.mx/nota_detalle.php?codigo=5708074&fecha=09/11/2023#gsc.tab=0 (accessed on 15 February 2024).
- OECD. Water Management Performance and Challenges in OECD Countries; OECD: Paris, France, 1998. [Google Scholar]
- Diario Oficial de la Federación (DOF) del 26 de Febrero de 2019. Disponibilidad Media Anual de Agua Subterránea de los 653 Acuíferos de los Estados Unidos Mexicanos. Available online: https://dof.gob.mx/nota_detalle.php?codigo=5555941&fecha=29/03/2019 (accessed on 14 February 2024).
- Diario Oficial de la Federación (DOF) del 17 de Agosto de 2020. Disponibilidad Media Anual de Agua Subterránea de los 653 Acuíferos de los Estados Unidos Mexicanos. Available online: https://dof.gob.mx/nota_detalle.php?codigo=5600593&fecha=17/09/2020 (accessed on 14 February 2024).
- Bierkens, M.F.P.; Graaf, I.d.; Lips, S.; Perrone, D.; Reinhard, A.; Jasechko, S.; Beek, R. Global Economic Limits of Groundwater When Used as a Last Resort for Irrigation. Res. Sq. 2022. [Google Scholar] [CrossRef]
- Alkon, M.; Wang, Y.; Harrington, M.R.; Shi, C.; Kennedy, R.; Urpelainen, J.; He, X. High Resolution Prediction and Explanation of Groundwater Depletion across India. Environ. Res. Lett. 2024, 19, 44072. [Google Scholar] [CrossRef]
- Bailey, R.; Alderfer, C. Estimating Groundwater Storage Trends and Time to Depletion for Unconfined Aquifers in the Conterminous United States. Available online: https://www.researchsquare.com/article/rs-3434205/v1 (accessed on 14 February 2024).
- Sayol, J.M.; Azeñas, V.; Quezada, C.E.; Vigo, I.; López, J.B. Is Greenhouse Rainwater Harvesting Enough to Satisfy the Water Demand of Indoor Crops? Application to the Bolivian Altiplano. Hydrology 2022, 9, 107. [Google Scholar] [CrossRef]
- Ragany, M.; Haggag, M.; El-Dakhakhni, W.; Zhao, B. Closed-Loop Agriculture Systems Meta-Research Using Text Mining. Front. Sustain. Food Syst. 2023, 7, 1074419. [Google Scholar] [CrossRef]
- López-Serrano, M.J.; Velasco-Muñoz, J.F.; Aznar-Sánchez, J.A.; Sánchez, I.M.R. Economic Analysis of the Use of Reclaimed Water in Agriculture in Southeastern Spain, a Mediterranean Region. Agronomy 2021, 11, 2218. [Google Scholar] [CrossRef]
- Agricultura, S.; Rural, D. Evolución de la Producción Agrícola en Guanajuato. Available online: https://www.gob.mx/agricultura/guanajuato/articulos/evolucion-de-la-produccion-agricola-en-guanajuato?idiom=es (accessed on 10 February 2024).
- Pérez, E.G.; Ramírez-Meraz, M.; Ku, J.C.; López, R.F.; Valdez, L.M.M. Aportaciones del Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias al mejoramiento genético de hortalizas. Rev. Mex. Cienc. Agric. 2021, 25, 1–13. [Google Scholar]
- Martínez-Gutiérrez, A.; Zamudio-González, B.; Tadeo-Robledo, M.; Espinosa-Calderón, A.; Cardoso-Galvão, J.C.; Vázquez-Carrillo, M.G. Rendimiento de híbridos de maíz en respuesta a la fertilización foliar con bioestimulantes. Rev. Mex. Cienc. Agric. 2022, 13, 289–301. [Google Scholar] [CrossRef]
- Hernández-Hernández, B.N.; Tornero Campante, M.A.; Sandoval Castro, E.; Rodríguez Mendoza, M.D.L.N.; Taboada Gaytán, O.R.; Peña Olvera, B. V Crecimiento, rendimiento y calidad de chile poblano cultivado en hidroponía bajo invernadero. Rev. Mex. Cienc. Agric. 2021, 12, 1043–1056. [Google Scholar] [CrossRef]
