Use of Graphical and Numerical Approaches for Diallel Analysis of Grain Yield and Its Attributes in Bread Wheat (Triticum aestivum L.) under Varying Environmental Conditions
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material and Field Performance Evaluation
2.2. Estimation of Genetic Parameters
3. Results
3.1. Numerical Approach
3.1.1. Days to 50% Heading
3.1.2. Days to Maturity
3.1.3. Number of Effective Tillers per Plant
3.1.4. Length of Main Spike
3.1.5. Number of Spikelets per Main Spike
3.1.6. Number of Grains per Main Spike
3.1.7. Grain Yield per Main Spike
3.1.8. 1000-Grain Weight
3.1.9. Harvest Index
3.2. Graphical Analysis
3.2.1. Days to 50% Heading
3.2.2. 1000-Grain Weight
4. Discussion
4.1. Numerical Approach
4.2. Graphical Approach
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khodadadi, E.; Aharizad, S.; Sabzi, M.; Khodadadi, E. Studding the genetic control of the bread quality related traits of wheat using Hayman graphical method. Ann. Biol. Res. 2012, 3, 5446–5449. [Google Scholar]
- Khan, M.; Riaz, K.; Khan, A.S. Graphical analysis of spike characters related to grain yield in bread wheat (Triticum aestivum L.). Pak. J. Biol. Sci. 1999, 2, 340–343. [Google Scholar]
- Gami, R.A.; Chauhan, B.B.; Patel, R.N. Hayman’s diallel analysis for yield and attributing traits in sesame (Sesamum indicum L.). Electron. J. Plant Breed. 2020, 11, 359–366. [Google Scholar] [CrossRef]
- Jaiswal, K.K.; Marker, S.; Kumar, B. Combining ability analysis in diallel crosses of wheat (Triticum aestivum L.). Bioscan 2013, 8, 1557–1560. [Google Scholar]
- Owusu, E.Y.; Mohammed, H.; Manigben, K.A.; Adjebeng-Danquah, J.; Kusi, F.; Karikari, B.; Sie, E.K. Diallel Analysis and Heritability of Grain Yield, Yield Components, and Maturity Traits in Cowpea (Vigna unguiculata(L.) Walp.). Sci. World J. 2020, 2020, 9390827. [Google Scholar] [CrossRef]
- Griffing, B. A general treatment of the use of diallel cross in quantitative inheritance. Heredity 1956, 10, 31–50. [Google Scholar] [CrossRef] [Green Version]
- Hayman, B.I. The theory and analysis of diallel crosses. Genetics 1954, 39, 789–809. [Google Scholar] [CrossRef]
- Patel, A.L.; Kathiria, K.B. Graphical analysis for fruit yield and its component traits in chilli (Capsicum annuum L.). Electron. J. Plant Breed. 2018, 9, 926. [Google Scholar] [CrossRef]
- Kearsey, M.J. Biometrical analysis of a random mating population: A comparison of five experimental designs. Heredity 1965, 20, 205–235. [Google Scholar] [CrossRef]
- Jinks, J.L.; Hayman, B.I. The analysis of diallel crosses. Maize Genet. Newsl. 1953, 27, 48–54. [Google Scholar]
- Pooni, H.S.; Jinks, J.L.; Singh, R.K. Methods of analysis and the estimation of the genetic parameters from a diallel set of crosses. Heredity 1984, 52, 243–253. [Google Scholar] [CrossRef] [Green Version]
- Wright, A.J. Diallel designs, analysis and reference populations. Heredity 1985, 54, 307–311. [Google Scholar] [CrossRef] [Green Version]
- Hayman, B.I. The analysis of variation of diallel tables. Biometrics 1954, 10, 235–244. [Google Scholar] [CrossRef]
