Fall Straw Incorporation with Plastic Film Cover Increases Corn Yield and Water Use Efficiency under a Semi-Arid Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Site Description
2.2. Experimental Design
2.3. Sampling and Measurement
2.3.1. Soil Water Content and Temperature
2.3.2. Straw Decomposition
2.3.3. Yield and Dry Matter
2.4. Data Analysis and Statistics
3. Results
3.1. Grain Yield
3.2. Dry Matter and Harvest Index
3.3. Soil Temperature
3.4. Daily Water Use and Water Availability
3.5. Water Uptake and Use Efficiency
3.6. Straw Decomposition Rate
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Wang, X.E.; Li, K.; Song, J.; Duan, H.; Wang, S. Integrated assessment of straw utilization for energy production from views of regional energy, environmental and socioeconomic benefits. J. Clean. Prod. 2018, 190, 787–798. [Google Scholar] [CrossRef]
- Xia, F.; Liu, H.; Lu, J.; Lv, Y.; Zhai, S.; An, Q.; Cheng, Y.; Wang, H. An integrated biorefinery process to produce butanol and pulp from corn straw. Ind. Crops Prod. 2019, 140, 111648. [Google Scholar] [CrossRef]
- Li, J.; Zhang, X.; Zhang, J.; Mi, Q.; Jia, F.; Wu, J.; Yu, J.; Zhang, J. Direct and complete utilization of agricultural straw to fabricate all-biomass films with high-strength, high-haze and UV-shielding properties. Carbohydr. Polym. 2019, 223, 115057. [Google Scholar] [CrossRef] [PubMed]
- Liu, E.K.; He, W.Q.; Yan, C.R. ‘White revolution’ to ‘white pollution’—Agricultural plastic film mulch in China. Environ. Res. Lett. 2014, 9, 091001. [Google Scholar] [CrossRef] [Green Version]
- An, T.; Schaeffer, S.; Li, S.; Fu, S.; Pei, J.; Li, H.; Zhuang, J.; Radosevich, M.; Wang, J. Carbon fluxes from plants to soil and dynamics of microbial immobilization under plastic film mulching and fertilizer application using 13C pulse-labeling. Soil Biol. Biochem. 2015, 80, 53–61. [Google Scholar] [CrossRef]
- Hong, J.; Ren, L.; Hong, J.; Xu, C. Environmental impact assessment of corn straw utilization in China. J. Clean. Prod. 2016, 112, 1700–1708. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, T.; Tian, X.; Wang, X.; Chen, H.; Li, M.; Wang, S.; Wang, Z. Improving Winter Wheat Grain Yield and Water Use Efficiency through Fertilization and Mulch in the Loess Plateau. Agron. J. 2015, 107, 2059–2068. [Google Scholar] [CrossRef]
- Moiwo, J.P.; Tao, F. Contributions of precipitation, irrigation and soil water to evapotranspiration in (semi)-arid regions. Int. J. Climatol. 2015, 35, 1079–1089. [Google Scholar] [CrossRef]
- Xiukang, W.; Zhanbin, L.; Yingying, X. Effects of mulching and nitrogen on soil temperature, water content, nitrate-N content and maize yield in the Loess Plateau of China. Agric. Water Manag. 2015, 161, 53–64. [Google Scholar] [CrossRef]
- Wang, Y.P.; Li, X.G.; Fu, T.; Wang, L.; Turner, N.C.; Siddique, K.H.M.; Li, F.-M. Multi-site assessment of the effects of plastic-film mulch on the soil organic carbon balance in semiarid areas of China. Agric. For. Meteorol. 2016, 228–229, 42–51. [Google Scholar] [CrossRef]
- Angus, J.F.; Herwaarden, A.F. Increasing Water Use and Water Use Efficiency in Dryland Wheat. Agron. J. 2001, 93, 290–298. [Google Scholar] [CrossRef]
- Jin, X.; An, T.; Gall, A.R.; Li, S.; Filley, T.; Wang, J. Enhanced conversion of newly-added maize straw to soil microbial biomass C under plastic film mulching and organic manure management. Geoderma 2018, 313, 154–162. [Google Scholar] [CrossRef] [Green Version]
