Inoculation with Potassium Solubilizing Bacteria and Its Effect on the Medicinal Characteristics of Paris polyphylla var. yunnanensis
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Culture and Experimental Design
2.2. Soil Sampling and Analysis
2.3. Rhizome Sampling and Analysis
2.4. Statistical Analysis
3. Results
3.1. Effects of KSB on Available Potassium in Rhizosphere Soil of P. polyphylla var. yunnanensis
3.2. Effects of KSB on Available Potassium and Slow-Available Potassium in Rhizosphere Soil of P. polyphylla var. yunnanensis
3.3. Effects of KSB on Potassium Absorption in Rhizosphere Soil of P. polyphylla var. yunnanensis
3.4. Effects of KSB on the Proportion of Potassium Content in Rhizosphere Soil of P. polyphylla var. yunnanensis
3.5. Correlation among Various Forms of Potassium in Soil
3.6. Effects of KSB on Steroidal Saponins in the Rhizome of P. polyphylla var. yunnanensis
3.7. Principal Component Analysis
3.8. Correlation Analysis of Six Steroidal Saponins in the Rhizome of P. polyphylla var. yunnanensis
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bashir, Z.; Zargar, M.Y.; Baba, Z.A.; Mohiddin, F.A. Effect of potassium and phosphorus solubilizing bacteria on growth parameters of chilli (Capsicum annuum L.) under Kashmir climatic conditions. Int. J. Chem. Stud. 2017, 5, 692–695. [Google Scholar]
- Ahmad, M.; Zargar, M. Characterization of potassium solubilizing bacteria (KSB) in rhizospheric soils of apple (Malusdomestica Borkh.) in temperate kashmir. J. Appl. Life Sci. Int. 2017, 15, 1–7. [Google Scholar] [CrossRef]
- Ahmad, A.; Chatopadhaya, N.; Mandal, J.; Mandal, N.; Ghosh, M. Effect of potassium solubilizing bacteria and waste mica on potassium uptake and dynamics in maize rhizosphere. J. Ind. Soc. Soil Sci. 2021, 68, 431–443. [Google Scholar] [CrossRef]
- Kumari, S.; Sharma, A.; Chaudhary, P.; Khati, P. Management of plant vigor and soil health using two agriusable nanocompounds and plant growth promotory rhizobacteria in Fenugreek. 3 Biotech 2020, 10, 461. [Google Scholar] [CrossRef] [PubMed]
- Chaudhary, P.; Khati, P.; Chaudhary, A.; Gangola, S.; Kumar, R.; Sharma, A. Bioinoculation using indigenous Bacillus spp. improves growth and yield of Zea mays under the influence of nanozeolite. 3 Biotech 2021, 11, 11. [Google Scholar] [CrossRef]
- Ding, Z.L.; Ali, E.F.; Almaroai, Y.A.; Eissa, M.A.; Abeed, H.A. Effect of potassium solubilizing nacteria and humic acid on faba bean (Vicia faba L.) plants grown on sandy loam soils. J. Soil Sci. Plant Nutr. 2021, 21, 791–800. [Google Scholar] [CrossRef]
- Wei, J.C.; Gao, W.Y.; Yan, X.D.; Ying, W.; Xiao, P.G. Chemical constituents of plants from the genus Paris. Chem. Biodivers. 2014, 11, 1277–1297. [Google Scholar] [CrossRef]
- Yang, Y.G.; Zhang, J.; Jin, H.; Zhang, J.Y.; Wang, Y.Z. Quantitative analysis in combination with fingerprint technology and chemometric analysis applied for evaluating six species of wild paris using UHPLC-UV-MS. J. Anal. Methods Chem. 2016, 3, 782–796. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Zhou, N.; Yang, M.; Shen, Y.X.; Zhang, D.Q. A comparative study of the population genetics of wild and cultivated populations of Paris polyphylla var yunnanensis based on amplified fragment length polymorphism markers. Ecol. Evol. 2019, 9, 10707–10722. [Google Scholar]
