Co-Inoculation of Sechium edule (Jacq.) Sw. Plants with Rhizophagus intraradices and Azospirillum brasilense to Reduce Phytophthora capsici Damage
Abstract
:1. Introduction
2. Materials and Methods
2.1. Plant Material
2.2. Experimental Setup, Substrate, and Microorganisms
2.3. Microorganisms
2.4. Application of Microorganisms
2.5. Treatments, Repetitions, and Experimental Design
2.6. Morphological and Physiological Variables
2.7. Histological Sections and Microscopy
2.8. Statistical Analysis
3. Results
3.1. Morphological Components
3.2. Physiological Components
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Cepal. Foro de los Países de América Latina y el Caribe Sobre el Desarrollo Sostenible. Informe de la Segunda Reunión del Foro de los Países de América Latina y el Caribe sobre el Desarrollo Sostenible. Santiago, Chile, 2018. Available online: https://repositorio.cepal.org/bitstream/handle/11362/43843/S1800706_es.pdf?sequence=1&isAllowed=y (accessed on 17 April 2021).
- de Hodson, J.E. Bioeconomía: El futuro sostenible. Rev. Acad. Colomb. Cienc. Ex. Fis. Nat. 2018, 42, 188–201. [Google Scholar] [CrossRef]
- Van Diepeningen, A.D.; De Vos, O.J.; Korthals, G.W.; Bruggen, A.H.C. Effects of organic versus conventional management on chemical and biological parameters in agricultural soils. App. Soil Ecol. 2006, 31, 120–135. [Google Scholar] [CrossRef]
- SAGARPA. Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación. Nota de Prensa Núm. 270. Trabaja SAGARPA Para Mitigar Efectos del Cambio Climático en México. 2016. Available online: https://www.gob.mx/sagarpa/prensa/trabaja-sagarpa-para-mitigar-efectos-del-cambio-climatico-en-mexico (accessed on 14 June 2016).
- Jaizme-Vega, M.C.; Rodríguez-Romero, A.S. Integración de microorganismos benéficos (hongos micorrícicos y bacterias rizosféricas) en agrosistemas de las islas Canarias. Agroecología 2008, 3, 33–39. Available online: http://revistas.um.es/agroecologia/article/view/95491/91801 (accessed on 17 April 2021).
- Gómez-Dorantes, N.; Carreón-Abud, Y.; Fernández-Pavía, P.S. Reducción de la susceptibilidad a Phytophthora capsici Leonian causante de la pudrición de raíz en jitomate (Solanum lycopersicum L.). Biológicas 2008, 10, 100–108. Available online: https://www.biologicas.umich.mx/index.php?journal=biologicas&page=article&op=view&path%5B%5D=44 (accessed on 14 April 2021).
- SIAP. Servicio de Información Agroalimentaria y Pesquera Información Datos Abiertos. 2019. Available online: http://infosiap.siap.gob.mx/gobmx/datosAbiertos.php (accessed on 14 April 2021).
- Cadena-Iñiguez, J.; Arévalo-Galarza, M.L.; Avendaño-Arrazate, C.H.; Soto-Hernández, R.M.; Ruiz-Posadas, L.; Santiago-Osorio, E.; Acosta-Ramos, M.; Cisneros-Solano, V.M.; Aguirre-Medina, J.F.; Ochoa-Martínez, D. Production, genetics, postharvest management, and pharmacological characteristics of Sechium edule (Jacq.) Sw. Fresh Prod. 2007, 1, 41–53. Available online: http://www.globalsciencebooks.info/Online/GSBOnline/images/0706/FP_1(1)/FP_1(1)41-53o.pdf (accessed on 14 April 2021).
- Cadena-Iñiguez, J.; Becerril-Román, E. Generación y Reporte de Casos de Éxito en el Sector Rural. AgroProductividad 2016, 9, x–xviii, Suplemento Noviembre. Available online: https://revista-agroproductividad.org/index.php/agroproductividad/article/view/868 (accessed on 17 April 2021).
- Olguín-Hernández, G.; Valdovinos-Ponce, G.; Cadena-Iñiguez, J.; Arévalo-Galarza, L. Etiología de la Marchitez de Plantas de Chayote (Sechium edule) en el Estado de Veracruz. Rev. Mex. Fitopatol. 2013, 31, 161–169. Available online: http://www.scielo.org.mx/pdf/rmfi/v31n2/v31n2a7.pdf (accessed on 11 January 2021).
