Effects of Olive Cake and Cactus Cladodes as Alternative Feed Resources on Goat Milk Production and Quality
Abstract
:1. Introduction
2. Materials and Methods
2.1. Experimental Animals and Diets
2.2. Milk Production
2.3. Milk Analysis
2.4. Fatty Acid Profile
2.5. Statistical Analysis
3. Results
3.1. Milk Production and Physico-Chemical Composition
3.2. Milk Fatty Acids
4. Discussion
4.1. Milk Production and Physico-Chemical Composition
4.2. Milk Fatty Acids
4.2.1. Individual Fatty Acids
4.2.2. Fatty Acids Summaries
4.2.3. Fatty Acids Ratios
4.2.4. Fatty Acids Indexes
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Chebli, Y.; El Otmani, S.; Chentouf, M.; Hornick, J.L.; Bindelle, J.; Cabaraux, J.-F. Foraging behavior of goats browsing in Southern Mediterranean forest rangeland. Animals 2020, 10, 196. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chebli, Y.; El Otmani, S.; Hornick, J.L.; Cabaraux, J.F.; Chentouf, M. Pastoral production and use of forest rangelands in Western Rif. Afr. Med. Agric. J. Al Awamia 2020, 128, 1–16. [Google Scholar]
- López, M.C.; Estellés, F.; Moya, V.J.; Fernández, C. Use of dry citrus pulp or soybean hulls as a replacement for corn grain in energy and nitrogen partitioning, methane emissions, and milk performance in lactating Murciano-Granadina goats. J. Dairy Sci. 2014, 97, 7821–7832. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Cappai, M.G.; Liesegang, A.; Dimauro, C.; Mossa, F.; Pinna, W. Circulating electrolytes in the bloodstream of transition Sarda goats make the difference in body fluid distribution between single vs. twin gestation. Res. Vet. Sci. 2019, 123, 84–90. [Google Scholar] [CrossRef] [PubMed]
- Alary, V.; Nefzaoui, A.; Ben Jemaa, M. Promoting the adoption of natural resource management technology in arid and semi-arid areas: Modelling the impact of spineless cactus in alley cropping in Central Tunisia. Agric. Syst. 2007, 94, 573–585. [Google Scholar] [CrossRef]
- Chebli, Y.; Chentouf, M.; Mrabet, R.; Keli, A. Production et utilisation des parcours dans les montagnes rifaines du Nord du Maroc. Opt. Méditerr. 2014, 108, 109–113. [Google Scholar]
- Chebli, Y.; Chentouf, M.; Hornick, J.L.; Cabaraux, J.F. Extensive goat production systems in northern Morocco: Production and use of pastoral resources. In Grassland Resources for Extensive Farming Systems in Marginal Lands: Major Drivers and Future Scenarios, Proceeding of the 19th Symposium of the European Grassland Federation, Alghero, Italy, 7–10 May 2017; Porqueddu, A., Franca, C., Lombardi, A., Molle, G., Peratoner, G., Hopkins, G., Eds.; Organising Committee of the 19th Symposium of the European Grassland Federation: Sassari, Italy, 2017; pp. 131–133. [Google Scholar]
- Chebli, Y.; Chentouf, M.; Ozer, P.; Hornick, J.L.; Cabaraux, J.F. Forest and silvopastoral cover changes and its drivers in northern Morocco. Appl. Geogr. 2018, 101, 23–35. [Google Scholar] [CrossRef]
- Molina-Alcaide, E.; Morales-García, E.Y.; Martín-García, I.; Ben Salem, H.; Nefzaoui, A.; Sanz-Sampelayo, M.R. Effects of partial replacement of concentrate with feed blocks on nutrient utilization, microbial N flow, and milk yield and composition in goats. J. Dairy Sci. 2010, 93, 2076–2087. [Google Scholar] [CrossRef] [Green Version]
- Vasta, V.; Luciano, G. The effects of dietary consumption of plants secondary compounds on small ruminants’ products quality. Small Rumin. Res. 2011, 101, 150–159. [Google Scholar] [CrossRef]
- Molina-Alcaide, E.; Yáñez-Ruiz, D.R. Potential use of olive by-products in ruminant feeding: A review. Anim. Feed Sci. Technol. 2008, 147, 247–264. [Google Scholar] [CrossRef]
