Risk Management Effects of Insurance Purchase and Organization Participation: Which Is More Effective?
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Source
2.2. Estimation Strategy
2.2.1. Adoption of Risk Management Tools
2.2.2. Effects of Risk Management Tools
2.2.3. Counterfactual Analysis and Treatment Effects
3. Results
3.1. Statistical Description
3.2. Results of Multinomial Logit Selection Model
3.3. Results of Treatment Effects
4. Discussion
4.1. Factors Affecting Farm Households’ Adoption of Risk Management Tools
4.2. Impacts of Adoption of Risk Management Tools on Crop Revenue
4.3. Future Strategies for Risk Management
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Conflicts of Interest
Appendix A
Variable | None | Insurance | Organization | Joint | ||||
---|---|---|---|---|---|---|---|---|
Coef. | SE | Coef. | SE | Coef. | SE | Coef. | SE | |
Gender | 0.116 | 0.073 | 0.055 | 0.078 | 2.751 *** | 0.455 | -- | -- |
Age | −0.003 | 0.007 | 0.004 | 0.006 | 0.085 | 0.087 | 0.068 | 0.126 |
Education | 0.004 | 0.005 | 0.005 | 0.005 | −0.207 ** | 0.077 | 0.027 | 0.105 |
Off-farm | 0.076 | 0.088 | −0.038 | 0.077 | 4.693 *** | 0.466 | −0.289 | 1.296 |
Risk neutral | −0.129 | 0.147 | 0.006 | 0.204 | 2.340 *** | 0.362 | 0.394 | 1.491 |
Risk aversion | −0.074 | 0.140 | 0.061 | 0.198 | −0.940 * | 0.535 | 0.325 | 1.468 |
Party | −0.046 | 0.058 | 0.100 ** | 0.047 | 1.894 *** | 0.415 | −0.056 | 0.960 |
Hsize | −0.051 * | 0.028 | 0.002 | 0.020 | 0.098 | 0.226 | −0.258 | 0.549 |
Techonolgy1 | 0.126 | 0.136 | −0.026 | 0.088 | 5.194 *** | 0.356 | −0.364 | 1.437 |
Techonolgy2 | −0.189 | 0.123 | 0.028 | 0.087 | −1.071 * | 0.552 | 0.089 | 1.483 |
Size (log) | −0.102 | 0.136 | −0.020 | 0.093 | 3.979 *** | 0.195 | −0.504 | 1.478 |
Plot (log) | 0.190 | 0.124 | 0.129 | 0.121 | −1.225 *** | 0.324 | −0.513 | 1.430 |
irrigation | 0.149 * | 0.099 | 0.211 ** | 0.101 | 3.411 *** | 0.399 | 0.597 | 1.365 |
Fertility: medium | 0.001 | 0.126 | 0.133 | 0.180 | −2.400 *** | 0.361 | 0.457 | 2.047 |
Fertility: good | −0.058 | 0.135 | 0.192 | 0.147 | 1.045 *** | 0.362 | 0.044 | 1.856 |
Disaster | −0.001 | 0.029 | 0.000 | 0.047 | 1.413 *** | 0.410 | 0.561 | 0.930 |
Seed (log) | 0.088 *** | 0.033 | 0.109 *** | 0.036 | −1.998 *** | 0.416 | 0.234 | 0.368 |
Fertilizer (log) | 0.148 *** | 0.053 | 0.173 ** | 0.074 | −1.193 *** | 0.323 | 0.395 | 0.804 |
Machinery (log) | 0.014 | 0.013 | 0.020 | 0.013 | −1.114 *** | 0.199 | 0.093 | 0.381 |
Labor—self (log) | 0.031 | 0.031 | 0.065 * | 0.037 | 0.079 | 0.332 | 0.431 | 0.473 |
Labor—hire (log) | −0.014 | 0.018 | −0.012 | 0.021 | 0.195 | 0.246 | −0.375 | 0.315 |
Constant | 5.634 *** | 0.293 | 5.035 *** | 0.371 | −19.484 *** | 2.717 | 4.420 | 4.222 |
Time-varying covariates | Yes | Yes | Yes | Yes | ||||
Ancillary | ||||||||
σ2 | 0.507 *** | 0.158 | 0.441 *** | 0.170 | 29.702 *** | 0.479 | 3.104 | 5.754 |
λ1 | 0.402 | 0.353 | 0.048 | 0.694 | −1.546 | 0.000 | −0.370 | 0.492 |
λ2 | −0.085 | 0.591 | −0.060 | 0.280 | −0.817 *** | 0.301 | −0.892 | 0.904 |