- Andrade-Luna, M.I.; Espinosa-Victoria, D.; Gómez-Ro-dríguez, O.; Cadena Iñiguez, J.; Arévalo-Galarza, M.L.; Trejo Téllez, L.I.; Delgadillo-Martínez, J. Severity of a Phytophthora capsici strain in chayote Sechium edule plants at growth chamber level. Rev. Mex. Fitopatol. 2016, 35, 40–57. [Google Scholar] [CrossRef]
- Romero-Velázquez, S.D.; Tlapal-Bolaños, B.; Cadena-Iñiguez, J.; Nieto-Ángel, D.; Arévalo-Galarza, M.L. Hongos causantes de enfermedades postcosecha en chayote (Sechium edule (Jacq.) Sw.) y su control in vitro. Agron. Costarric. 2015, 39, 19–32. Available online: http://www.mag.go.cr/rev_agr/v39n02_019.pdf (accessed on 17 April 2021). [CrossRef]
- Ju, W.; Liu, L.; Jin, X.; Duan, C.; Cui, Y.; Wang, J.; Ma, D.; Zhao, W.; Wang, Y.; Fang, L. Co-inoculation effect of plant-growth-promoting rhizobacteria and rhizobium on EDDS assisted phytoremediation of Cu contaminated soils. Chemosphere 2020, 254. Available online: https://www.sciencedirect.com/science/article/abs/pii/S0045653520309176 (accessed on 17 April 2021). [CrossRef] [PubMed]
- Leyva, M.S.G.; Lora Trejo, L.; Cárdenas Soriano, E.; Valdovinos Ponce, G. Patogénesis de la roya blanca Puccinia horiana henn. en una variedad susceptible de crisantemo [Chrysanthemum morifolium (Ramat.) Hemsl.]. Rev. Mex. Fitopatol. 2001, 19, 191–196. Available online: https://www.researchgate.net/publication/238754809_Pathogenic_and_molecular_variability_of_Puccinia_horiana_Henn_isolates (accessed on 17 April 2021).
- Bozzola, J.J.; Russell, D.L. Electron Microscopy. In Principles and Techniques for Biologists; Jones and Bartlett Publishers: London, UK, 1992; pp. 16–63, 332–356. [Google Scholar]
- SAS Institute Inc. SAS/ETS 9.2. User Guide; SAS Institute Inc.: Cary, NC, USA, 2008; Available online: http://morgan.dartmouth.edu/Docs/sas92/support.sas.com/documentation/cdl/en/biig/60946/PDF/default/biig.pdf (accessed on 24 September 2020).
- Aguirre-Medina, J.F.; Aguirre-Cadena, J.F.; Cadena-Iñiguez, J.; Avendaño-Arrazate, C.H. Biofertilización en Plantas de la Selva Húmeda Tropical, 1st ed.; Editorial Colegio de Postgraduados: Montecillo, Edo. De México, México, 2012; 99p. [Google Scholar]
- Jaizme-Vega, M.C. La vida en el suelo. In Papel de los Microorganismos en la Agroecología; Afonso-Carrillo, J., Ed.; Instituto de Estudios Hispánicos de Canarias. Puerto de la Cruz: Tenerife, Agricultura en Canarias, Spain, 2002; pp. 145–172. [Google Scholar]
- Slezack, S.; Negrel, J.; Bestel-Corre, G.; Dumas-Gaudot, E.; Gianinazzi, S. Purification and partial amino acid sequencing of a mycorrhiza-related chitinase isoform from Glomus mosseae-inoculated roots of Pisum sativum L. Planta 2001, 213, 781–787. [Google Scholar] [CrossRef]
- Aguirre-Medina, J.F.; Mendoza-López, A.; Cadena-Iñiguez, J.; Avendaño-Arrazate, C.H. La Biofertilización del cacao (Theobroma cacao L.) en vivero con Azospirillum brasilense Tarrand, Krieg et Döbereiner y Glomus intraradices Schenk et Smith. Interciencia 2007, 32, 1–6. Available online: http://ve.scielo.org/scielo.php?script=sci_arttext&pid=S0378-18442007000800010 (accessed on 17 April 2021).