- Vasta, V.; Nudda, A.; Cannas, A.; Lanza, M.; Priolo, A. Alternative feed resources and their effects on the quality of meat and milk from small ruminants. Anim. Feed Sci. Technol. 2008, 147, 223–246. [Google Scholar] [CrossRef]
- Dermeche, S.; Nadour, M.; Larroche, C.; Moulti-Mati, F.; Michaud, P. Olive mill wastes: Biochemical characterizations and valorization strategies. Process. Biochem. 2013, 48, 1532–1552. [Google Scholar] [CrossRef]
- El Otmani, S.; Chentouf, M.; Hornick, J.L.; Cabaraux, J.F. Chemical composition and in vitro digestibility of alternative feed resources for ruminants in Mediterranean climates: Olive cake and cactus cladodes. J. Agric. Sci. 2019, 157, 260–271. [Google Scholar] [CrossRef]
- Ben Salem, H.; Nefzaoui, A.; Ben Salem, L. Spineless cactus (Opuntia ficus indica f. inermis) and oldman saltbush (Atriplex nummularia L.) as alternative supplements for growing Barbarine lambs given straw-based diets. Small Rumin. Res. 2004, 51, 65–73. [Google Scholar] [CrossRef]
- Gusha, J.; Halimani, T.E.; Katsande, S.; Zvinorova, P.I. Performance of goats fed on low quality veld hay supplemented with fresh spiny cactus (Opuntia megacantha) mixed with browse legumes hay in Zimbabwe. Trop. Anim. Health Prod. 2014, 46, 1257–1263. [Google Scholar] [CrossRef] [PubMed]
- de Rancourt, M.; Fois, N.; Lavin, M.P.; Tchakérian, E.; Vallerand, F. Mediterranean sheep and goats production: An uncertain future. Small Rumin. Res. 2006, 62, 167–179. [Google Scholar] [CrossRef]
- Haenlein, G.F.W. Past, present, and future perspectives of small ruminant dairy research. J. Dairy Sci. 2001, 84, 2097–2115. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, B.; Kumar, R.; Kumar, S. Nutritional features of goat milk—A Review. Indian J. Dairy Sci. 2012, 65, 266–273. [Google Scholar]
- Ichimura, H.; Ishikawa, S.; Isobe, N.; Hayashi, Y. Effects of spineless cactus feeding on milk production, milk quality and antioxidant capacity in dairy goat. In Proceedings of the 5th International Conference on Sustainable Animal Agriculture for Developing Countries, Bangkok, Thailand, 27–30 October 2015; pp. 309–315. [Google Scholar]
- Nudda, A.; Buffa, G.; Atzori, A.S.; Cappai, M.G.; Caboni, P.; Fais, G.; Pulina, G. Small amounts of agro-industrial byproducts in dairy ewes diets affects milk production traits and hematological parameters. Anim. Feed Sci. Technol. 2019, 251, 76–85. [Google Scholar] [CrossRef]
- Hadjipanayiotou, M. Feeding ensiled crude olive cake to lactating Chios ewes, Damascus goats and Friesian cows. Livest. Prod. Sci. 1999, 59, 61–66. [Google Scholar] [CrossRef]
- Arco-Pérez, A.; Ramos-Morales, E.; Yáñez-Ruiz, D.R.; Abecia, L.; Martín-García, A.I. Nutritive evaluation and milk quality of including of tomato or olive by-products silages with sunflower oil in the diet of dairy goats. Anim. Feed Sci. Technol. 2017, 232, 57–70. [Google Scholar] [CrossRef]
- Keles, G.; Yildiz-Akgul, F.; Kocaman, V. Performance and milk composition of dairy goats as affected by the dietary level of stoned olive cake silages. Asian Australas. J. Anim. Sci. 2017, 30, 363–369. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Atti, N.; Maamouri, O.; Hajji, H.; Mahouachi, M. Utilisation du cactus inerme comme aliment de base pour la chèvre en lactation: Impacts sur la production laitière et la croissance des chevreaux. Livest. Res. Rural Dev. 2010, 22, 1–10. [Google Scholar]
- Costa, R.G.; Filho, E.M.B.; Queiroga, R.C.R.E.; Madruga, M.S.; de Medeiros, A.N.; de Oliveira, C.J.B. Chemical composition of milk from goats fed with cactus pear (Opuntia ficus-indica L. Miller) in substitution to corn meal. Small Rumin. Res. 2010, 94, 214–217. [Google Scholar] [CrossRef]