- Ahuja, S.; Malhotra, P.K.; Bhatia, V.K.; Prasad, R. Statistical Package for Agricultural Research (SPAR 2.0). J. Ind. Soc. Agril. Statist. 2008, 62, 65–74. [Google Scholar]
- Hayman, B.I. The theory and analysis of diallel crosses. III. Genetics 1960, 45, 155–172. [Google Scholar] [CrossRef]
- Jinks, J.L. The analysis of continuous variation in a diallel cross of nicotiana rustica varieties. Genetics 1954, 39, 767–788. [Google Scholar] [CrossRef]
- Jinks, J.L. The F2 and backcross generations from a set of diallel crosses. Heredity 1956, 10, 1–30. [Google Scholar] [CrossRef]
- Mather, K.; Jinks, J.L. Biometrical Genetics, the Study of Continuous Variation, 3rd ed.; Chapman and Hall Ltd.: London, UK, 1982. [Google Scholar]
- Singh, R.K.; Chaudhary, B.D. Biometrical Methods in Quantitative Genetic Analysis; Kalyani Publishers: Ludhiana/Delhi, India, 1985; pp. 262–282. [Google Scholar]
- Hayman, B.I. The separation of epistasis from additive and dominance variation in generation means. Heredity 1958, 12, 371–390. [Google Scholar] [CrossRef] [Green Version]
- Kushwaha, M.L.; Ram, H.H. Vr, Wr graphical analysis in bottlegourd. Veg. Sci. 1996, 23, 162–165. [Google Scholar]
- Dubey, S.K.; Maurya, I.B. Studies on heterosis and combining ability in bottlegourd. Indian J. Genet. 2003, 63, 148–152. [Google Scholar]
- Maurya, I.B.; Singh, S.P. Studies on gene action in long fruited bottlegourd. Crop Res. 1994, 8, 100–104. [Google Scholar]
- Dubey, R.K.; Ram, H.H. Graphical analysis (Vr-Wr) and numerical approach for a diallel analysis of yield components in Bottlegourd (Lagenaria siceraria (Mol.) Standl.). Int. J. Plant Breed. 2007, 1, 65–69. [Google Scholar]
- Derera, J.; Tongoona, P.; Vivek, B.S.; Laing, M. Gene action controlling grain yield and secondary traits in southern African maize hybrids under drought and non-drought environments. Euphytica 2008, 162, 411–422. [Google Scholar] [CrossRef]
- Al-Naggar, A.M.M.; Atta, M.M.M.; Ahmed, M.A.; Younis, A.S.M. Numerical and Graphical Diallel Analyses of Maize (Zea mays L.) Agronomic and Yield Traits under Well Watering and Water Deficit at Silking. Arch. Curr. Res. Int. 2016, 5, 1–18. [Google Scholar] [CrossRef]
- Ljubičić, N.; Popović, V.; Ćirić, V.; Kostić, M.; Ivošević, B.; Popović, D.; Pandžić, M.; El Musafah, S.; Janković, S. Multivariate Interaction Analysis of Winter Wheat Grown in Environment of Limited Soil Conditions. Plants 2021, 10, 604. [Google Scholar] [CrossRef]
- Popović, V.; Ljubičić, N.; Kostić, M.; Radulović, M.; Blagojević, D.; Ugrenović, V.; Popović, D.; Ivošević, B. Genotype × Environment Interaction for Wheat Yield Traits Suitable for Selection in Different Seed Priming Conditions. Plants 2020, 9, 1804. [Google Scholar] [CrossRef]
- Glamočlija, Đ.; Popović, V.; Markoski, M.; Janković, S.; Ikanović, J.; Lončarević, V.; Strugar, V.; Bačkonja, B. Climatic change effect on wheat production “Biotechnology and modern approach in growing and breeding plants”. Smeder. Palanka 2022, 212–223. [Google Scholar]
Sr. No. | Released Varieties | Pedigree | Source |