- Fimbres-Fontes, A.; Fimbres-Dominguez, A.; Navarro-Ainza, J.C. Efecto de la fertigación nitrogenada y potásica en el cultivo de espárrago (Asparagus officinalis L.) en la región de Caborca, Sonora. Biotecnia 2011, 13, 35–40. [Google Scholar] [CrossRef]
- Yang, H.; Liu, W. Water Resources Conservation and Nitrogen Pollution Reduction Under Global Food Trade and Agricultural Intensification. Sci. Total Environ. 2020, 633, 1591–1601. [Google Scholar] [CrossRef]
- Niu, G.; Cabrera, R.I.; Starman, T.W.; Hall, C.R. Water Conservation Team in Ornamental Crops Through the Use of Alternative Irrigation Water Sources. Horttechnology 2011, 21, 694–695. [Google Scholar] [CrossRef]
- Ahngar, T.A.; Rashid, Z.; Bhat, R.A.; Raja, W.; Iqbal, S.; Mir, M.S.; Jan, S. Role of Conservation Agriculture for Sustaining Soil Quality and Improving Crop Productivity—A Review. Curr. J. Appl. Sci. Technol. 2020, 39, 44–54. [Google Scholar] [CrossRef]
- Heathcote, A.J.; Filstrup, C.T.; Downing, J.A. Watershed Sediment Losses to Lakes Accelerating Despite Agricultural Soil Conservation Efforts. PLoS ONE 2013, 8, e53554. [Google Scholar] [CrossRef]
- Maldonado, L.K.; Moreno, G.H. Carencia alimentaria, cadenas productivas y políticas públicas para el sector agrícola en México. Estud. Reg. Econ. 2022, 12, 3–26. [Google Scholar] [CrossRef]
- García, J.R.G.; Patiño, M.D.C.V. Nuevos Regímenes de Propiedad en el Bajío Guanajuatense. Exclusión y Resistencias en un Contexto de políticas Neoliberales en el Sector Agrario Mexicano. In Revista Latinoamericana de Estudios Rurales; 2021; Volume 6. Available online: https://ojs.ceil-conicet.gov.ar/index.php/revistaalasru/article/view/645 (accessed on 10 February 2024).
- Haro, E.P. Prospectiva de la agricultura en México 2018–2024. El Cotid. 2019, 34, 37–55. [Google Scholar]
- Gobierno del Estado de Guanajuato. 01-Boletίn-Análisis-de-Resultados-Del-Censo-Agropecuario. 2022. Available online: https://iplaneg.guanajuato.gob.mx/seieg/wp-content/uploads/2023/11/01-Boleti%CC%81n-ana%CC%81lisis-de-resultados-del-Censo-Agropecuario-2022_v2.pdf (accessed on 10 February 2024).
- Galvan-Vera, A. Productividad Agrícola en México y sus determinantes: Perspectivas del gasto público. Rev. Iberoam. Vitic. Agroind. Rural. 2022, 9, 233–249. [Google Scholar] [CrossRef]
- Scanlon, B.R.; Faunt, C.C.; Longuevergne, L.; Reedy, R.C.; Alley, W.M.; McGuire, V.L.; McMahon, P.B. Groundwater Depletion and Sustainability of Irrigation in the Us High Plains and Central Valley. Proc. Natl. Acad. Sci. USA 2012, 109, 9320–9325. [Google Scholar] [CrossRef] [PubMed]
- Pulido−Bosch, A.; Rigol-Sánchez, J.; Vallejos, Á.; Andreu, J.M.; Cerón, J.C.; Molina-Sánchez, L.; Sola, F. Impacts of Agricultural Irrigation on Groundwater Salinity. Environ. Earth Sci. 2018, 77, 197. [Google Scholar] [CrossRef]
- Kumar, S.V.; Kumar, J.; Lakhanpal, S.; Yadav, D.K.; Sharma, S.; Abood, A.S. Harnessing Natural Aquifer Filtration for Large-Scale Water Purification: Opportunities and Challenges. E3S Web Conf. 2024, 505, 2003. [Google Scholar] [CrossRef]
- Waterhouse, H.; Arora, B.; Spycher, N.; Nico, P.; Ulrich, C.; Dahlke, H.E.; Horwáth, W.R. Influence of Agricultural Managed Aquifer Recharge (Agmar) and Stratigraphic Heterogeneities on Nitrate Reduction in the Deep Subsurface. Water Resour. Res. 2021, 57, e2020WR029148. [Google Scholar] [CrossRef]