- Mahouachi, M.; Atti, N.; Hajji, H. Use of spineless cactus (Opuntia ficus indica f. inermis) for dairy goats and growing kids: Impacts on milk production, kid’s growth, and meat quality. Sci. World J. 2012, 2012, 321567. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ruiz, R.; Oregui, L.M.; Herrero, M. Comparison of models for describing the lactation curve of Latxa sheep and an analysis of factors affecting milk yield. J. Dairy Sci. 2000, 83, 2709–2719. [Google Scholar] [CrossRef]
- NRC. Nutrient Requirements of Small Ruminants; National Academies Press: Washington, DC, USA, 2007. [Google Scholar]
- ALP (Agroscope Liebefeld-Posieux). Feeding Recommendations and Nutrient Tables; Swiss Bee Research Centre: Berne, Switzerland, 2008. [Google Scholar]
- NRC. Nutrient Requirements of Dairy Cattle; National Academies Press: Washington, DC, USA, 2001. [Google Scholar]
- Almeida, S.G.; Dórea, J.G. Quality control of banked milk in Brasília, Brazil. J. Hum. Lact. 2006, 22, 335–339. [Google Scholar] [CrossRef]
- Barbano, D.M.; Clark, J.L.; Dunham, C.E. Comparison of Babcock and ether extraction methods for determination of fat content of milk: Collaborative study. AOAC 1988, 71, 898–914. [Google Scholar] [CrossRef]
- AOAC (Association of Official Analytical Chemists). Official Methods of Analysis, 15th ed.; AOAC International: Arlington, VA, USA, 1990. [Google Scholar]
- Banskalieva, V.; Sahlu, T.; Goetsch, A.L. Fatty acid composition of goat muscles and fat depots: A review. Small Rumin. Res. 2000, 37, 255–268. [Google Scholar] [CrossRef]
- Ulbricht, T.L.V.; Southgate, D.A.T. Coronary heart disease: Seven dietary factors. Lancet 1991, 338, 985–992. [Google Scholar] [CrossRef]
- Hilal, B. Caractérisation Phénotypique, Génétique Moléculaire et Zootechnique de la Population Caprine Hamra Dans Deux Régions Différentes (Béni Arouss et Rommani). Ph.D. Thesis, Agricultural and Agri-food sciences, Agronomic and Veterinary Institute Hassan II, Rabat, Morocco, 19 April 2018. [Google Scholar]
- Cordova-Torres, A.V.; Costa, R.G.; Araújo Filho, J.T.; Medeiros, A.N.; Andrade-Montemayor, H.M. Meat and milk quality of sheep and goat fed with cactus pear. J. Prof. Assoc. Cactus Dev. 2017, 19, 11–31. [Google Scholar]
- Terramoccia, S.; Bartocci, S.; Taticchi, A.; Di Giovanni, S.; Pauselli, M. Use of dried stoned olive pomace in the feeding of lactating buffaloes: Effect on the quantity and quality of the milk produced. Asian Australas. J. Anim. Sci. 2013, 26, 971–980. [Google Scholar] [CrossRef] [PubMed]
- Vargas-Bello-Pérez, E.; Vera, R.R.; Aguilar, C.; Lira, R.; Peña, I.; Fernández, J. Feeding olive cake to ewes improves fatty acid profile of milk and cheese. Anim. Feed Sci. Technol. 2013, 184, 94–99. [Google Scholar] [CrossRef]
- Chilliard, Y.; Ferlay, A.; Rouel, J.; Lamberet, G. A review of nutritional and physiological factors affecting goat milk lipid synthesis and lipolysis. J. Dairy Sci. 2003, 8, 1751–1770. [Google Scholar] [CrossRef] [Green Version]
- Catunda, K.L.M.; de Aguiar, E.M.; de Góes Neto, P.E.; da Silva, J.G.M.; Moreira, J.A.; do Nascimento Rangel, A.H.; de Lima Júnior, D.M. Gross composition, fatty acid profile and sensory characteristics of Saanen goat milk fed with Cacti varieties. Trop. Anim. Health Prod. 2016, 48, 1253–1259. [Google Scholar] [CrossRef]
- Cabiddu, A.; Canu, M.; Decandia, M.; Pompei, R.; Molle, G. The intake and performance of dairy ewes fed with different levels of olive cake silage in late pregnancy and suckling periods. Opt. Méditerr. 2004, 201, 197–201. [Google Scholar]
