Research on the Assessment Method of Sugarcane Cultivation Suitability in Guangxi Province, China, Based on Multi-Source Data
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Area Overview
2.2. Construction of Suitability Assessment System for Sugarcane Cultivation
2.3. Determining the Weight of Indicators
2.4. Comprehensive Assessment and Classification Standards
3. Results and Analysis
3.1. Assessment of Sugarcane Cultivation Suitability Based on Climatic Factor
3.2. Assessment of Sugarcane Cultivation Suitability Based on Terrain Factor
3.3. Assessment of Sugarcane Cultivation Suitability Based on Disaster Factor
3.4. Comprehensive Assessment of Sugarcane Cultivation Suitability
3.4.1. Analysis of Suitability Assessment for Sugarcane Cultivation
3.4.2. Contribution Rate Analysis of Sugarcane Cultivation Suitability Assessment
4. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ji, L.H.; Qin, X.; Wei, G.L. Investigation Report on the Development Status of Sucrose Industry in Hengzhou Guangxi. Adv. Soc. Sci. 2021, 10, 2888–2892. [Google Scholar] [CrossRef]
- Virnodkar, S.S.; Pachghare, V.K.; Patil, V.C.; Jha, S.K. Application of machine learning on remote sensing data for sugarcane crop classification: A Review. ICT Analysis and Applications: Proceedings of ICT4SD; Springer: Berlin/Heidelberg, Germany, 2020; Volume 93, pp. 539–555. [Google Scholar]
- Silalertruksa, T.; Gheewala, S.H. Competitive use of sugarcane for food, fuel, and biochemical through the environmental and economic factors. Int. J. Life Cycle Ass. 2020, 25, 1343–1355. [Google Scholar] [CrossRef]
- Wang, M. Research on Sugarcane Field Recognition Method Based on Support Vector Machine. Master’s Thesis, Guangxi Normal University, Nanning, China, 2020. [Google Scholar]
- Deng, S.Q. Sugarcane Cultivation area Extraction and Growth Monitoring Based on NDVI Time Series. Master’s Thesis, Guilin University of Technology, Guilin, China, 2022. [Google Scholar]
- Yang, S.D.; Xiao, J.; Liang, T.; He, W.; Tan, H.W. Response of soil biological properties and bacterial diversity to different levels of nitrogen application in sugarcane fields. AMB Express 2021, 11, 172. [Google Scholar] [CrossRef]
- Günal, H.; Kılıç, O.M.; Ersayın, K.; Acir, N. Land suitability assessment for wheat production using analytical hierarchy process in a semi-arid region of Central Anatolia. Geocarto. Int. 2022, 37, 16418–16436. [Google Scholar] [CrossRef]
- Huang, W.J.; Huang, J.F. Ecological suitability evaluation for torreya crop in Hangzhou city based on a GIS-based fuzzy model. In Proceedings of the 2014 the Third International Conference on Agro-Geoinformatics, Beijing, China, 11–14 August 2014; pp. 1–6. [Google Scholar]
- Deng, Q.J.; Chen, Y. Suitability Evaluation of Cold Water Paddy Field for Rice Planting in Jianghan Plain. In Proceedings of the 2015 3rd International Conference on Advances in Energy and Environmental Science, Zhuhai, China, 25–26 July 2015; pp. 1203–1207. [Google Scholar]
- Jamil, M.; Ahmed, R.; Sajjad, H. Land suitability assessment for sugarcane cultivation in Bijnor district, India using geographic information system and fuzzy analytical hierarchy process. GeoJournal 2018, 83, 595–611. [Google Scholar] [CrossRef]
- Alburo, J.L.P.; Garcia, J.N.M.; Sanchez, P.B.; Cruz, P.C.S. Application of analytical hierarchy process (AHP) in generating land suitability index (LSI) for sugarcane in central Mindanao, Philippines. J. Int. Soc. Southeast Asian Agric. Sci. 2019, 25, 148–158. [Google Scholar] [CrossRef]