- Zhang, X.F.; Yan, C.; Huang, J.J.; Zhang, Y.Z.; Nie, Z.; Wang, L.F.; Yan, B.Z.; Tang, Y.L.; Yang, L. Immuno-stimulating properties of diosgenyl saponins isolated from Paris polyphylla. Bioorg. Med. Chem. Lett. 2007, 17, 2408–2413. [Google Scholar] [CrossRef]
- Zhu, L.C.; Tan, J.; Wang, B.C.; Guan, L.H.; Liu, Y.P.; Zheng, C. In-vitro antitumor activity and antifungal activity of pennogenin steroidal saponins from Paris Polyphylla var. yunnanensis. Iran. J. Pharm. Res. 2011, 10, 279–286. [Google Scholar] [PubMed]
- Zhou, N.; Xu, L.F.; Yang, M.; Guo, D.Q.; Gan, Q.X.; Zhao, J.J. Mycorrhizal fungal effects on growth, antioxidant capacity, and medicine quality of Paris polyphylla var. yunnanensis. Phyton 2021, 90, 747–759. [Google Scholar] [CrossRef]
- Cho, E.J.; Lee, D.J.; Chi, D.W.; Hong, L.K.; Yong, H.C.; Ju, S.C.; Bo, K.S. Effects of AMF inoculation on growth of Panax ginseng C.A. Meyer seedlings and on soil structures in mycorrhizosphere. Sci. Hortic. 2009, 122, 633–637. [Google Scholar] [CrossRef]
- Sun, R.T.; Feng, X.C.; Zhang, Z.Z.; Zhou, N.; Feng, H.D.; Liu, Y.M.; Hashem, A.; Al-Arjani, A.; Abd, E.F.; Wu, Q.S. Root endophytic fungi regulate changes in sugar and medicinal compositions of Polygonum cuspidatum. Front. Plant Sci. 2022, 13, 818–909. [Google Scholar] [CrossRef]
- Sun, R.T.; Zhang, Z.Z.; Feng, X.C.; Zhou, N.; Feng, H.D.; Liu, Y.M.; Harsonowati, W.; Hashem, A.; Abd, E.F.; Wu, Q.S. Endophytic fungi accelerate leaf physiological activity and resveratrol accumulation in Polygonum cuspidatum by up-regulating expression of associated genes. Agronomy 2022, 12, 1220. [Google Scholar] [CrossRef]
- Lu, R. Agricultural Chemistry Analysis of Soil; China Agricultural Science and Technology: Beijing, China, 1999. [Google Scholar]
- Sugumaran, P.; Janarthanam, B. Solubilization of potassium containing minerals by bacteria and their effect on plant growth. World J. Agric. Sci. 2007, 3, 350–355. [Google Scholar]
- Grewal, J.S.; Kanwar, J.S. Forms of potassium in Punjab soils. J. Indian Soc. Soil Sci. 1996, 14, 63–67. [Google Scholar]
- Meena, V.S.; Maurya, B.R.; Verma, J.P.; Aeron, A.; Bajpai, V.K. Potassium solubilizing rhizobacteria (KSR): Isolation, identification, and K-release dynamics from waste mica. Ecol. Eng. 2015, 81, 340–347. [Google Scholar] [CrossRef]
- He, P.; Yang, L.P.; Xu, X.P.; Zhao, S.; Chen, F.; Li, S.; Tu, S.; Jin, J.; Johnston, A.M. Temporal and spatial variation of soil available potassium in China (1990–2012). Field Crop. Res. 2015, 173, 49–56. [Google Scholar] [CrossRef]
- Narula, N.; Saharan, B.S.; Kumar, V.; Bhatia, R.; Bishnoi, L.K.; Lather, B.S.; Lakshminarayana, K. Impact of the use of biofertilizers on cotton (Gossypium hirsutum) crop under irrigated agro-ecosystem. Arch. Agron. Soil Sci. 2005, 51, 69–77. [Google Scholar] [CrossRef]
- Xiao, Y.; Wang, X.; Chen, W.; Huang, Q. Isolation and identification of three potassium-solubilizing bacteria from rape rhizospheric soil and their effects on ryegrass. Geomicrobiol. J. 2017, 34, 873–880. [Google Scholar] [CrossRef]
- Han, M.; Zhu, X.Y.; Chen, G.W.; Wan, X.M.; Wang, G. Advances on potassium-solubilizing bacteria and their microscopic potassium solubilizing mechanisms. Acta Pedol. Sin. 2022, 59, 334–348. [Google Scholar]