---|---|---|---|
1 | GW 451 | GW324/4/CROC_1/AE.SQUARROSA (205)/JUP/JY/3/SKAUZ/4/KAUZ/5/GW 339 | Centre of Excellence for Research on Wheat, SDAU, Vijapur, Gujarat |
2 | GW 496 | HD 2285/CPAN 1861 | |
3 | LOK 1 | S 308/S 311 | |
4 | GW 322 | PBW 173/GW 196 | |
5 | GW 366 | DL 802-3/GW 232 | |
6 | HI 1544 | HIND162/BOBWHITE/CPAN 2099 | |
7 | GW 173 | TW 275 -7-6-10/LOK1 | |
8 | GW 11 | LOK 1/HW 1042//LOK 1 | |
9 | HD 2864 | DL509-2/DL377-8 | |
10 | UAS 385 | GW344/UAS239/DWR162 | |
Standard check varieties | |||
1 | MASC 6222–TS | HD 2189*2//MASC 2496 | |
2 | HD 2932–LS | KAUZ/STAR//HD 2643 |
SN | Characteristics | t2 Test | b (Regression) | ||||||
---|---|---|---|---|---|---|---|---|---|
E1 | E2 | E3 | E4 | E1 | E2 | E3 | E4 | ||
1 | Days to 50% heading | 1.96 | 0.20 | 0.60 | 0.04 | 0.18 ++ | 0.87 $$ | 0.15 + | 0.69 $ |
2 | Days to maturity | 11.63 ** | 2.58 | 0.09 | 0.07 | 0.29 $++ | 0.27 ++ | 0.51 | 0.44 |
3 | Plant height | 6.21 ** | 9.56 ** | 10.18 ** | 19.17 ** | 0.19 ++ | 0.20 ++ | 0.06 ++ | 0.17 ++ |
4 | No. effective tillers per plant | 1.34 | 13.53 ** | 0.45 | 18.10 ** | 0.20 ++ | −0.13 ++ | 0.36+ | −0.11 ++ |
5 | Length of main spike | 3.96 ** | 1.31 | 0.93 | 21.47 ** | 0.13 ++ | 0.16 ++ | 0.37 + | 0.22 $++ |
6 | Number of spikelets/main spike | 7.07 ** | 0.20 | 3.28 | 2.04 | 0.24 ++ | 0.60 | 0.31 ++ | 0.59 |
7 | Number of grains per main spike | 3.01 | 0.208 | 6.68 ** | 0.24 | −0.07 ++ | 0.57 | 0.04 ++ | 0.65 |
8 | Grain yield per main spike | 34.90 ** | 0.004 | 21.91 ** | 0.04 | 0.10 ++ | 0.14 + | 0.08 ++ | 0.20 |
9 | Grain yield per plant | 29.21 ** | 7.32 ** | 43.61 ** | 7.99 ** | 0.22 $++ | 0.01 ++ | 0.21 $++ | 0.13 ++ |
10 | 1000-grain weight | 1.81 | 0.04 | 0.97 | 0.006 | 0.67 $$+ | 0.46 $$++ | 0.71 $$ | 0.66 $ |
11 | Biological yield per plant | 476.05 ** | 7.14 ** | 88.27 ** | 8.41 ** | −0.04 ++ | 0.04 ++ | −0.06 ++ | 0.20 ++ |
12 | Harvest index | 0.97 | 11.22 ** | 3.94 * | 9.71 ** | −0.20 ++ | 0.55 $$++ | −0.29 ++ | 0.35 $++ |
Days to 50% Heading | Days to Maturity $ | No. of Effective Tillers Per Plant & | Length of Main Spike & | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Genetic Components | E1 | E2 | E3 | E4 | E2 | E3 | E4 | E1 | E3 | E2 | E3 |
0.44 | 0.60 * | 0.64 | 0.54 | 0.91 | 0.54 | 0.82 | 0.28 | 0.30 | 0.14 ** | 0.13 ** | |
17.32 ** | 7.37 ** | 19.04 ** | 7.09 ** | 5.11 ** | 10.15 ** | 2.93 ** | 0.87 | 0.74 | 0.13 | 0.13 | |
−2.16 | 5.22 ** | 1.58 | 5.73 ** | 2.04 | 1.19 | 0.82 ** | −0.08 | −1.04 | −0.19 | 0.13 | |
1 | 49.19 ** | 10.69 ** | 42.75 ** | 10.74 ** | 19.88 ** | 24.31 ** | 10.56 ** | 11.18 ** | 9.58 ** | 1.82 ** | 2.11 ** |
2 | 41.79 ** | 9.36 ** | 36.90 ** | 8.75 ** | 13.80 ** | 17.58 ** | 8.21 ** | 8.25 ** | 7.89 ** | 1.45 ** | 1.55 ** |
2 | 10.64 | 0.01 | 11.33 | 0.23 | 3.41 | 4.76 | 4.25 | 0.08 | 0.04 | 0.88 ** | 1.22 ** |
(1/)0.5 | 1.69 | 1.20 | 1.50 | 1.23 | 1.97 | 1.55 | 1.90 | 3.59 | 3.59 | 3.79 | 4.01 |
2/41 | 0.21 | 0.22 | 0.22 | 0.20 | 0.17 | 0.18 | 0.19 | 0.18 | 0.21 | 0.20 | 0.18 |
KD/KR | 0.93 | 1.83 | 1.06 | 1.98 | 1.23 | 1.08 | 1.16 | 0.97 | 0.67 | 0.67 | 1.28 |