- Xie, G.X.; Zeng, Z.K.; Li, Y.X.; Qin, Z.L.; Lan, Z.B.; Zhang, X.L.; Xie, F.Q.; Su, Q.Q.; Zhang, J.X. Suitability evaluation of sugarcane cultivation based on land unit. J. South. Agric. 2017, 48, 361–367. [Google Scholar]
- Tan, Z.K.; Ou, Z.R.; He, Y. Analysis of main meteorological disasters in Guangxi Province, China sugarcane industry and research on optimization layout of sugarcane industry. Sugarcane Canesugar 2006, 25, 17–21+33. [Google Scholar]
- Liu, J.B.; Peng, Y.; Chen, Q.B. Climate Suitability and Regionalization of Sugar Cane Cultivation in Hainan. Chin. J. Agrometeorol. 2009, 30, 254–256. [Google Scholar]
- Zhang, Z.; Hu, B.Q.; Jiang, W.G.; Qiu, H.H. Identification and scenario prediction of degree of wetland damage in Guangxi based on the CA-Markov model. Ecol. Indic. 2021, 127, 107764. [Google Scholar] [CrossRef]
- Wang, L.D.; Hu, F.; Miao, Y.C.; Zhang, C.Y.; Zhang, L.; Luo, M.Z. Changes in Vegetation Dynamics and Relations with Extreme Climate on Multiple Time Scales in Guangxi, China. Remote Sens. 2022, 14, 2013. [Google Scholar] [CrossRef]
- Feng, T.; Chen, H.S.; Polyakov, V.O.; Wang, K.; Zhang, X.B.; Zhang, W. Soil erosion rates in two karst peak-cluster depression basins of northwest Guangxi, China: Comparison of the RUSLE model with 137Cs measurements. Geomorphology 2016, 253, 217–224. [Google Scholar] [CrossRef]
- Zhang, J. The state, Capital and Peasantry in the Agrarian Transition of China: The Case of Guangxi Sugarcane Sector. Ph.D. Thesis, Wageningen University and Research, Wageningen, The Netherlands, 2019. [Google Scholar]
- Wang, S.; Lian, J.J.; Peng, Y.Z.; Hu, B.Q.; Chen, H.S. Generalized reference evapotranspiration models with limited climatic data based on random forest and gene expression programming in Guangxi, China. Agr. Water Manag. 2019, 221, 220–230. [Google Scholar] [CrossRef]
- Su, Y.X.; Li, Z.; Sun, H. Climate zoning for sugarcane cultivation in Guangxi Province, China based on GIS. Chin. J. Agrometeorol. 2006, 3, 252–255+259. [Google Scholar]
- Zhang, Y.B.; Fan, X.; Mao, J.; Li, R.D.; Yu, X.L. Study on the spatial distribution characteristics of climate ecology in the main sugarcane producing areas in China. Southwest China J. Agric. Sci. 2021, 34, 2281–2288. [Google Scholar] [CrossRef]
- Li, H.S.; Zan, Y.Y.; Jiang, Y.P.; Guo, B.; Li, L.F. Research on refined agricultural climate zoning for sugarcane cultivation in Chongzuo City. Sugarcane Canesugar 2020, 3, 82–86. [Google Scholar]
- Li, Y.C.; Xie, Y.H.; Jiang, X.Y. Yunnan Agricultural Science and Technology. Yunnan Agric. Sci. Technol. 2020, 137, 25–27. [Google Scholar]
- Aparecido, L.E.D.O.; Moraes, J.R.S.C.; Meneses, K.C.; Torsoni, G.B.; Costa, C.T.S.; Mesquita, D.Z. Climate efficiency for sugarcane production in Brazil and its application in agricultural zoning. Sugar Tech. 2021, 23, 776–793. [Google Scholar] [CrossRef]
- Guga, S.; Xu, J.; Riao, D.; Han, A.; Zhang, J.Q. Combining MaxEnt model and landscape pattern theory for analyzing interdecadal variation of sugarcane climate suitability in Guangxi, China. Ecol. Indic. 2021, 131, 108152. [Google Scholar] [CrossRef]
- Liang, Y.L.; Yu, S.F.; Zhen, Z.; Zhao, Y.J.; Deng, J.M.; Jiang, W.G. Climatic change impacts on Chinese sugarcane planting: Benefits and risks. Phys. Chem. Earth 2020, 116, 102856. [Google Scholar] [CrossRef]
- Srivastava, A.K.; Rai, M.K. Sugarcane production: Impact of climate change and its mitigation. Biodiversitas J. Biol. Divers. 2012, 13, 214–227. [Google Scholar] [CrossRef]