- Smith, S.; Anderson, I.; Smith, F. Mycorrhizal associations and phosphorus acquisition: From cells to ecosystems. Annu. Rev. Plant Biol. 2015, 48, 409–440. [Google Scholar] [CrossRef]
- Jalali, B.L.; Jalali, I. Mycorrhiza in plant disease control. In Handbook of Applied Mycology; Arora, K., Rai, B., Mujerki, K.G., Knudsen, G.R., Eds.; Dekker: New York, NY, USA, 1991; pp. 131–154. [Google Scholar]
- Fusconi, A.; Gnavi, E.; Trotta, A.; Berta, G. Apical meristems of tomato roots and their modifications induced by arbuscular mycorrhizal and soilborne pathogenic fungi. New Phytol. 1999, 142, 505–516. [Google Scholar] [CrossRef]
- Espíndola-Mateos, S.; Matías Cervantes, C.A.; Zenteno, E.; Slomianny, M.C.; Alpuche, J.; Hernández-Cruz, P.; Martínez-Cruz, R.; del Pina Canseco, M.S.; Pérez-Campos, E.; Sánchez Rubio, M.; et al. Purification and Partial Characterization of ß-Glucosidase in Chayote (Sechium edule). Molecules 2015, 20, 19372–19392. [Google Scholar] [CrossRef] [Green Version]
- Escamilla-Treviño, L.L.; Chen, W.; Card, M.L.; Shih, M.-C.H.; Cheng, C.-L.; Poulton, J.E. Arabidopsis thaliana ß-glucosidases BGLU45 and BGLU46 hydrolyse monolignol glucosides. Phytochemistry 2006, 67, 1651–1660. [Google Scholar] [CrossRef] [PubMed]
- Vanholme, R.; Morreel, K.; Ralph, J.; Boerjan, W. Lignin engineering. Curr. Opin. Plant Biol. 2008, 11, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Bashan, Y.; De-Bashan, L. Chapter Two-How the Plant Growth-Promoting Bacterium Azospirillum Promotes Plant Growth-A Critical Assessment. Adv. Agron. 2010, 108, 77–136. [Google Scholar] [CrossRef]
- Ngwene, B.; Gabriel, E.; George, E. Influence of different mineral nitrogen sources (NO3−-N vs. NH4+-N) on arbuscular mycorrhiza development and N transfer in a Glomus intraradices–cowpea symbiosis. Mycorrhiza 2013, 23, 107–117. [Google Scholar] [CrossRef] [Green Version]
- Akhtar, M.S.; Siddiqui, Z.A. Arbuscular mycorrhizal fungi as potential bioprotectants against plant pathogens. In Mycorrhizae: Sustainable Agriculture and Forestry; Siddiqui, Z.A., Akhtar, M.S., Futai, K., Eds.; Springer: Dordrecht, The Netherlands, 2008; pp. 61–97. [Google Scholar]
- Fitter, A.H. What is the link between carbon and phosphorus fluxes in arbuscular mycorrhizas? A null hypothesis for symbiotic function. New Phytol. Lett. 2006, 172, 3–6. [Google Scholar] [CrossRef]
- Copetta, A.; Lingua, G.; Berta, G. Effects of three AM fungi on growth, distribution of glandular hairs and essential oil production in Ocimum basilicum. Mycorrhiza 2006, 16, 485–494. [Google Scholar] [CrossRef]
- Kapoor, R. Induced Resistance in Mycorrhizal Tomato is correlated to Concentration of Jasmonic Acid Induced Resistance in Mycorrhizal Tomato is correlated to Concentration of Jasmonic. Acid. Online. J. Biol. Sci. 2008, 8, 49–56. Available online: https://thescipub.com/ojbs/issue/361 (accessed on 17 April 2021). [CrossRef] [Green Version]
- Reyes, T.A.; Quiñones, A.E.E.; Rincón, E.G.; López, P.L. Micorrización en Capsicum annuum L. para promoción de crecimiento y bioprotección contra Phytophthora capsici L. Rev. Mex. Cienc. Agric. 2016, 7, 857–870. Available online: http://www.scielo.org.mx/scielo.php?pid=S2007-9342016000400857&script=sci_abstract (accessed on 17 April 2021). [CrossRef]
- Aguirre-Medina, J.F.; Moroyoqui-Ovilla, D.M.; Mendoza-López, A.; Cadena-Iñiguez, J.; Avendaño-Arrazate, C.H.; Aguirre-Cadena, J.F. Aplicación de A. brasilense y G. intraradices a Coffea arabica en vivero. Agron. Mesoam. 2011, 22, 1–10. Available online: https://www.scielo.sa.cr/pdf/am/v22n1/a09v22n1.pdf (accessed on 17 April 2021).