λ3 | −0.928 | 1.157 | 2.104 | 1.400 | 0.750 | 0.862 | −2.780 *** | 0.399 |
λ4 | 1.764 | 1.242 | −0.276 | 0.859 | 0.044 | 0.000 | −0.281 | 1.060 |
Joint significance of instruments | F(2,1370) = 0.27 | F(2,1406) = 0.77 | F(2,18) = 0.20 | F(2,32) = 0.75 | ||||
Number of observations | 1394 | 1430 | 42 | 55 |
Variable | None | Insurance | Organization | Joint | ||||
---|---|---|---|---|---|---|---|---|
Coef. | SE | Coef. | SE | Coef. | SE | Coef. | SE | |
Gender | −0.005 | 0.148 | −0.141 | 0.283 | 7.748 *** | 0.689 | -- | -- |
Age | 0.001 | 0.014 | −0.020 | 0.027 | 0.131 | 0.180 | −0.240 | 0.332 |
Education | −0.033 ** | 0.016 | −0.020 | 0.019 | −0.577 *** | 0.107 | 0.182 | 0.331 |
Off-farm | 0.089 | 0.162 | 0.149 | 0.291 | 10.764 *** | 0.731 | −2.068 | 4.191 |
Risk neutral | 0.106 | 0.331 | −0.584 | 0.962 | 10.565 *** | 0.711 | −0.286 | 4.909 |
Risk aversion | 0.204 | 0.243 | −0.658 | 0.959 | 1.390 * | 0.731 | −0.706 | 3.576 |
Party | 0.183 | 0.206 | −0.097 | 0.166 | 5.933 *** | 0.780 | −1.475 | 3.581 |
Hsize | 0.104 * | 0.058 | 0.001 | 0.052 | 0.069 | 0.396 | 1.383 | 1.298 |
Techonolgy1 | 0.016 | 0.296 | 0.333 | 0.292 | 17.491 *** | 0.819 | −0.426 | 4.344 |
Techonolgy2 | 0.375 | 0.276 | −0.393 | 0.255 | −3.667 *** | 0.845 | −0.746 | 4.269 |
Size (log) | 0.465 | 0.396 | 0.484 | 0.563 | 16.524 *** | 0.430 | −0.997 | 3.683 |
Plot (log) | −0.754 | 0.477 | −0.822 | 0.702 | −4.032 *** | 0.739 | 2.951 | 3.656 |
irrigation | −0.303 | 0.235 | −0.769 | 0.484 | 10.068 *** | 0.472 | 1.390 | 3.846 |
Fertility: medium | 0.534 * | 0.293 | −1.230 | 0.851 | −7.495 *** | 0.581 | −9.157 | 5.775 |
Fertility: good | 0.820 ** | 0.367 | −1.126 | 0.699 | 4.440 *** | 0.692 | −9.529 | 6.364 |
Disaster | −0.005 | 0.064 | −0.019 | 0.179 | 5.155 *** | 0.509 | −2.591 | 2.607 |
Seed (log) | −0.119 * | 0.062 | −0.177 | 0.135 | −5.928 *** | 0.783 | −0.690 | 1.338 |
Fertilizer (log) | −0.154 * | 0.088 | −0.135 | 0.184 | −4.018 *** | 0.648 | −1.097 | 2.275 |
Machinery (log) | 0.007 | 0.026 | 0.006 | 0.034 | −3.733 *** | 0.452 | −0.658 | 1.256 |
Labor–self (log) | −0.034 | 0.064 | −0.123 | 0.160 | −0.433 | 0.475 | −0.535 | 1.363 |
Labor–hire (log) | 0.086 ** | 0.042 | 0.116 | 0.096 | 0.387 | 0.464 | 1.094 | 1.067 |
Constant | 0.196 | 1.216 | 1.738 | 1.211 | −82.735 *** | 5.216 | 5.110 | 11.087 |
Time-varying covariates | Yes | Yes | Yes | Yes | ||||
Ancillary | ||||||||
σ2 | 6.026 | 3.787 | 5.901 | 3.995 | 426.264 *** | 1.089 | 14.361 | 61.140 |
λ1 | 0.194 | 0.436 | 0.567 | 0.663 | −1.801 *** | 0.239 | 1.111 * | 0.584 |
λ2 | 0.244 | 0.663 | 0.341 | 0.280 | −1.044 *** | 0.253 | 1.172 | 0.719 |
λ3 | 2.101 ** | 1.029 | −0.937 | 1.719 | 0.492 | 1.080 | 2.149 *** | 0.445 |
λ4 | −0.137 | 1.153 | 1.278 | 0.836 | −0.114 | 0.000 | −0.104 | 1.137 |
Joint significance of instruments | F(2,1370) = 1.72 | F(2,1406) = 1.15 | F(2,18) = 0.76 | F(2,32) = 0.62 | ||||
Number of observations | 1394 | 1430 | 42 | 55 |
Variable | None | Insurance | Organization | Joint | ||||
---|---|---|---|---|---|---|---|---|