- Chiofalo, B.; Liotta, L.; Zumbo, A.; Chiofalo, V. Administration of olive cake for ewe feeding: Effect on milk yield and composition. Small Rumin. Res. 2004, 55, 169–176. [Google Scholar] [CrossRef]
- Mouhaddach, A.; El Hamdani, M.; Hassikou, R.; El Housni, A.; Zouahri, A.; Douaik, A.; Bendaou, M. Effect of cactus silage on the dairy performances of local ewes called Sardi. Opt. Méditerr. 2016, 115, 207–212. [Google Scholar]
- Emery, R.S. Milk fat depression and the influence of diet on milk composition. Vet. Clin. N. Am. Food Anim. Pract. 1988, 4, 289–305. [Google Scholar] [CrossRef]
- Abbeddou, S.; Rischkowsky, B.; Hilali, M.E.D.; Haylani, M.; Hess, H.D.; Kreuzer, M. Supplementing diets of Awassi ewes with olive cake and tomato pomace: On-farm recovery of effects on yield, composition and fatty acid profile of the milk. Trop. Anim. Health Prod. 2015, 47, 145–152. [Google Scholar] [CrossRef]
- Gomes, L.C.; Alcalde, C.R.; Santos, G.T.; Feihrmann, A.C.; Molina, B.S.L.; Grande, P.A.; Valloto, A.A. Concentrate with calcium salts of fatty acids increases the concentration of polyunsaturated fatty acids in milk produced by dairy goats. Small Rumin. Res. 2015, 124, 81–88. [Google Scholar] [CrossRef]
- Chilliard, Y.; Toral, P.G.; Shingfield, K.J.; Rouel, J.; Leroux, C.; Bernard, L. Effects of diet and physiological factors on milk fat synthesis, milk fat composition and lipolysis in the goat: A short review. Small Rumin. Res. 2014, 122, 31–37. [Google Scholar] [CrossRef]
- Markiewicz-Kęszycka, M.; Czyżak-Runowska, G.; Lipińska, P.; Wójtowski, J. Fatty acid profile of milk—A Review. Bull. Vet. Inst. Pulawy 2013, 57, 135–139. [Google Scholar] [CrossRef] [Green Version]
- Sanz Sampelayo, M.R.; Perez, L.; Boza, J.; Amigo, L. Forage of different physical forms in the diets of lactating Granadina goats: Nutrient digestibility and milk production and composition. J. Dairy Sci. 1998, 81, 492–498. [Google Scholar] [CrossRef]
- Gravador, R.S.; Serra, A.; Luciano, G.; Pennisi, P.; Vasta, V.; Mele, M.; Pauselli, M.; Priolo, A. Volatiles in raw and cooked meat from lambs fed olive cake and linseed. Animal 2015, 9, 715–722. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lladó, V.; Terés, S.; Higuera, M.; Álvarez, R.; Noguera-Salva, M.A.; Halver, J.E.; Escriba, P.V.; Busquets, X. Pivotal role of dihydrofolate reductase knockdown in the anticancer activity of 2-hydroxyoleic acid. Proc. Natl. Acad. Sci. USA 2009, 106, 13754–13758. [Google Scholar] [CrossRef] [Green Version]
- Lopes, L.S.; Martins, S.R.; Chizzotti, M.L.; Busato, K.C.; Oliveira, I.M.; Machado Neto, O.R.; Paulino, P.V.R.; Lanna, D.P.D.; Ladeira, M.M. Meat quality and fatty acid profile of Brazilian goats subjected to different nutritional treatments. Meat Sci. 2014, 97, 602–608. [Google Scholar] [CrossRef] [Green Version]
- Gómez-Cortés, P.; Frutos, P.; Mantecón, A.R.; Juárez, M.; De La Fuente, M.A.; Hervás, G. Addition of olive oil to dairy ewe diets: Effect on milk fatty acid profile and animal performance. J. Dairy Sci. 2008, 91, 3119–3127. [Google Scholar] [CrossRef] [Green Version]
- Sanz Sampelayo, M.R.; Chilliard, Y.; Schmidely, P.; Boza, J. Influence of type of diet on the fat constituents of goat and sheep milk. Small Rumin. Res. 2007, 68, 42–63. [Google Scholar] [CrossRef]
- Abbeddou, S.; Rischkowsky, B.; Richter, E.K.; Hess, H.D.; Kreuzer, M. Modification of milk fatty acid composition by feeding forages and agro-industrial by-products from dry areas to Awassi sheep. J. Dairy Sci. 2011, 94, 4657–4668. [Google Scholar] [CrossRef]
- Luciano, G.; Pauselli, M.; Servili, M.; Mourvaki, E.; Serra, A.; Monahan, F.J.; Lanza, M.; Priolo, A.; Zinnai, A.; Mele, M. Dietary olive cake reduces the oxidation of lipids, including cholesterol, in lamb meat enriched in polyunsaturated fatty acids. Meat Sci. 2013, 93, 703–714. [Google Scholar] [CrossRef] [PubMed]