- Aguirre Medina, J.F.; Culebro Cifuentes, F.; Cadena-Iñiguez, J.; Aguirre-Cadena, J.F. Crecimiento de Tabebuia Donnell-Smithii (Rose) Inoculada con Hongos Micorrizicos y Azospirillum brasilense. Agrociencia 2014, 48, 331–345. Available online: http://www.scielo.org.mx/pdf/agro/v48n3/v48n3a8.pdf (accessed on 17 April 2021).
- Aguirre-Medina, J.F.; Mina-Briones, F.O.; Cadena-Iñiguez, J.; Dardón-Zunun, J.D.; Hernández-Sedas, D.A. Crecimiento de Cedrela odorata L. Biofertilizada con Rhizophagus intraradices y Azospirillum brasilense en vivero. Rev. Chapingo Ser. Cienc. For. y del Ambiente 2014, 177–186. [Google Scholar] [CrossRef] [Green Version]
- Ibarra-Puón, J.C.; Aguirre-Medina, J.F.; Ley-De Coss, A.; Cadena-Iñiguez, J.; Zavala-Mata, A. Inoculación de Coffea canephora (Pierre) ex Froehner con Rhizophagus intraradices (Schenck et Sm.) Walker et Schuessler y Azospirillum brasilense Tarrand, Krieg et Döbereiner en vivero. Rev. Chapingo Ser. Hortic. 2014, 20, 201–213. [Google Scholar] [CrossRef]
- Traw, M.B.; Dawson, T.E. Differential induction of trichomes by three herbivores of black mustard. Oecologia 2002, 131, 526–532. [Google Scholar] [CrossRef] [PubMed]
- Morant, A.V.; Jørgenesen, K.; Jørgenesen, C.; Paquette, S.M.; Sánchez-Pérez, R.; Møller, B.L.; Bak, S. ß-glucosidase as detonators of plant chemical defense. Phytochemistry 2008, 69, 1795–1813. [Google Scholar] [CrossRef]
- Zagrobelny, M.; Bak, S.; Møller, B.L. Cyanogenesis in plants and arthropods. Phytochemistry 2008, 69, 1457–1468. [Google Scholar] [CrossRef] [PubMed]
- Siddiqui, Z.A.; Akhtar, M.S. Synergistic effects of antagonistic fungi and a plant growth promoting rhizobacterium, an arbuscular mycorrhizal fungus, or composted cow manure on populations of Meloidogyne incognita and growth of tomato. Biocontrol. Sci. Techn. 2008, 18, 279–290. [Google Scholar] [CrossRef]
- Alarcón, A.; Boicet, T.; Godefoy, M.; Bacilio-Jiménez, M.; Ceiro, W.; Bazán, Y. Effect of arbuscular mycorrhizas and Meloidogyne spp. on tomato (Solanum lycopersicum L.). Rev. Protección Veg. 2013, 28, 219–223. Available online: http://scielo.sld.cu/scielo.php?pid=S1010-7522013000300010&script=sci_arttext&tlng=pt (accessed on 17 April 2021).