- Cui, T.G. Analysis of Topographic Factors for Sugarcane Growing Areas Based on DEM. Master’s Thesis, Guangxi University, Nanning, China, 2018. [Google Scholar]
- Li, Y.; Mo, Y.; Are, K.S.; Huang, Z.G.; Guo, H.; Tang, C.; Abegunrin, T.P.; Qin, Z.H.; Kang, Z.W.; Wang, X. Sugarcane planting patterns control ephemeral gully erosion and associated nutrient losses: Evidence from hillslope observation. Agr. Ecosyst. Environ. 2021, 309, 107289. [Google Scholar] [CrossRef]
- Huang, C.L. Study on the Impact of Four Meteorological Disasters on Major Crop Yields in Binyang County. Master’s Thesis, Guangxi University, Nanning, China, 2021. [Google Scholar]
- Huang, Q.Y.; Qin, Z.H.; Qin, Z.H.; Hu, B.Q. Research progress and prospects on sugarcane disaster monitoring. China Agric. Inform. 2018, 30, 23–40. [Google Scholar]
- Yang, F.; Duan, X.W.; Guo, Q.K.; Lu, S.J.; Hsu, K.L. The spatiotemporal variations and propagation of droughts in Plateau Mountains of China. Sci. Total Environ. 2022, 805, 150257. [Google Scholar] [CrossRef]
- Luo, W.Z. Climate patterns and countermeasures for frost damage to sugarcane in Guangxi Province, China. Guangxi Sugar Ind. 2000, 1, 5–9. [Google Scholar]
- Wu, X.K.; Liu, Z.P.; Tan, Z.K.; Huang, W.J.; Wei, J.F.; Jia, X.F. Study on spatial distribution of low temperature cold frost damage of sugar cane in Guangxi based on Surfer technology. Hubei Agric. Sci. 2019, 58, 30. [Google Scholar] [CrossRef]
- Som-Ard, J.; Atzberger, C.; Izquierdo-Verdiguier, E.; Vuolo, F.; Immitzer, M. Remote sensing applications in sugarcane cultivation: A review. Remote Sens. 2021, 13, 4040. [Google Scholar] [CrossRef]
- Nohrstedt, D.; Mazzoleni, M.; Parker, C.F.; Baldassarre, G. Exposure to natural hazard events unassociated with policy change for improved disaster risk reduction. Nat. Commun. 2021, 12, 193. [Google Scholar] [CrossRef]
- Liu, Y.; Eckert, C.M.; Earl, C. A review of fuzzy AHP methods for decision-making with subjective judgements. Expert Syst. Appl. 2020, 161, 113738. [Google Scholar] [CrossRef]
- Díaz, H.; Teixeira, A.P.; Soares, C.G. Application of Monte Carlo and Fuzzy Analytic Hierarchy Processes for ranking floating wind farm locations. Ocean. Eng. 2022, 245, 110453. [Google Scholar] [CrossRef]
- McIntosh, R.D.; Becker, A. Applying MCDA to weight indicators of seaport vulnerability to climate and extreme weather impacts for US North Atlantic ports. Environ. Syst. Decis. 2020, 40, 356–370. [Google Scholar] [CrossRef]
- Marzouk, M.; Sabbah, M. AHP-TOPSIS social sustainability approach for selecting supplier in construction supply chain. Clean. Environ. Syst. 2021, 2, 100034. [Google Scholar] [CrossRef]
- Seyedmohammadi, J.; Sarmadian, F.; Jafarzadeh, A.A.; McDowell, R.W. Development of a model using matter element, AHP and GIS techniques to assess the suitability of land for agriculture. Geoderma 2019, 352, 80–95. [Google Scholar] [CrossRef]
- Chen, H.X.; Zhang, Y.W.; Wang, L. A study on the quality evaluation index system of smart home care for older adults in the community—Based on Delphi and AHP. BMC Public Health 2023, 23, 411. [Google Scholar] [CrossRef] [PubMed]
- Sato, Y.J.; Tan, K.H. Inconsistency indices in pairwise comparisons: An improvement of the Consistency Index. Ann. Oper. Res. 2022, 1–22. [Google Scholar] [CrossRef]
- Teknomo, K. Analytic hierarchy process (AHP) tutorial. Revoledu. Com 2006, 6, 1–20. [Google Scholar]
- Šakalys, R.; Sivilevičius, H.; Miliauskaitė, L.; Šakalys, A. Investigation and evaluation of main indicators impacting synchromodality using ARTIW and AHP methods. Transport-Vilnius 2019, 34, 300–311. [Google Scholar] [CrossRef]