Coef. | SE | Coef. | SE | Coef. | SE | Coef. | SE | |
Gender | −0.541 | 0.803 | 0.489 | 1.110 | 95.429 *** | 2.453 | -- | -- |
Age | −0.002 | 0.059 | 0.106 | 0.121 | −1.022 ** | 0.493 | 0.869 | 1.258 |
Education | 0.155 * | 0.081 | 0.099 | 0.106 | −8.459 *** | 0.261 | −0.476 | 1.065 |
Off-farm | −0.550 | 0.584 | −0.121 | 1.664 | 132.097 *** | 2.518 | 5.899 | 11.561 |
Risk neutral | 0.032 | 1.229 | 5.179 | 5.888 | 180.774 *** | 2.297 | 3.528 | 11.660 |
Risk aversion | −0.468 | 0.960 | 5.408 | 6.091 | 53.913 *** | 1.855 | 3.754 | 10.303 |
Party | −0.724 | 0.916 | 0.376 | 0.623 | 100.566 *** | 1.610 | 4.259 | 7.654 |
Hsize | −0.374 | 0.250 | 0.170 | 0.282 | 7.474 *** | 0.854 | −4.173 | 4.805 |
Techonolgy1 | −0.241 | 1.205 | −1.746 | 1.548 | 265.930 *** | 3.292 | 0.536 | 10.241 |
Techonolgy2 | −1.491 | 1.197 | 1.503 | 1.282 | −73.191 *** | 2.701 | 2.480 | 14.244 |
Size (log) | −2.430 * | 1.446 | −2.919 | 3.218 | 250.011 *** | 0.842 | 2.326 | 14.850 |
Plot (log) | 2.959 | 2.062 | 4.586 | 3.554 | −70.046 *** | 1.633 | −10.847 | 10.829 |
irrigation | 1.382 | 1.109 | 3.354 | 2.583 | 120.945 *** | 1.422 | −3.249 | 8.195 |
Fertility: medium | −1.535 | 1.862 | 5.996 | 4.240 | −153.023 *** | 3.613 | 29.684 ** | 13.886 |
Fertility: good | −3.123 | 2.226 | 4.656 | 3.267 | 47.315 *** | 1.605 | 30.565 ** | 13.602 |
Disaster | 0.079 | 0.240 | 0.486 | 1.339 | 58.992 *** | 2.652 | 8.597 | 8.279 |
Seed (log) | 0.192 | 0.230 | 0.665 | 0.634 | −91.153 *** | 2.294 | 2.595 | 4.148 |
Fertilizer (log) | 0.035 | 0.423 | 0.112 | 1.050 | −58.905 *** | 2.613 | 3.605 | 9.743 |
Machinery (log) | −0.090 | 0.108 | −0.135 | 0.158 | −54.593 *** | 1.130 | 2.058 | 3.973 |
Labor–self (log) | 0.318 | 0.318 | 0.590 | 0.912 | −9.580 *** | 1.526 | 1.857 | 5.089 |
Labor–hire (log) | −0.213 | 0.166 | −0.668 | 0.677 | −4.927 *** | 1.200 | −3.920 | 3.074 |
Constant | 7.022 | 7.293 | −5.125 | 6.160 | −1356.169 *** | 11.368 | −18.413 | 45.152 |
Time-varying covariates | Yes | Yes | Yes | Yes | ||||
Ancillary | ||||||||
σ2 | 164.436 | 109.878 | 192.426 * | 116.852 | 97,647.734 *** | 13.847 | 165.272 | 401.782 |
λ1 | 0.039 | 0.447 | −0.637 | 0.611 | −1.665 | 0.000 | −0.968 ** | 0.413 |
λ2 | 0.156 | 0.736 | −0.359 | 0.258 | −1.015 *** | 0.215 | −1.025 | 0.818 |
λ3 | −1.525 * | 0.895 | 0.332 | 1.392 | 0.609 | 0.939 | −2.409 *** | 0.283 |
λ4 | 0.164 | 1.116 | −1.274 * | 0.827 | −0.090 | 0.000 | 0.017 | 1.137 |
Joint significance of instruments | F(2,1370) = 1.99 | F(2,1406) = 0.83 | F(2,18) = 0.09 | F(2,32) = 0.66 | ||||
Number of observations | 1394 | 1430 | 42 | 55 |
Dependent Variables: Revenue | 2SLS | GMM |
---|---|---|
Durbin χ2 | 0.362 (p-value = 0.547) | -- |
Wu-Hausman F | 0.360 (p-value = 0.549) | -- |
C Sargan χ2 | -- | 0.096 (p-value = 0.757) |
References
- Mapp, H.P.; Hardin, M.L.; Walker, O.L.; Persaud, T. Analysis of Risk Management Strategies for Agricultural Producers. Am. J. Agric. Econ. 1979, 61, 1071–1077. [Google Scholar] [CrossRef]