- Pérez Moncada, U.A.; Ramírez Gómez, M.; Serralde Ordoñez, D.P.; Peñaranda Rolón, A.M.; Wilches Ortiz, W.A.; Ramírez, L.; Rengifo Estrada, G.A. Hongos formadores de micorrizas arbusculares (HFMA) como estrategia para reducir la absorción de cadmio en plantas de cacao (Theobroma cacao). Terra Latinoam. 2019, 37, 121–130. [Google Scholar] [CrossRef]
- Hernández-Acosta, E.; Trejo-Aguilar, D.; Rivera-Fernández, A.; Ferrera Cerrato, R. La micorriza arbuscular como biofertilizante en cultivo de café. Terra Latinoam. 2020, 38, 613–628. [Google Scholar] [CrossRef]
- Li, T.; Lin, G.; Zhang, X.; Chen, Y.; Zhang, S.; Chen, B. Relative importance of an arbuscular mycorrhizal fungus (Rhizophagus intraradices) and root hairs in plant drought tolerance. Mycorrhiza 2014, 24, 595–602. [Google Scholar] [CrossRef]
- Wang, P.; Wu, S.H.; Wen, M.-X.; Wang, Y.; Wu, Q.-S. Effects of combined inoculation with Rhizophagus intraradices and Paenibacillus mucilaginosus on plant growth, root morphology, and physiological status of trifoliate orange (Poncirus trifoliata L. Raf.) seedlings under different levels of phosphorus. Sci. Hort. 2016, 205, 97–105. [Google Scholar] [CrossRef]
- Tiwari, S.; Pandey, R.; Gross, A. Identification of Rhizospheric Microorganisms That Manages Root Knot Nematode and Improve Oil Yield in Sweet Basil (Ocimum basilicum L.). Agronomy 2021, 11, 570. [Google Scholar] [CrossRef]
- Cadena-Iñiguez, J.; Ruiz-Posadas, L.M.; Trejo-López, C.; Sánchez-García, P.; Aguirre-Medina, J.F. Regulación del intercambio de gases y relaciones hídricas en chayote (Sechium edule (Jacq.) Swartz). Rev. Chapingo Ser. Hortic. 2001, 7, 21–35. Available online: https://www.researchgate.net/profile/Jorge-Cadena-Iniguez/publication/315630210_ (accessed on 17 April 2021). [CrossRef]
S. No | Treatments | Abbreviation |
---|---|---|
1 | Control | CL |
2 | P. capsici | PC |
3 | R. intraradices | RI |
4 | A. brasilense | AB |
5 | R. intraradices + A. brasilense | RI + AB |
6 | R. intraradices + P. capsici | RI + PC |
7 | A. brasilense + P. capsici | AB + PC |
8 | R. intraradices + A. brasilense + P. capsici | RI + AB + PC |
Days | Treatment | Dry Weight (g Plant) | Leaf Area (cm2 Plant) | |||
---|---|---|---|---|---|---|
Root | Stem and Vine | Leaf Lamina | Petiole | |||
28 | CL | 1.55 ± 0.09 abc z | 2.75 ± 0.15 a | 2.52 ± 0.31 ab | 0.32 ± 0.02 a | 868 ± 182 a |
PC | 0.85 ± 0.13 c | 1.22 ± 0.11 cd | 1.25 ± 0.32 b | 0.14 ± 0.05 a | 357 ± 23 c | |
RI | 1.70 ± 0.05 ab | 1.77 ± 0.08 bc | 2.57 ± 0.10 ab | 0.32 ± 0.02 a | 821 ± 86 a | |
AB | 1.30 ± 0.1 abc | 2.75 ± 0.14 a | 2.67 ± 0.36 a | 0.35 ± 0.02 a | 756 ± 69 ab | |
RI + AB | 1.05 ± 0.10 bc | 2.0 ± 0.20 ab | 2.70 ± 0.30 a | 0.37 ± 0.06 a | 982 ± 66 a | |
RI + PC | 1.85 ± 0.38 a | 0.83 ± 0.06 d | 1.42 ± 0.19 ab | 0.22 ± 0.04 a | 350 ± 65 d | |
AB + PC | 0.95 ± 0.05 bc | 0.97 ± 0.14 d | 1.25 ± 0.33 b | 0.27 ±0.02 a | 305 ± 38 c | |
RI + AB + PC | 1.53 ± 0.10 abc | 2.40 ± 0.29 ab | 2.10 ± 0.30 ab | 0.30 ± 0.04 a | 490 ± 48 bc | |