- Li, Y.; Song, D.; Dang, P.; Wei, L.; Qin, X.; Siddique, K.H.M. Combined ditch buried straw return technology in a ridge–furrow plastic film mulch system: Implications for crop yield and soil organic matter dynamics. Soil Tillage Res. 2020, 199, 104596. [Google Scholar] [CrossRef]
- Scarascia-Mugnozza, G.; Schettini, E.; Vox, G. Effects of Solar Radiation on the Radiometric Properties of Biodegradable Films for Agricultural Applications. Biosyst. Eng. 2004, 87, 479–487. [Google Scholar] [CrossRef]
- Wang, T.; Li, Y.; Zhi, D.; Lin, Y.; He, K.; Liu, B.; Mao, H. Assessment of combustion and emission behavior of corn straw biochar briquette fuels under different temperatures. J. Environ. Manag. 2019, 250, 109399. [Google Scholar] [CrossRef] [PubMed]
- Mu, C.T.; Ding, N.; Hao, X.Y.; Zhao, Y.B.; Wang, P.J.; Zhao, J.X.; Ren, Y.S.; Zhang, C.X.; Zhang, W.J.; Xiang, B.W.; et al. Effects of different proportion of buckwheat straw and corn straw on performance, rumen fermentation and rumen microbiota composition of fattening lambs. Small Rumin. Res. 2019, 181, 21–28. [Google Scholar] [CrossRef]
- Cai, A.; Liang, G.; Zhang, X.; Zhang, W.; Li, L.; Rui, Y.; Xu, M.; Luo, Y. Long-term straw decomposition in agro-ecosystems described by a unified three-exponentiation equation with thermal time. Sci. Total Environ. 2018, 636, 699–708. [Google Scholar] [CrossRef]
- Yu, X.; He, X.; Zheng, H.; Guo, R.; Ren, Z.; Zhang, D.; Lin, J. Spatial and temporal analysis of drought risk during the crop-growing season over northeast China. Nat. Hazards 2013, 71, 275–289. [Google Scholar] [CrossRef]
- Chen, J.; Li, C.; Ristovski, Z.; Milic, A.; Gu, Y.; Islam, M.S.; Wang, S.; Hao, J.; Zhang, H.; He, C.; et al. A review of biomass burning: Emissions and impacts on air quality, health and climate in China. Sci. Total Environ. 2017, 579, 1000–1034. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Ge, Q.; Zheng, J.; Dai, E.; Zhang, X.; He, S.; Liu, G. Agricultural drought risk analysis based on three main crops in prefecture-level cities in the monsoon region of east China. Nat. Hazards 2013, 66, 1257–1272. [Google Scholar] [CrossRef]
- Briassoulis, D. Mechanical behaviour of biodegradable agricultural films under real field conditions. Polym. Degrad. Stab. 2006, 91, 1256–1272. [Google Scholar] [CrossRef]
- Song, X.; Li, L.; Fu, G.; Li, J.; Zhang, A.; Liu, W.; Zhang, K. Spatial–temporal variations of spring drought based on spring-composite index values for the Songnen Plain, Northeast China. Theor. Appl. Climatol. 2013, 116, 371–384. [Google Scholar] [CrossRef]
- Zhang, S.; Deng, M.; Shan, M.; Zhou, C.; Liu, W.; Xu, X.; Yang, X. Energy and environmental impact assessment of straw return and substitution of straw briquettes for heating coal in rural China. Energy Policy 2019, 128, 654–664. [Google Scholar] [CrossRef]
- Li, H.; Dai, M.; Dai, S.; Dong, X. Current status and environment impact of direct straw return in China’s cropland—A review. Ecotoxicol. Environ. Saf. 2018, 159, 293–300. [Google Scholar] [CrossRef]
- Tian, Y.; Su, D.; Li, F.; Li, X. Effect of rainwater harvesting with ridge and furrow on yield of potato in semiarid areas. Field Crops Res. 2003, 84, 385–391. [Google Scholar] [CrossRef]
- Han, J.; Jia, Z.; Wu, W.; Li, C.; Han, Q.; Zhang, J. Modeling impacts of film mulching on rainfed crop yield in Northern China with DNDC. Field Crops Res. 2014, 155, 202–212. [Google Scholar] [CrossRef]