- Ali, W.; Abdulai, A.; Mishra, A.K. Recent Advances in the Analyses of Demand for Agricultural Insurance in Developing and Emerging Countries. Annu. Rev. Resour. Econ. 2020, 12, 411–430. [Google Scholar] [CrossRef]
- Cole, S.A.; Xiong, W. Agricultural insurance and economic development. Annu. Rev. Econ. 2017, 9, 235–262. [Google Scholar] [CrossRef]
- Bhattamishra, R.; Barrett, C.B. Community-Based Risk Management Arrangements: A Review. World Dev. 2010, 38, 923–932. [Google Scholar] [CrossRef]
- Dillon, A.; Mueller, V.; Salau, S. Migratory responses to agricultural risk in northern Nigeria. Am. J. Agric. Econ. 2011, 93, 1048–1061. [Google Scholar] [CrossRef]
- Hazell, P.; Sberro-Kessler, R.; Varangis, P. When and How Should Agricultural Insurance Be Subsidized? Issues and Good Practices; World Bank: Washington, DC, USA, 2017. [Google Scholar]
- Liao, P.; Zhou, X.; Fan, Q. Does agricultural insurance help farmers escape the poverty trap? Research based on multiple equilibrium models. Geneva Pap. Risk Insur. Issues Pract. 2020, 45, 203–223. [Google Scholar] [CrossRef]
- Hill, R.V.; Kumar, N.; Magnan, N.; Makhija, S.; de Nicola, F.; Spielman, D.J.; Ward, P.S. Ex ante and ex post effects of hybrid index insurance in Bangladesh. J. Dev. Econ. 2019, 136, 1–17. [Google Scholar] [CrossRef]
- Holloway, G.; Nicholson, C.; Delgado, C.; Staal, S.; Ehui, S. Agroindustrialization through institutional innovation Transaction costs, cooperatives and milk-market development in the east-African highlands. Agric. Econ. 2000, 23, 279–288. [Google Scholar] [CrossRef]
- Mishra, A.K.; El-Osta, H.S. Managing risk in agriculture through hedging and crop insurance: What does a national survey reveal? Agric. Financ. Rev. 2002, 62, 135–148. [Google Scholar] [CrossRef]
- Gebrekidan, T.; Guo, Y.; Bi, S.; Wang, J.; Zhang, C.; Wang, J.; Lyu, K. Effect of index-based livestock insurance on herd offtake: Evidence from the Borena zone of southern Ethiopia. Clim. Risk Manag. 2019, 23, 67–77. [Google Scholar] [CrossRef]
- Janzen, S.A.; Carter, M.R. After the drought: The impact of microinsurance on consumption smoothing and asset protection. Am. J. Agric. Econ. 2019, 101, 651–671. [Google Scholar] [CrossRef]
- Cai, H.; Chen, Y.; Fang, H.; Zhou, L.-A. The effect of microinsurance on economic activities: Evidence from a randomized field experiment. Rev. Econ. Stat. 2015, 97, 287–300. [Google Scholar] [CrossRef]
- Freudenreich, H.; Mußhoff, O. Insurance for technology adoption: An experimental evaluation of schemes and subsidies with maize farmers in Mexico. J. Agric. Econ. 2018, 69, 96–120. [Google Scholar] [CrossRef]
- Jensen, N.D.; Barrett, C.B.; Mude, A.G. Cash transfers and index insurance: A comparative impact analysis from northern Kenya. J. Dev. Econ. 2017, 129, 14–28. [Google Scholar] [CrossRef]
- Fischer, E.; Qaim, M. Linking Smallholders to Markets: Determinants and Impacts of Farmer Collective Action in Kenya. World Dev. 2012, 40, 1255–1268. [Google Scholar] [CrossRef]
- Kumar, A.; Saroj, S.; Joshi, P.; Takeshima, H. Does cooperative membership improve household welfare? Evidence from a panel data analysis of smallholder dairy farmers in Bihar, India. Food Policy 2018, 75, 24–36. [Google Scholar] [CrossRef]