- Sun, M.; Zheng, W.X.; Duan, X.B. Research on Deep Coal Seam Mining Floor Starta Water Bursting Influenced Factors Based on Analytic Hierachy Process. In Applied Mechanics and Materials; Trans Tech Publications: Pfaffikon, Switzerland, 2014; pp. 737–741. [Google Scholar]
- Amenta, P.; Lucadamo, A.; Marcarelli, G. On the transitivity and consistency approximated thresholds of some consistency indices for pairwise comparison matrices. Inform. Sci. 2020, 507, 274–287. [Google Scholar] [CrossRef]
- Muñoz, S.J. ERA5-Land hourly data from 1981 to present. Copernic. Clim. Change Serv. Clim. Data Store 2019, 10, 24381. [Google Scholar]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 1–21. [Google Scholar] [CrossRef]
- Adiri, Z.; Lhissou, R.; Maacha, L.; Jilali, A.; Talbi, E.H.; Jellouli, A.; Chakouri, M. Comparison of ASTER GDEM3, SRTM3, NASADEM, TanDEM-X90, AW3D30, and ALOS PALSAR data with TanDEM-X12: A case study of Tagragra of Akka inlier, Moroccan Anti-Atlas. Arab. J. Geosci. 2022, 15, 1654. [Google Scholar] [CrossRef]
- Gorokhovich, Y.; Vustianiuk, A. Implications of slope aspect for landslide risk assessment: A case study of Hurricane Maria in Puerto Rico in 2017. Geomorphology 2021, 391, 107874. [Google Scholar] [CrossRef]
- Huang, F.; Tao, S.; Chang, Z.; Huang, J.S.; Fan, X.M.; Jiang, S.; Li, W.B. Efficient and automatic extraction of slope units based on multi-scale segmentation method for landslide assessments. Landslides 2021, 18, 3715–3731. [Google Scholar] [CrossRef]
- Albraheem, L.; Alabdulkarim, L. Geospatial analysis of solar energy in riyadh using a GIS-AHP-based technique. Isprs. Int. J. Geo.-Inf. 2021, 10, 291. [Google Scholar] [CrossRef]
- Qi, M.M.; Liu, S.Y.; Yao, X.J.; Xie, F.M.; Gao, Y.P. Monitoring the ice phenology of Qinghai lake from 1980 to 2018 using multisource remote sensing data and Google Earth Engine. Remote Sens. 2020, 12, 2217. [Google Scholar] [CrossRef]
- Zhang, B.; Niu, Z.G.; Zhang, D.Q.; Huo, X.L. Dynamic Changes and Driving Forces of Alpine Wetlands on the Qinghai–Tibetan Plateau Based on Long-Term Time Series Satellite Data: A Case Study in the Gansu Maqu Wetlands. Remote Sens. 2022, 14, 4147. [Google Scholar] [CrossRef]
- Youssefi, F.; Zoej, M.J.V.; Hanafi-Bojd, A.A.; Dariane, A.B.; Khaki, M.; Safdarinezhad, A.; Ghaderpour, E. Temporal monitoring and predicting of the abundance of Malaria vectors using time series analysis of remote sensing data through Google Earth Engine. Sensors 2022, 22, 1942. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Z.; Tao, F.; Zhang, L.L.; Luo, Y.C.; Zhang, J.; Han, J.C.; Xie, J. Integrating multi-source data for rice yield prediction across China using machine learning and deep learning approaches. Agric. Meteorol. 2021, 297, 108275. [Google Scholar] [CrossRef]
- Cao, J.; Zhang, Z.; Zhang, L.L.; Luo, Y.C.; Li, Z.Y.; Tao, F.L. Damage evaluation of soybean chilling injury based on Google Earth Engine (GEE) and crop modelling. J. Geogr. Sci. 2020, 30, 1249–1265. [Google Scholar] [CrossRef]
- Hu, Q.F.; Li, Z.; Wang, L.Z.; Huang, Y.; Wang, Y.T.; Li, L.J. Rainfall spatial estimations: A review from spatial interpolation to multi-source data merging. Water 2019, 11, 579. [Google Scholar] [CrossRef]
- Mitas, L.; Mitasova, H. Spatial interpolation. In Geographical Information Systems: Principles, Techniques, Management and Applications; Wiley: Hoboken, NJ, USA, 1999; Volume 1, pp. 481–492. [Google Scholar]
- Wu, C.; Mossa, J.; Mao, L.; Almulla, M. Comparison of different spatial interpolation methods for historical hydrographic data of the lowermost Mississippi River. Ann. Gis. 2019, 25, 133–151. [Google Scholar] [CrossRef]