- Chen, Q.; Liu, Z.; Zhou, J.; Xu, X.; Zhu, Y. Long-term straw mulching with nitrogen fertilization increases nutrient and microbial determinants of soil quality in a maize–wheat rotation on China’s Loess Plateau. Sci. Total Environ. 2021, 775, 145930. [Google Scholar] [CrossRef]
- Liu, X.E.; Li, X.G.; Hai, L.; Wang, Y.P.; Li, F.M. How efficient is film fully-mulched ridge–furrow cropping to conserve rainfall in soil at a rainfed site? Field Crops Res. 2014, 169, 107–115. [Google Scholar] [CrossRef]
- Li, X.; Zhou, W.; Chen, Y.D. Assessment of Regional Drought Trend and Risk over China: A Drought Climate Division Perspective. J. Clim. 2015, 28, 7025–7037. [Google Scholar] [CrossRef]
- Qu, C.; Li, B.; Wu, H.; Giesy, J.P. Controlling air pollution from straw burning in China calls for efficient recycling. Environ. Sci. Technol. 2012, 46, 7934–7936. [Google Scholar] [CrossRef]
- Steenwerth, K.; Belina, K.M. Cover crops enhance soil organic matter, carbon dynamics and microbiological function in a vineyard agroecosystem. Appl. Soil Ecol. 2008, 40, 359–369. [Google Scholar] [CrossRef]
- Dong, Q.G.; Yang, Y.; Yu, K.; Feng, H. Effects of straw mulching and plastic film mulching on improving soil organic carbon and nitrogen fractions, crop yield and water use efficiency in the Loess Plateau, China. Agric. Water Manag. 2018, 201, 133–143. [Google Scholar] [CrossRef]
- Wang, H.; Guo, Q.; Li, X.; Li, X.; Yu, Z.; Li, X.; Yang, T.; Su, Z.; Zhang, H.; Zhang, C. Effects of long-term no-tillage with different straw mulching frequencies on soil microbial community and the abundances of two soil-borne pathogens. Appl. Soil Ecol. 2020, 148, 103488. [Google Scholar] [CrossRef]
- Qiu, Y.; Lv, W.; Wang, X.; Xie, Z.; Wang, Y. Long-term effects of gravel mulching and straw mulching on soil physicochemical properties and bacterial and fungal community composition in the Loess Plateau of China. Eur. J. Soil Biol. 2020, 98, 103188. [Google Scholar] [CrossRef]
- Bei, S.; Li, X.; Kuyper, T.W.; Chadwick, D.R.; Zhang, J. Nitrogen availability mediates the priming effect of soil organic matter by preferentially altering the straw carbon-assimilating microbial community. Sci. Total Environ. 2022, 815, 152882. [Google Scholar] [CrossRef] [PubMed]
Year | Treatment | Ear Density | Ear Length | Ear Diameter | Kernels per Ear | 1000-Kernel Weight | Harvest Index | Grain Yield |
---|---|---|---|---|---|---|---|---|
Ears m−2 | cm | mm | Kernels Ear−1 | g | g g−1 | t ha−1 | ||
2016 | N | 8.6 a | 13.5 a | 42.2 c | 335 c | 340 c | 0.41 a | 7.4 c |
S | 6.4 b | 15.9 a | 46.7 b | 481 b | 358 b | 0.43 a | 8.9 b | |
AM | 6.2 b | 17.5 a | 50.2 a | 559 a | 375 a | 0.40 a | 12.8 a | |
AMS | 6.2 b | 16.9 a | 52.1 a | 559 a | 380 a | 0.40 a | 13.3 a | |
SE | 0.42 | 0.43 | 0.91 | 19.5 | 3.09 | 0.013 | 0.43 | |
2017 | N | 6.6 a | 13.1 b | 37.7 c | 235 c | 308 c | 0.42 a | 3.8 c |
S | 7.6 a | 13.1 b | 42.2 b | 298 b | 319 b | 0.44 a | 5.9 b | |
AM | 6.0 b | 15.7 a | 46.5 a | 520 a | 339 a | 0.45 a | 8.7 a | |
AMS | 6.0 b | 15.9 a | 45.0 a | 505 a | 348 a | 0.47 a | 9.4 a | |
SE | 0.33 | 0.57 | 0.99 | 23.7 | 2.94 | 0.032 | 0.41 | |
Mean | N | 7.6 a | 13.4 b | 37.7 c | 285 c | 324 c | 0.42 a | 5.6 c |
S | 7.0 a | 14.6 b | 42.2 b | 390 b | 338 b | 0.44 a | 7.4 b | |
AM | 6.1 b | 16.7 a | 46.5 a | 539 a | 357 a | 0.42 a | 10.8 a | |
AMS | 6.1 b | 16.3 a | 45.0 a | 532 a | 364 a | 0.44 a | 11.3 a | |
SE | 0.33 | 0.39 | 0.99 | 13.1 | 8.05 | 0.018 | 0.87 | |
p | Treatment | 0.428 | 0.053 | 0.010 | 0.034 | 0.001 | 0.497 | 0.001 |