- Abebaw, D.; Haile, M.G. The impact of cooperatives on agricultural technology adoption: Empirical evidence from Ethiopia. Food Policy 2013, 38, 82–91. [Google Scholar] [CrossRef]
- Ito, J.; Bao, Z.; Su, Q. Distributional effects of agricultural cooperatives in China: Exclusion of smallholders and potential gains on participation. Food Policy 2012, 37, 700–709. [Google Scholar] [CrossRef]
- Roy, D.; Thorat, A. Success in High Value Horticultural Export Markets for the Small Farmers: The Case of Mahagrapes in India. World Dev. 2008, 36, 1874–1890. [Google Scholar] [CrossRef]
- Hellin, J.; Lundy, M.; Meijer, M. Farmer organization, collective action and market access in Meso-America. Food Policy 2009, 34, 16–22. [Google Scholar] [CrossRef]
- Markelova, H.; Meinzen-Dick, R.; Hellin, J.; Dohrn, S. Collective action for smallholder market access. Food Policy 2009, 34, 1–7. [Google Scholar] [CrossRef]
- Chagwiza, C.; Muradian, R.; Ruben, R. Cooperative membership and dairy performance among smallholders in Ethiopia. Food Policy 2016, 59, 165–173. [Google Scholar] [CrossRef]
- Trebbin, A. Linking small farmers to modern retail through producer organizations—Experiences with producer companies in India. Food Policy 2014, 45, 35–44. [Google Scholar] [CrossRef]
- Birthal, P.S.; Chand, R.; Joshi, P.K.; Saxena, R.; Rajkhowa, P.; Khan, M.T.; Khan, M.A.; Chaudhary, K.R. Formal versus informal: Efficiency, inclusiveness and financing of dairy value chains in Indian Punjab. J. Rural. Stud. 2017, 54, 288–303. [Google Scholar] [CrossRef]
- Miyata, S.; Minot, N.; Hu, D. Impact of contract farming on income: Linking small farmers, packers, and supermarkets in China. World Dev. 2009, 37, 1781–1790. [Google Scholar] [CrossRef]
- Moustier, P.; Tam, P.T.G.; Anh, D.T.; Binh, V.T.; Loc, N.T.T. The role of farmer organizations in supplying supermarkets with quality food in Vietnam. Food Policy 2010, 35, 69–78. [Google Scholar] [CrossRef]
- Zhou, J.; Yang, Z.; Li, K.; Yu, X. Direct intervention or indirect support? The effects of cooperative control measures on farmers’ implementation of quality and safety standards. Food Policy 2019, 86, 101728. [Google Scholar] [CrossRef]
- Birthal, P.S.; Hazrana, J.; Negi, D.S.; Mishra, A.K. Assessing benefits of crop insurance vis-a-vis irrigation in Indian agriculture. Food Policy 2022, 112, 102348. [Google Scholar] [CrossRef]
- Khonje, M.G.; Manda, J.; Mkandawire, P.; Tufa, A.H.; Alene, A.D. Adoption and welfare impacts of multiple agricultural technologies: Evidence from eastern Zambia. Agric. Econ. 2018, 49, 599–609. [Google Scholar] [CrossRef]
- Vigani, M.; Kathage, J. To risk or not to risk? Risk management and farm productivity. Am. J. Agric. Econ. 2019, 101, 1432–1454. [Google Scholar] [CrossRef]
- Di Falco, S.; Veronesi, M. How can African agriculture adapt to climate change? A counterfactual analysis from Ethiopia. Land Econ. 2013, 89, 743–766. [Google Scholar] [CrossRef]