CV% | 23.9 | 17.9 | 28.1 | 31.2 | 21.2 | |
56 | CL | 0.55 ± 0.06 c | 0.85 ± 0.13 a | 2.57 ± 0.15 ab | 0.37 ± 0.04 bc | 734 ± 195 bc |
PC | 0.42 ± 0.02 c | 1.35 ± 0.15 a | 2.10 ± 0.21 b | 0.30 ± 0.04 bc | 560 ± 78 c | |
RI | 1.52 ± 0.17 a | 0.97 ± 0.04 a | 2.75 ± 0.08 ab | 0.47 ± 0.11 ab | 922 ± 148 ab | |
AB | 0.92 ± 0.04 bc | 1.20 ± 0.15 a | 2.80 ± 0.23 ab | 0.40 ± 0.04 bc | 655 ± 72 ab | |
RI + AB | 1.72 ± 0.27 a | 2.02 ± 0.26 a | 3.40 ± 0.42 a | 0.55 ± 0.05 ab | 1060 ± 55 a | |
RI + PC | 0.62 ± 0.07 c | 1.00 ± 0.07 a | 1.77 ± 0.30 b | 0.20 ± 0.04 c | 333 ± 17 c | |
AB + PC | 1.47 ± 0.06 ab | 2.10 ± 0.57 a | 3.35 ± 0.32 a | 0.67 ± 0.02 a | 775 ± 82 bc | |
RI + AB + PC | 0.75 ± 0.02 c | 2.12 ± 0.41 a | 2.65 ± 0.15 ab | 0.35 ± 0.02 bc | 583 ± 91 c | |
CV% | 24.5 | 39.1 | 19.3 | 27.0 | 13.4 | |
84 | CL | 0.82 ± 0.13 b | 1.55 ± 0.43 bc | 3.97 ± 0.48 bc | 0.60 ± 0.14 bc | 1303 ± 534 bc |
PC | 0.60 ± 0.20 b | 1.00 ± 0.14 c | 3.30 ± 0.09 c | 0.32 ± 0.04 c | 819 ± 142 c | |
RI | 1.97 ± 0.04 a | 5.75 ± 0.42 a | 8.82 ± 1.09 ab | 1.02 ± 0.06 ab | 3405 ± 391 a | |
AB | 1.92 ± 0.08 a | 6.75 ± 0.23 a | 9.35 ± 0.47 a | 0.97 ± 0.10 ab | 3207 ± 349 a | |
RI + AB | 1.67 ± 0.25 a | 4.42 ± 0.39 a | 9.70 ± 1.07 a | 1.25 ± 0.05 a | 3456 ± 183 a | |
RI + PC | 0.85 ± 0.15 b | 4.07 ± 1.13 ab | 7.22 ± 2.01 abc | 0.77 ± 0.07 abc | 1335 ± 257 bc | |
AB + PC | 0.55 ± 0.06 b | 6.80 ± 0.39 a | 8.30 ± 1.23 abc | 1.02 ± 0.06 ab | 1403 ± 9 b | |
RI + AB + PC | 0.75 ± 0.12 b | 4.90 ± 0.42 a | 5.77 ± 0.31 abc | 0.75 ± 0.08 abc | 122 ± 117 bc | |
CV% | 26.0 | 27.5 | 29.8 | 24.9 | 11.8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aguirre-Medina, J.F.; Cadena-Iñiguez, J.; Olguín-Hernández, G.; Aguirre-Cadena, J.F.; Andrade-Luna, M.I. Co-Inoculation of Sechium edule (Jacq.) Sw. Plants with Rhizophagus intraradices and Azospirillum brasilense to Reduce Phytophthora capsici Damage. Agriculture 2021, 11, 391. https://doi.org/10.3390/agriculture11050391
Aguirre-Medina JF, Cadena-Iñiguez J, Olguín-Hernández G, Aguirre-Cadena JF, Andrade-Luna MI. Co-Inoculation of Sechium edule (Jacq.) Sw. Plants with Rhizophagus intraradices and Azospirillum brasilense to Reduce Phytophthora capsici Damage. Agriculture. 2021; 11(5):391. https://doi.org/10.3390/agriculture11050391
Chicago/Turabian StyleAguirre-Medina, Juan Francisco, Jorge Cadena-Iñiguez, Gildardo Olguín-Hernández, Juan Francisco Aguirre-Cadena, and Mauricio Iván Andrade-Luna. 2021. "Co-Inoculation of Sechium edule (Jacq.) Sw. Plants with Rhizophagus intraradices and Azospirillum brasilense to Reduce Phytophthora capsici Damage" Agriculture 11, no. 5: 391. https://doi.org/10.3390/agriculture11050391
APA StyleAguirre-Medina, J. F., Cadena-Iñiguez, J., Olguín-Hernández, G., Aguirre-Cadena, J. F., & Andrade-Luna, M. I. (2021). Co-Inoculation of Sechium edule (Jacq.) Sw. Plants with Rhizophagus intraradices and Azospirillum brasilense to Reduce Phytophthora capsici Damage. Agriculture, 11(5), 391. https://doi.org/10.3390/agriculture11050391