- El-Azab, M.E.; El-Dewiny, C.Y. Effect of bio and mineral nitrogen fertilizer with different levels on growth, yield and quality of maize plants. JIPBS 2018, 5, 2349–2759. [Google Scholar]
- Shi, Y.M.; Yang, L.; Geng, Y.D. Polyphyllin I induced-apoptosis is enhanced by inhibition of autophagy in human hepatocellular carcinoma cells. Phytomedicine 2015, 22, 1139–1149. [Google Scholar] [CrossRef] [PubMed]
- Ngai, B.H.; Loo, J.; Kong, S.K. Abstract 3048: Study of mitochondria in multi-drug resistance and Polyphyllin D anti-cancer effect in hepatocellular carcinoma. Cancer Res. 2015, 75, 3048. [Google Scholar] [CrossRef]
- Zhang, C.; Li, Q.R.; Qin, G.Z.; Zhang, Y.; He, C.W. Anti-angiogenesis and anti-metastasis effects of Polyphyllin VII on Hepatocellular carcinoma cells in vitro and in vivo. Chin. Med. 2021, 16, 41. [Google Scholar] [CrossRef]
Treatments | Inoculated Strains | Inoculation Dose |
---|---|---|
S1 | Bacillus thuringiensis | 30 mL/plant |
S2 | Paenibacillus amylolyticus | 30 mL/plant |
S3 | B. polymyxa | 30 mL/plant |
S4 | B. thuringiensis and P. amylolyticus | 15 mL/plant for each of 2 kinds of bacteria |
S5 | B. thuringiensis and B. polymyxa | 15 mL/plant for each of 2 kinds of bacteria |
S6 | P. amylolyticus and B. polymyxa | 15 mL/plant for each of 2 kinds of bacteria |
S7 | B. thuringiensis, P. amylolyticus and B. polymyxa | 10 mL/plant for each of 3 kinds of bacteria |
CK | No any KSB |
Treatments | Proportion of Total Potassium in the Soil (%) | ||||
---|---|---|---|---|---|
Water Soluble Potassium | Exchangeable Potassium | Fast-Acting Potassium | Available Potassium | Slow-Acting Potassium | |
S1 | 0.83 | 1.14 | 1.97 | 7.17 | 8.89 |
S2 | 0.66 | 1.15 | 1.81 | 6.10 | 8.28 |
S3 | 0.51 | 0.97 | 1.48 | 5.69 | 7.88 |
S4 | 0.75 | 1.08 | 1.83 | 6.83 | 9.14 |
S5 | 0.24 | 0.56 | 0.80 | 3.64 | 6.42 |
S6 | 0.69 | 1.06 | 1.75 | 6.75 | 9.66 |
S7 | 0.56 | 1.02 | 1.58 | 6.33 | 9.43 |
CK | 0.29 | 0.72 | 1.02 | 4.56 | 8.31 |
Index | Water Soluble Potassium | Exchangeable Potassium | Fast-Acting Potassium | Available Potassium | Slow-Acting Potassium | Total Potassium |
---|---|---|---|---|---|---|
Water soluble potassium | - | |||||
Exchangeable potassium | 0.963 ** | - | ||||
Fast-acting potassium | 0.990 ** | 0.991 ** | - | |||
Available Potassium | 0.990 ** | 0.955 ** | 0.981 ** | - | ||
Slow-acting potassium | 0.864 ** | 0.828 * | 0.854 ** | 0.914 ** | - | |
Total potassium | 0.439 | 0.393 | 0.420 | 0.377 | 0.292 | - |
Control | Regression Equation | r2 | Scope (µg/mL) |
---|---|---|---|
Polyphyllin I | Y = 5.140 × 103X + 1.032 × 103 | 0.9997 | 1.423~28.453 |
Polyphyllin II | Y = 4.334 × 103X − 3.242 × 103 | 0.9999 | 6.873~137.467 |
Polyphyllin VII | Y = 4.368 × 103X − 2.264 × 102 | 0.9999 | 1.894~37.880 |
Polyphyllin H | Y = 5.530 × 103X − 1.540 × 103 | 0.9994 | 1.260~20.160 |
Dioscin | Y = 6.226 × 103X − 1.760 × 103 | 0.9994 | 0.523~10.453 |
Pseudoprotodioscin | Y = 7.046 × 103X + 4.237 × 102 | 0.9995 | 0.557~11.147 |
Treatments | Pseudoprotodioscin | Polyphyllin VII | Polyphyllin H | Polyphyllin II | Dioscin | Polyphyllin I | Total | Total Pharmacopoeia Regulations |
---|---|---|---|---|---|---|---|---|
S1 | 0.711 ± 0.014 c | 1.650 ± 0.018 f | 0.769 ± 0.004 f | 5.457 ± 0.005 g | 0.766 ± 0.066 d | 1.952 ± 0.011 e | 11.305 | 9.059 |
S2 | 0.312 ± 0.009 g | 2.052 ± 0.002 e | 1.022 ± 0.011 e | 9.696 ± 0.003 c | 1.138 ± 0.003 b | 4.122 ± 0.005 b | 18.342 | 15.87 |