- Wu, J.; Babcock, B.A. The choice of tillage, rotation, and soil testing practices: Economic and environmental implications. Am. J. Agric. Econ. 1998, 80, 494–511. [Google Scholar] [CrossRef]
- Bourguignon, F.; Fournier, M.; Gurgand, M. Selection bias corrections based on the multinomial logit model: Monte Carlo comparisons. J. Econ. Surv. 2007, 21, 174–205. [Google Scholar] [CrossRef]
- Mundlak, Y. On the pooling of time series and cross section data. Econom. J. Econom. Soc. 1978, 46, 69–85. [Google Scholar] [CrossRef]
- Wooldridge, J.M. Econometric analysis of cross section and panel data. MIT Press Books 2010, 1, 206–209. [Google Scholar]
- McFadden, D. Conditional Logit Analysis of Qualitative Choice Behavior; Academic Press: Cambridge, MA, USA, 1973. [Google Scholar]
- Teklewold, H.; Kassie, M.; Shiferaw, B.; Köhlin, G. Cropping system diversification, conservation tillage and modern seed adoption in Ethiopia: Impacts on household income, agrochemical use and demand for labor. Ecol. Econ. 2013, 93, 85–93. [Google Scholar] [CrossRef]
- Di Falco, S.; Veronesi, M. Managing environmental risk in presence of climate change: The role of adaptation in the Nile Basin of Ethiopia. Environ. Resour. Econ. 2014, 57, 553–577. [Google Scholar] [CrossRef]
- Kassie, M.; Teklewold, H.; Marenya, P.; Jaleta, M.; Erenstein, O. Production risks and food security under alternative technology choices in Malawi: Application of a multinomial endogenous switching regression. J. Agric. Econ. 2015, 66, 640–659. [Google Scholar] [CrossRef]
- Di Falco, S.; Veronesi, M.; Yesuf, M. Does adaptation to climate change provide food security? A micro-perspective from Ethiopia. Am. J. Agric. Econ. 2011, 93, 829–846. [Google Scholar] [CrossRef]
- Hausman, J.A. Specification tests in econometrics. Econom. J. Econom. Soc. 1978, 46, 1251–1271. [Google Scholar] [CrossRef]
- Sargan, J.D. The estimation of economic relationships using instrumental variables. Econom. J. Econom. Soc. 1958, 26, 393–415. [Google Scholar] [CrossRef]
- Antle, J.M. Testing the stochastic structure of production: A flexible moment-based approach. J. Bus. Econ. Stat. 1983, 1, 192–201. [Google Scholar]
- Di Falco, S.; Chavas, J.P. On crop biodiversity, risk exposure, and food security in the highlands of Ethiopia. Am. J. Agric. Econ. 2009, 91, 599–611. [Google Scholar] [CrossRef]
- Koundouri, P.; Nauges, C.; Tzouvelekas, V. Technology adoption under production uncertainty: Theory and application to irrigation technology. Am. J. Agric. Econ. 2006, 88, 657–670. [Google Scholar] [CrossRef]
- Salazar, C.; Rand, J. Pesticide use, production risk and shocks. The case of rice producers in Vietnam. J. Environ. Manag. 2020, 253, 109705. [Google Scholar] [CrossRef]
- Wang, H.H.; Wang, Y.; Delgado, M.S. The transition to modern agriculture: Contract farming in developing economies. Am. J. Agric. Econ. 2014, 96, 1257–1271. [Google Scholar] [CrossRef]