- Odu, G. Weighting methods for multi-criteria decision making technique. J. Appl. Sci. Environ. Manag. 2019, 23, 1449–1457. [Google Scholar] [CrossRef]
- Marler, R.T.; Arora, J.S. The weighted sum method for multi-objective optimization: New insights. Struct. Multidiscip. Optim. 2010, 41, 853–862. [Google Scholar] [CrossRef]
- Meral, A.; Eroğlu, E. Evaluation of flood risk analyses with AHP, Kriging, and weighted sum models: Example of Çapakçur, Yeşilköy, and Yamaç microcatchments. Environ. Monit Assess. 2021, 193, 505. [Google Scholar] [CrossRef] [PubMed]
Target Level | Criterion Level | Weight | Indicator Level | Weight | Most Suitable Level | Suitable Level | Moderately Suitable Level | Unsuitable Level |
---|---|---|---|---|---|---|---|---|
100 Points | 75 Points | 50 Points | 25 Points | |||||
Suitability of sugarcane cultivation in Guangxi Province (A) | Climate factors (B1) | 0.31 | Annual average temperature (C1)/°C | 0.079 | (21, +∞) | (19, 21] | (18, 19] | (−∞, 18] |
≥20 °C accumulated temperature (C2)/°C | 0.245 | (5000, +∞) | (4000, 5000] | (3000, 4000] | (−∞, 3000] | |||
Annual average minimum temperature (C3)/°C | 0.137 | (0, +∞) | (−1.0, 0] | (−1.5, −1.0] | (−∞, −1.5] | |||
Number of consecutive days with an average temperature ≥25 °C (C4)/days | 0.137 | (150, +∞) | (130, 150] | (110, 130] | [0, 110] | |||
Precipitation during the period of ≥20 °C (C5)/mm | 0.402 | (1200, +∞) | (1100, 1200] | (1000, 1100] | [0, 1000] | |||
Terrain factors (B2) | 0.49 | Altitude (C6)/m | 0.540 | (−∞, 150] | (150, 250] | (250, 350] | (350, +∞) | |
Slope (C7)/° | 0.297 | (−∞, 6] | (6, 15] | (15, 25] | (25, +∞) | |||
Slope direction (C8) | 0.163 | Flat terrain, southern slope | Southeastern slopes, southwestern slopes | Eastern slope, western slope, northeastern slope, northwestern slope | Northern slope | |||
Disaster factors (B3) | 0.20 | Frequency of spring droughts (C9)/% | 0.297 | (0, 10] | (10, 25] | (25, 50] | (50, 100] | |
Frequency of autumn droughts (C10)/% | 0.540 | (0, 20] | (20, 40] | (40, 60] | (60, 100] | |||
Frequency of frosts (C11)/% | 0.163 | (0, 10] | (10, 25] | (25, 50] | (50, 100] |
Judgement Matrix | CI | CR | Judgement Matrix Weights |
---|---|---|---|
A-B | 0.0268 | 0.0462 | B1:0.31 B2:0.49 B3:0.20 |
B1-C | 0.0075 | 0.0067 | C1: 0.079 C2:0.245 C3: 0.137 C4:0.137 C5:0.402 |
B2-C | 0.0046 | 0.0079 | C6:0.540 C7:0.297 C8:0.163 |
B3-C | 0.0046 | 0.0079 | C9:0.297 C10:0.540 C11:0.163 |
Consistency test passed |
Grade | Most Suitable Level | Suitable Level | Moderately Suitable Level | Unsuitable Level |
---|---|---|---|---|
Score/points | 100 | [75, 100) | [50, 75) | [25, 50) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Ye, H.; Nie, C.; Wang, H.; Wang, J. Research on the Assessment Method of Sugarcane Cultivation Suitability in Guangxi Province, China, Based on Multi-Source Data. Agriculture 2023, 13, 988. https://doi.org/10.3390/agriculture13050988
Chen S, Ye H, Nie C, Wang H, Wang J. Research on the Assessment Method of Sugarcane Cultivation Suitability in Guangxi Province, China, Based on Multi-Source Data. Agriculture. 2023; 13(5):988. https://doi.org/10.3390/agriculture13050988
Chicago/Turabian StyleChen, Senzheng, Huichun Ye, Chaojia Nie, Hongye Wang, and Jingjing Wang. 2023. "Research on the Assessment Method of Sugarcane Cultivation Suitability in Guangxi Province, China, Based on Multi-Source Data" Agriculture 13, no. 5: 988. https://doi.org/10.3390/agriculture13050988