Year | 0.678 | 0.064 | 0.007 | 0.055 | 0.000 | 0.035 | 0.001 | |
Treatment × Year | 0.035 | 0.609 | 0.770 | 0.099 | 0.693 | 0.869 | 0.581 |
Season | Treatment | Fallow Season (from Previous Autumn till Sowing 1) | Maize Growing Season | |
---|---|---|---|---|
Seedling Period (From Sowing to V6 2) | Grain Filling Period (From R3 to Harvest 3) | |||
mm d−1 | mm d−1 | mm d−1 | ||
2015/2016 | N | 0.76 a | 2.91 a | 1.84 b |
S | 0.71 b | 2.40 a | 2.12 b | |
AM | 0.54 c | 1.19 b | 3.15 a | |
AMS | 0.54 c | 1.02 c | 3.63 a | |
SE | 0.011 | 0.381 | 0.208 | |
2016/2017 | N | 0.47 a | 2.17 a | 1.49 c |
S | 0.29 b | 1.98 a | 1.59 b | |
AM | 0.21 b | 1.44 b | 2.02 a | |
AMS | 0.18 b | 1.37 b | 2.22 a | |
SE | 0.042 | 0.057 | 0.049 | |
Mean | N | 0.61 a | 2.54 a | 1.67 c |
S | 0.50 b | 2.19 b | 1.85 b | |
AM | 0.37 c | 1.31 c | 2.59 a | |
AMS | 0.36 c | 1.19 c | 2.93 a | |
SE | 0.081 | 0.204 | 0.229 | |
p | Treatment | 0.022 | 0.083 | 0.090 |
Year | 0.001 | 0.631 | 0.040 | |
Treatment × Year | 0.194 | 0.183 | 0.036 |
Year | Treatment | WU during Fallow Period 1 | Soil Water Content at Sowing Time | WU during Growing Season | Final Dry Matter | WUEY | WUEB |
---|---|---|---|---|---|---|---|
mm | mm | mm | kg m−2 | g m−2 mm−1 | g m−2 mm−1 | ||
2015/2016 | N | 166 a | 189 b | 460 c | 1.84 c | 1.62 b | 3.99 b |
S | 156 b | 199 b | 476 b | 2.11 b | 1.87 b | 4.42 b | |
AM | 117 c | 238 a | 489 a | 3.20 a | 2.63 a | 6.55 a | |
AMS | 119 c | 236 a | 491 a | 3.33 a | 2.70 a | 6.77 a | |
SE | 2.3 | 10.3 | 2.0 | 0.088 | 0.087 | 0.338 | |
2016/2017 | N | 100 a | 124 c | 256 c | 0.92 c | 1.49 c | 3.59 c |
S | 61 b | 170 b | 304 b | 1.35 b | 1.95 b | 4.42 b | |
AM | 45 b | 201 a | 319 a | 1.98 a | 2.71 a | 6.18 a | |
AMS | 38 b | 199 a | 327 a | 2.02 a | 2.86 a | 6.16 a | |
SE | 9.0 | 9.0 | 4.8 | 0.103 | 0.103 | 0.569 | |
Mean | N | 133 a | 156 c | 358 c | 1.38 c | 1.55 c | 3.79 c |
S | 109 b | 185 b | 390 b | 1.73 b | 1.91 b | 4.42 b | |
AM | 81 c | 220 a | 404 a | 2.59 a | 2.67 a | 6.37 a | |
AMS | 78 c | 218 a | 409 a | 2.67 a | 2.78 a | 6.46 a | |
SE | 18.1 | 11.4 | 39.8 | 0.263 | 0.065 | 0.311 | |
p | Treatment | 0.021 | 0.028 | 0.076 | 0.013 | 0.002 | 0.001 |
Year | 0.001 | 0.013 | 0.000 | 0.004 | 0.502 | 0.074 | |
Treatment × Year | 0.195 | 0.289 | 0.001 | 0.438 | 0.497 | 0.930 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Z.; Li, N.; Sun, Z.; Yin, G.; Zhang, Y.; Bai, W.; Feng, L.; Yang, J. Fall Straw Incorporation with Plastic Film Cover Increases Corn Yield and Water Use Efficiency under a Semi-Arid Climate. Agriculture 2022, 12, 2151. https://doi.org/10.3390/agriculture12122151
Zhang Z, Li N, Sun Z, Yin G, Zhang Y, Bai W, Feng L, Yang J. Fall Straw Incorporation with Plastic Film Cover Increases Corn Yield and Water Use Efficiency under a Semi-Arid Climate. Agriculture. 2022; 12(12):2151. https://doi.org/10.3390/agriculture12122151
Chicago/Turabian StyleZhang, Zhe, Na Li, Zhanxiang Sun, Guanghua Yin, Yanqing Zhang, Wei Bai, Liangshan Feng, and John Yang. 2022. "Fall Straw Incorporation with Plastic Film Cover Increases Corn Yield and Water Use Efficiency under a Semi-Arid Climate" Agriculture 12, no. 12: 2151. https://doi.org/10.3390/agriculture12122151
APA StyleZhang, Z., Li, N., Sun, Z., Yin, G., Zhang, Y., Bai, W., Feng, L., & Yang, J. (2022). Fall Straw Incorporation with Plastic Film Cover Increases Corn Yield and Water Use Efficiency under a Semi-Arid Climate. Agriculture, 12(12), 2151. https://doi.org/10.3390/agriculture12122151