- Bentley, J. Economic and Ecological Approaches to Land Fragmentation: In Defense of a Much Maligned Phenomenon. Annu. Rev. Anthropol. 1987, 16, 31–67. [Google Scholar] [CrossRef]
- Ntihinyurwa, P.D.; de Vries, W.T.; Chigbu, U.E.; Dukwiyimpuhwe, P.A. The positive impacts of farm land fragmentation in Rwanda. Land Use Policy 2019, 81, 565–581. [Google Scholar] [CrossRef]
- Veljanoska, S. Can Land Fragmentation Reduce the Exposure of Rural Households to Weather Variability? Ecol. Econ. 2018, 154, 42–51. [Google Scholar] [CrossRef]
- Barrett, C.B.; Bachke, M.E.; Bellemare, M.F.; Michelson, H.C.; Narayanan, S.; Walker, T.F. Smallholder Participation in Contract Farming: Comparative Evidence from Five Countries. World Dev. 2012, 40, 715–730. [Google Scholar] [CrossRef]
- Dubin, J.A.; McFadden, D.L. An econometric analysis of residential electric appliance holdings and consumption. Econom. J. Econom. Soc. 1984, 345–362. [Google Scholar] [CrossRef]
Variable | Definition and Unit | Mean | Std. Dev. | |
---|---|---|---|---|
Dependent Variable | Revenue | Output Value of Three Staple Grain Crops (CNY/mu) | 1921.841 | 807.048 |
Household heads variables | Gender | Gender: 1 = male; 0 = female | 0.928 | 0.258 |
Age | Age (years) | 62.620 | 9.666 | |
Education | Educational attainment (years) | 7.165 | 3.530 | |
Off-farm | Off-farm employment: 1 = yes; 0 = no | 0.318 | 0.466 | |
Risk | Risk preference: 1 = risk lover; 2 = risk neutral; 3 = risk aversion | 2.714 | 0.568 | |
Farm household variables | Party | Household with CPC members: 1 = yes; 0 = no | 0.267 | 0.442 |
Hsize | Number of permanent residents in the household (persons) | 3.239 | 1.653 | |
Techonolgy1 | Receive planting technical services: 1 = yes; 0 = no | 0.240 | 0.427 | |
Techonolgy2 | Receive disaster reduction technical services: 1 = yes; 0 = no | 0.197 | 0.397 | |
Cropland variables | Size | Acreage of operating cropland (mu) | 32.864 | 133.497 |
Plot | Number of operating cropland plots (parcel) | 8.273 | 52.072 | |
Irrigation | Convenient for irrigation: 1 = yes; 0 = no | 0.605 | 0.489 | |
Fertility | Cropland fertility: 1 = poor; 2 = medium; 3 = good | 2.242 | 0.534 | |
Disaster | Cropland affected by disasters in the past three years (times) | 0.423 | 0.972 | |
Factor input variables | Seed | Seedling cost (CNY/mu) | 137.898 | 96.570 |
Fertilizer | Fertilizer cost (CNY/mu) | 315.887 | 163.383 | |
Machinery | Mechanical operation cost (CNY/mu) | 217.802 | 175.534 | |
Labor—self | Self-deployment (day/mu) | 31.908 | 51.232 | |
Labor—hire | Hired labor costs (CNY/mu) | 46.696 | 122.552 | |
Instrumental variables | Cadre | Household with rural cadre: 1 = yes; 0 = no | 0.149 | 0.356 |
Information | Access to information services: 1 = yes; 0 = no | 0.040 | 0.195 |
Variable | Insurance | Organization | Joint | |||
---|---|---|---|---|---|---|
Coef. | Robust SE | Coef. | Robust SE | Coef. | Robust SE | |
Gender | −0.078 | 0.154 | −0.510 | 0.605 | 14.238 *** | 0.299 |
Age | 0.031 * | 0.016 | −0.059 | 0.043 | 0.077 * | 0.041 |
Education | 0.031 ** | 0.013 | −0.037 | 0.052 | −0.073 | 0.056 |