- Pastore, N.; Cherubini, C.; Giasi, C.I. Integrated Hydrogeological Modelling for Sustainable Management of the Brindisi Plain Aquifer (Southern Italy). Water 2023, 15, 2943. [Google Scholar] [CrossRef]
Year | Centralized Public Administration Budget (MXN) | Assigned to SDAyR (%) | Administrative Branch 30 (MXN) | Assigned to the CEA (%) |
---|---|---|---|---|
2017 | 36,694.7 | 2.1 | 18,479.6 | 2.8 |
2018 | 37,783.5 | 3.1 | 20,752.3 | 2.3 |
2019 | 39,784.4 | 3.0 | 20,721.3 | 2.3 |
2020 | 38,771.8 | 3.1 | 19,361.5 | 2.2 |
2021 | 39,828.6 | 2.7 | 20,006.0 | 1.5 |
2022 | 38,125.1 | 1.7 | 20,993.1 | 1.4 |
Average | 38,498.0 | 2.6 | 20,052,366 | 2.1 |
Year | Assigned to SDAyR (MXN) | TRA (%) | MRP (%) | MUA (%) | Total (%) |
---|---|---|---|---|---|
2017 | 356.5 | 6.6 | - | - | 6.6 |
2018 | 422.8 | 11.9 | - | - | 11.9 |
2019 | 339.8 | - | 16.7 | - | 16.7 |
2020 | 446.9 | - | 16.7 | 1.3 | 18.0 |
2021 | 236.4 | - | 14.4 | 1.3 | 15.6 |
2022 | 283.9 | - | 12.5 | 1.8 | 14.2 |
Year | Budget Assigned to the SDAyR (MXN) | MRP (%) | CA (%) | MUA (%) | ROH (%) | MTR (%) | CCL (%) | Total Assigned to Programs (%) |
---|---|---|---|---|---|---|---|---|
2017 | 337.5 | 9.7 | - | - | 13.6 | - | - | 23.4 |
2018 | 42.3 | 14.2 | - | - | 11.6 | - | - | 25.8 |
2019 | 697.4 | 10.0 | 2.9 | 1.1 | 9.3 | 4.3 | - | 27.7 |
2020 | 636.3 | 14.1 | 5.0 | 0.9 | 4.8 | 4.7 | 0.1 | 29.6 |
2021 | 370.1 | 10.8 | 4.1 | 0.8 | 9.5 | - | 0.2 | 25.3 |
2022 | 122.0 | 32.8 | - | 4.1 | 28.7 | - | - | 65.6 |
Year | FIPASMA | FOPARIVER | Lerma Chapala | FIBIR | FICUENCA | FIDEA |
---|---|---|---|---|---|---|
2017 | 0 | 0 | - | - | - | 190,420,165 |
2018 | 114 | 268,500,003 | 818,639 | 0.54 | 4.27 | 77,060,322 |
2019 | 1,701,919 | 284,066,139 | - | 27,589,759 | 2,233,279.20 | 84,635,108 |
2020 | 1,142,060 | 292,267,601 | 917,906 | 33,322,547 | 1,350,161.07 | 178,006,545 |
2021 | 1,306,355 | 293,407,428 | - | 27,619,182 | 925,702.56 | 190,383,864 |
2022 | 1,007,405 | 299,075,093 | 0 | 9,497,991 | 1,519,980.54 | 176,066,065 |
Aquifer Name | Values in Million Cubic Meters per Year | |||
---|---|---|---|---|
2018 | 2019 | 2020–2021 | 2022–2023 | |
1101 Xichú-Atarjea | 1.78 | 4.01 | 3.85 | 2.29 |
1103 Ocampo | −0.96 | 4.58 | 4.54 | 4.46 |
1104 Laguna seca | −31.17 | −29.85 | −31.84 | −28.02 |
1106 Dr. Mora-San José Iturbide | −23.36 | −23.30 | −27.01 | −36.71 |
1107 San Miguel de Allende | −9.99 | −9.51 | −9.9 | −12.4 |
1108 Cuenca Alta del Río Laja | −62.11 | −61.81 | −62.45 | −61.95 |
1110 Silao-Romita | 117.19 | 117.46 | 114.8 | 105.04 |
1111 La Muralla | −11.55 | −11.31 | −11.59 | −10.34 |
1113 Valle de León | −53.87 | −53.80 | −51.87 | −61.63 |
1114 Río Turbio | −52.92 | −52.32 | −53.35 | −54.27 |
1115 Valle de Celaya | −113.59 | −111.41 | −115.3 | −156.47 |
1116 Valle de La Cuevita | −0.48 | −0.42 | −0.06 | −1.23 |
1117 Valle de Acámbaro | 27.07 | 27.07 | 25.13 | 20.91 |
1118 Salvatierra-Acámbaro | −43.04 | −42.73 | −39.86 | −28 |
1119 Irapuato-Valle | −71.46 | −71.13 | −67.09 | −60.14 |
1120 Pénjamo-Abasolo | 127.89 | −127.40 | −128.2 | −126.11 |
1121 Lago de Cuitzeo | 2.77 | 2.77 | 2.72 | 1.53 |