S3 | 0.430 ± 0.013 e | 3.624 ± 0.011 c | 1.231 ± 0.008 d | 6.751 ± 0.005 f | 0.721 ± 0.009 ef | 1.847 ± 0.007 f | 14.604 | 12.222 |
S4 | 0.641 ± 0.017 d | 3.627 ± 0.007 c | 1.533 ± 0.009 c | 5.552 ± 0.002 g | 0.612 ± 0.022 f | 1.547 ± 0.029 g | 13.512 | 10.726 |
S5 | 0.289 ± 0.015 h | 6.853 ± 0.002 a | 2.296 ± 0.005 a | 11.808 ± 0.001 a | 1.557 ± 0.004 a | 4.823 ± 0.004 a | 27.626 | 23.484 |
S6 | 0.868 ± 0.010 b | 4.478 ± 0.009 b | 1.703 ± 0.008 b | 10.272 ± 0.002 b | 0.752 ± 0.011 de | 3.114 ± 0.014 c | 21.187 | 17.864 |
S7 | 1.071 ± 0.003 a | 2.974 ± 0.005 d | 1.252 ± 0.008 d | 7.435 ± 0.001 e | 1.003 ± 0.006 c | 2.372 ± 0.004 d | 16.107 | 12.781 |
CK | 0.332 ± 0.011 f | 4.449 ± 0.005 b | 1.204 ± 0.007 d | 8.435 ± 0.004 d | 1.142 ± 0.011 b | 3.288 ± 0.001 c | 18.850 | 16.172 |
Steroidal Saponins | Main Ingredient 1 | Main Ingredient 2 |
---|---|---|
Pseudoprotodioscin | −0.135 | 0.550 |
Polyphyllin VII | 0.206 | 0.422 |
Polyphyllin H | 0.194 | 0.541 |
Polyphyllin II | 0.230 | 0.002 |
Dioscin | 0.218 | −0.263 |
Polyphyllin I | 0.229 | −0.266 |
Eigenvalues | 3.991 | 1.094 |
Contribution rate (%) | 66.52 | 18.23 |
Cumulative contribution rate (%) | 66.52 | 84.75 |
Treatments | F1 | Sort | F2 | Sort | F | Sort |
---|---|---|---|---|---|---|
S1 | 0.638 | 1 | −2.599 | 8 | −0.058 | 8 |
S2 | 0.056 | 4 | −0.229 | 5 | −0.005 | 5 |
S3 | 0.428 | 2 | −1.744 | 7 | −0.039 | 7 |
S4 | 0.395 | 3 | −1.608 | 6 | −0.036 | 6 |
S5 | −1.085 | 8 | 4.419 | 1 | 0.099 | 1 |
S6 | −0.351 | 7 | 1.429 | 2 | 0.032 | 2 |
S7 | −0.046 | 6 | 0.189 | 3 | 0.004 | 3 |
CK | −0.035 | 5 | 0.143 | 4 | 0.003 | 4 |
Steroidal Saponins | Pseudoprotodioscin | Polyphyllin VII | Polyphyllin H | Polyphyllin II | Dioscin | Polyphyllin I |
---|---|---|---|---|---|---|
Pseudoprotodioscin | - | |||||
Polyphyllin VII | −0.320 | - | ||||
Polyphyllin H | −0.153 | 0.925 ** | - | |||
Polyphyllin II | −0.343 | 0.657 | 0.662 | - | ||
Dioscin | −0.500 | 0.555 | 0.468 | 0.758 * | - | |
Polyphyllin I | −0.521 | 0.528 | 0.503 | 0.931 ** | 0.894 ** | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, S.-X.; Deng, Q.-S.; Jiang, C.-Y.; Wu, Q.-S.; Xue, Y.-B.; Li, G.-L.; Zhao, J.-J.; Zhou, N. Inoculation with Potassium Solubilizing Bacteria and Its Effect on the Medicinal Characteristics of Paris polyphylla var. yunnanensis. Agriculture 2023, 13, 21. https://doi.org/10.3390/agriculture13010021
Zhao S-X, Deng Q-S, Jiang C-Y, Wu Q-S, Xue Y-B, Li G-L, Zhao J-J, Zhou N. Inoculation with Potassium Solubilizing Bacteria and Its Effect on the Medicinal Characteristics of Paris polyphylla var. yunnanensis. Agriculture. 2023; 13(1):21. https://doi.org/10.3390/agriculture13010021
Chicago/Turabian StyleZhao, Shun-Xin, Qiao-Sheng Deng, Chun-Yang Jiang, Qiang-Sheng Wu, Yan-Bin Xue, Guo-Li Li, Jing-Jing Zhao, and Nong Zhou. 2023. "Inoculation with Potassium Solubilizing Bacteria and Its Effect on the Medicinal Characteristics of Paris polyphylla var. yunnanensis" Agriculture 13, no. 1: 21. https://doi.org/10.3390/agriculture13010021
APA StyleZhao, S.-X., Deng, Q.-S., Jiang, C.-Y., Wu, Q.-S., Xue, Y.-B., Li, G.-L., Zhao, J.-J., & Zhou, N. (2023). Inoculation with Potassium Solubilizing Bacteria and Its Effect on the Medicinal Characteristics of Paris polyphylla var. yunnanensis. Agriculture, 13(1), 21. https://doi.org/10.3390/agriculture13010021