Off-farm | 0.029 | 0.198 | 0.181 | 0.622 | 0.897 * | 0.539 |
Risk neutral | 0.085 | 0.388 | 0.075 | 1.198 | −1.482 | 1.388 |
Risk aversion | −0.145 | 0.350 | 1.101 | 0.932 | −1.003 | 1.263 |
Party | −0.043 | 0.328 | 0.589 | 0.675 | 0.405 | 0.636 |
Hsize | 0.072 | 0.062 | 0.275 | 0.264 | −0.309 * | 0.185 |
Techonolgy1 | 0.164 | 0.237 | 1.376 * | 0.754 | 1.343 * | 0.704 |
Techonolgy2 | 0.220 | 0.248 | 0.376 | 0.657 | 0.537 | 0.838 |
Size(log) | 0.223 | 0.154 | 0.783 ** | 0.327 | −0.142 | 0.303 |
Plot(log) | −0.179 | 0.158 | −0.668 | 0.572 | −0.494 * | 0.255 |
irrigation | 0.340 | 0.228 | −0.525 | 0.547 | −0.514 | 0.551 |
Fertility: medium | −0.191 | 0.365 | −0.035 | 1.490 | −0.119 | 1.082 |
Fertility: good | −0.302 | 0.380 | 0.683 | 1.404 | 0.112 | 1.154 |
Disaster | 0.022 | 0.081 | −0.073 | 0.325 | 0.136 | 0.295 |
Constant | −2.157 *** | 0.549 | −1.968 | 1.674 | −17.381 *** | 1.746 |
Joint significance of district dummies: χ2(6) | 158.18 *** | |||||
Joint significance of instruments: χ2(6) | 18.04 *** | |||||
Joint significance of time-varying covariates: χ2(42) | 109.66 *** | |||||
Wald test: χ2(102) | 5154.52 *** | |||||
Number of observations | 2921 |
Tools | Actual Outcome (1) | Counterfactual Outcome (2) | ATT (3) = (1) − (2) | % Change (4) = (3)/(2) | |
---|---|---|---|---|---|
Revenue | Insurance | 1870.663 | 1749.526 | 121.137 *** | 6.92% |
(13.624) | (11.701) | (9.349) | |||
Organization | 1769.753 | 1472.906 | 296.847 ** | 20.15% | |
(119.055) | (104.052) | (127.525) | |||
Joint | 1954.209 | 1513.879 | 440.330 *** | 29.09% | |
(122.062) | (63.468) | (115.803) | |||
Revenue Variance | Insurance | 0.346 | 0.485 | −0.138 *** | −28.54% |
(0.016) | (0.014) | (0.016) | |||
Organization | 0.290 | 0.682 | −0.392 ** | −57.48% | |
(0.111) | (0.154) | (0.179) | |||
Joint | 0.306 | 1.021 | −0.714 *** | −39.98% | |
(0.206) | (0.101) | (0.233) | |||
Revenue Skewness | Insurance | −0.914 | −1.284 | 0.370 *** | −28.76% |
(0.080) | (0.059) | (0.089) | |||
Organization | 0.207 | −1.386 | 1.594 ** | −114.96% | |
(0.210) | (0.616) | (0.607) | |||
Joint | −0.752 | −2.762 | 2.010 ** | −72.76% | |
(0.731) | (0.370) | (0.846) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wu, X. Risk Management Effects of Insurance Purchase and Organization Participation: Which Is More Effective? Agriculture 2023, 13, 1927. https://doi.org/10.3390/agriculture13101927
Zhang Y, Wu X. Risk Management Effects of Insurance Purchase and Organization Participation: Which Is More Effective? Agriculture. 2023; 13(10):1927. https://doi.org/10.3390/agriculture13101927
Chicago/Turabian StyleZhang, Yanyuan, and Xintong Wu. 2023. "Risk Management Effects of Insurance Purchase and Organization Participation: Which Is More Effective?" Agriculture 13, no. 10: 1927. https://doi.org/10.3390/agriculture13101927
APA StyleZhang, Y., & Wu, X. (2023). Risk Management Effects of Insurance Purchase and Organization Participation: Which Is More Effective? Agriculture, 13(10), 1927. https://doi.org/10.3390/agriculture13101927