1122 Ciénega Prieta-Moroleón | −11.02 | −10.25 | −19.54 | −39.52 |
Total | −208.81 | −449.36 | −467.02 | −542.56 |
Year | Agricultural Area Planted in Hectares | |||
---|---|---|---|---|
Rain-Fed Agriculture | Irrigated Agriculture | Protected Agriculture * | Total | |
2023 | 434,506 | 463,975 | 3578 | 902,058 |
2022 | 429,072 | 488,288 | 2919 | 920,279 |
2021 | 450,245 | 467,057 | 2681 | 919,983 |
2020 | 455,562 | 470,562 | 2739 | 928,862 |
2019 | 450,994 | 494,875 | 2372 | 948,240 |
2018 | 465,058 | 487,155 | 1883 | 954,096 |
2017 | 456,724 | 478,909 | 1672 | 937,306 |
2016 | 466,839 | 454,731 | 1047 | 922,617 |
2015 | 506,214 | 478,783 | 1177 | 986,174 |
2014 | 545,178 | 475,817 | 971 | 1,021,966 |
2013 | 569,128 | 477,429 | 807 | 1,047,364 |
2012 | 549,166 | 496,569 | 717 | 1,046,452 |
2011 | 541,497 | 532,608 | 437 | 1,074,542 |
Predictor | Estimator | Standard Error | Statistical t | p-Value |
---|---|---|---|---|
Constant | 158,891.61 | 1239.71 | 128.20 | 0.005 |
Year | −78.26 | 0.60 | −129.0 | 0.005 |
Budget | −2.21 × 10−7 | 3.10 × 10−9 | −71.10 | 0.009 |
Irrigation | −0.00237 | 7.98 × 10−5 | −29.70 | 0.021 |
Model 1: DMA = 158,891.61 − 78.26 (Year) − 2.21 × 10−7 (Budget) − 0.00237 (irrigated) R2 = 0.978; R2 adjusted = 0.95 | ||||
Constant | 82,745.51 | 1739.97 | 47.60 | 0.013 |
Year | −42.054 | 0.842 | −50.00 | 0.013 |
Budget | −2.14 × 10−7 | 2.24 × 10−9 | −95.50 | 0.007 |
Irrigation | 0.00413 | 1.01 × 10−4 | 40.70 | 0.016 |
Model 2: DMA = 82,745.51 − 42.054 (Year) − 2.14 × 10−7 (Budget) + 0.00413 (rain-fed) R2 = 0.985; R2 adjusted = 0.970 | ||||
Constant | 159,342.25 | 189,582.13 | 0.84 | 0.555 |
Year | −79.08 | 94.28 | −0.83 | 0.556 |
Budget | −2.17 × 10−7 | 1.97 × 10−7 | −1.10 | 0.469 |
Irrigation | 0.0292 | 0.377 | 0.0774 | 0.951 |
Model 3: DMA = 158,891.61 − 79.08 (Year) − 2.17 × 10−7 (Budget) + 0.0292 (protected) R2 = 0.956; R2 adjusted = 0.824 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hernández-Ruiz, J.; Isiordia-Lachica, P.C.; Huerta-Arredondo, I.A.; Cruz-Avalos, A.M.; Ángel Hernández, A.; Rodriguez-Carvajal, R.A.; Ruiz-Nieto, J.E.; Mireles-Arriaga, A.I. Perspective of Water-Use Programs in Agriculture in Guanajuato. Agriculture 2024, 14, 1258. https://doi.org/10.3390/agriculture14081258
Hernández-Ruiz J, Isiordia-Lachica PC, Huerta-Arredondo IA, Cruz-Avalos AM, Ángel Hernández A, Rodriguez-Carvajal RA, Ruiz-Nieto JE, Mireles-Arriaga AI. Perspective of Water-Use Programs in Agriculture in Guanajuato. Agriculture. 2024; 14(8):1258. https://doi.org/10.3390/agriculture14081258
Chicago/Turabian StyleHernández-Ruiz, Jesús, Paula C. Isiordia-Lachica, Ilse A. Huerta-Arredondo, Ana M. Cruz-Avalos, Arturo Ángel Hernández, Ricardo A. Rodriguez-Carvajal, Jorge E. Ruiz-Nieto, and Ana I. Mireles-Arriaga. 2024. "Perspective of Water-Use Programs in Agriculture in Guanajuato" Agriculture 14, no. 8: 1258. https://doi.org/10.3390/agriculture14081258
APA StyleHernández-Ruiz, J., Isiordia-Lachica, P. C., Huerta-Arredondo, I. A., Cruz-Avalos, A. M., Ángel Hernández, A., Rodriguez-Carvajal, R. A., Ruiz-Nieto, J. E., & Mireles-Arriaga, A. I. (2024). Perspective of Water-Use Programs in Agriculture in Guanajuato. Agriculture, 14(8), 1258. https://doi.org/10.3390/agriculture14081258