2/2 | 0.25 | 0.00 | 0.31 | 0.03 | 0.25 | 0.27 | 0.52 | 0.01 | 0.01 | 0.61 | 0.79 |
% Heritability (narrow sense) | 24.58 | 48.33 | 30.33 | 49.69 | 19.21 | 28.64 | 18.35 | 6.53 | 5.91 | 4.69 | 5.01 |
No. of Spikelets per Main Spike $ | No. of Grains per Main Spike $ | Grain Yield per Main Spike & | 1000-Grain Weight | Harvest Index # | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Genetic Components | E2 | E3 | E4 | E1 | E2 | E4 | E2 | E4 | E1 | E2 | E3 | E4 | E1 |
0.49 ** | 0.39 ** | 0.36 ** | 1.53 | 6.85 ** | 3.14 | 0.02 | 0.01 | 0.63 | 0.64 | 1.01 | 0.79 | 9.34 | |
2.01 ** | 0.82 | 2.19 ** | 17.21 | 23.12 ** | 21.02 ** | 0.09 ** | 0.10 ** | 12.46 ** | 30.12 ** | 13.82 ** | 30.78 ** | 66.93 | |
−0.31 | −0.28 | 0.53 | 12.26 | 2.40 | 4.56 | 0.19 | 0.23 ** | −4.71 | 12.56 | −0.54 | 14.22 | 115.29 | |
1 | 5.26 ** | 5.04 ** | 4.47 ** | 98.85 ** | 109.88 ** | 121.19 ** | 0.49 ** | 0.45 ** | 41.62 ** | 68.97 ** | 37.71 ** | 62.35 ** | 357.26 ** |
2 | 4.81 ** | 3.87 ** | 3.86 ** | 79.04 ** | 78.17 ** | 85.93 ** | 0.35 ** | 0.29 ** | 32.99 ** | 52.25 ** | 30.82 ** | 47.28 ** | 290.10 ** |
2 | 11.25 ** | −0.13 | 5.63 ** | 13.29 | 33.53 ** | 35.67 ** | 0.15 ** | 0.07 | 77.41 ** | 85.02 ** | 76.95 ** | 90.71 ** | 59.62 |
(1/)0.5 | 1.62 | 2.48 | 1.43 | 2.40 | 2.18 | 2.40 | 2.38 | 2.07 | 1.83 | 1.51 | 1.65 | 1.42 | 2.31 |
2/41 | 0.23 | 0.19 | 0.22 | 0.20 | 0.18 | 0.18 | 0.18 | 0.16 | 0.20 | 0.19 | 0.20 | 0.19 | 0.20 |
KD/KR | 0.91 | 0.87 | 1.19 | 1.35 | 1.05 | 1.09 | 2.65 | 3.37 | 0.81 | 1.32 | 0.98 | 1.39 | 2.19 |
2/2 | 2.34 | −0.03 | 1.46 | 0.17 | 0.43 | 0.42 | 0.43 | 0.24 | 2.35 | 1.63 | 2.50 | 1.92 | 0.21 |
% Heritability (narrow sense) | 21.06 | 10.58 | 28.99 | 15.65 | 14.62 | 13.99 | 18.27 | 29.12 | 20.31 | 33.80 | 24.63 | 37.49 | 19.32 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chaudhari, G.R.; Patel, D.A.; Kalola, A.D.; Kumar, S. Use of Graphical and Numerical Approaches for Diallel Analysis of Grain Yield and Its Attributes in Bread Wheat (Triticum aestivum L.) under Varying Environmental Conditions. Agriculture 2023, 13, 171. https://doi.org/10.3390/agriculture13010171
Chaudhari GR, Patel DA, Kalola AD, Kumar S. Use of Graphical and Numerical Approaches for Diallel Analysis of Grain Yield and Its Attributes in Bread Wheat (Triticum aestivum L.) under Varying Environmental Conditions. Agriculture. 2023; 13(1):171. https://doi.org/10.3390/agriculture13010171
Chicago/Turabian StyleChaudhari, Gita R., D. A. Patel, A. D. Kalola, and Sushil Kumar. 2023. "Use of Graphical and Numerical Approaches for Diallel Analysis of Grain Yield and Its Attributes in Bread Wheat (Triticum aestivum L.) under Varying Environmental Conditions" Agriculture 13, no. 1: 171. https://doi.org/10.3390/agriculture13010171
APA StyleChaudhari, G. R., Patel, D. A., Kalola, A. D., & Kumar, S. (2023). Use of Graphical and Numerical Approaches for Diallel Analysis of Grain Yield and Its Attributes in Bread Wheat (Triticum aestivum L.) under Varying Environmental Conditions. Agriculture, 13(1), 171. https://doi.org/10.3390/agriculture13010171