- Mele, M.; Serra, A.; Pauselli, M.; Luciano, G.; Lanza, M.; Pennisi, P.; Conte, G.; Taticchi, A.; Esposto, S.; Morbidini, L. The use of stoned olive cake and rolled linseed in the diet of intensively reared lambs: Effect on the intramuscular fatty-acid composition. Animal 2014, 8, 152–162. [Google Scholar] [CrossRef] [PubMed]
- Abidi, S.; Salem, H.B.; Vasta, V.; Priolo, A. Supplementation with barley or spineless cactus (Opuntia ficus indica f. inermis) cladodes on digestion, growth and intramuscular fatty acid composition in sheep and goats receiving oaten hay. Small Rumin. Res. 2009, 87, 9–16. [Google Scholar] [CrossRef]
- Andreu-Coll, L.; Cano-Lamadrid, M.; Sendra, E.; Carbonell-Barrachina, Á.; Legua, P.; Hernández, F. Fatty acid profile of fruits (pulp and peel) and cladodes (young and old) of prickly pear [Opuntia ficus-indica (L.) Mill.] from six Spanish cultivars. J. Food Compos. Anal. 2019, 84, 103294. [Google Scholar] [CrossRef]
- Hu, F.B.; Stampfer, M.J.; Manson, J.E.; Rimm, E.; Colditz, G.A.; Rosner, B.A.; Hennekens, C.H.; Willett, W.C. Dietary fat intake and the risk of coronary heart disease in women. N. Engl. J. Med. 1997, 337, 1491–1499. [Google Scholar] [CrossRef]
- Enser, M. Producing meat for healthy eating. In Proceedings of the 46th International Congress Meat Science and Technology, Buenos Aires, Argentina, 27 August–1 September 2000; pp. 124–129. [Google Scholar]
- Zampelas, A.; Paschos, G.; Rallidis, L.; Yiannakouris, N. Linoleic acid to alpha-linolenic acid ratio. In Omega-6/Omega-3 Essential Fatty Acid Ratio: The Scientific Evidence; Simopoulos, A.P., Cleland, L.G., Eds.; Karger: Basel, Switzerland, 2003; pp. 92–108. [Google Scholar]
- Simopoulos, A.P. The importance of the omega-6/omega-3 fatty acid ratio in cardiovascular disease and other chronic diseases. Exp. Biol. Med. 2008, 233, 674–688. [Google Scholar] [CrossRef]
- Enser, M.; Hallett, K.G.; Hewett, B.; Fursey, G.A.J.; Wood, J.D.; Harrington, G. Fatty acid content and composition of UK beef and lamb muscle in relation to production system and implications for human nutrition. Meat Sci. 1998, 49, 329–341. [Google Scholar] [CrossRef]
- Lovegrove, J.A. Dietary dilemmas over fats and cardiometabolic risk. Proc. Nutr. Soc. 2020, 79, 11–21. [Google Scholar] [CrossRef]
- Malau-Aduli, A.E.O.; Siebert, B.D.; Bottema, C.D.K.; Pitchford, W.S. A comparison of the fatty acid composition of triacylglycerols in adipose tissue from Limousin and Jersey cattle. Aust. J. Agric. Res. 1997, 48, 715–722. [Google Scholar] [CrossRef] [Green Version]
- Soyeurt, H.; Dehareng, F.; Mayeres, P.; Bertozzi, C.; Gengler, N. Variation of Δ9-desaturase activity in dairy cattle. J. Dairy Sci. 2008, 91, 3211–3224. [Google Scholar] [CrossRef] [Green Version]
Item | Olive Cake | Cactus Cladodes |
---|---|---|
Dry matter (DM; g/kg) | 900 | 67 |
Ash (g/kg DM) | 37 | 220 |
Crude protein (CP; g/kg DM) | 92 | 71 |
Ether extract (EE; g/kg DM) | 165 | 22 |
Neutral detergent fiber (NDF; g/kg DM) | 641 | 446 |
Acid detergent fiber (ADF; g/kg DM) | 507 | 173 |
UFL (Unit/kg DM) | 0.43 | 0.75 |
PDIN (g/kg DM) | 46 | 54 |
PDIE (g/kg DM) | 42 | 48 |
Item | Diet 1 | |||
---|---|---|---|---|
Co | TOC | TCC | TOC + CC | |
Diet ingredients (on DM basis)2 | ||||
Oat hay (% TD) | 60 | 57 | 57 | 55 |
Barley grain (% Cc) | 15 | - | - | - |
Olive cake (% Cc) | - | 20 | - | 15 |
Cactus cladodes (% Cc) | - | - | 30 | 20 |
Fava bean (% Cc) | 83 | 78 | 68 | 63 |
Vitamin-Mineral Supplement (% Cc) | 2 | 2 | 2 | 2 |
Nutrient composition | ||||
DM (g/kg) | 882 | 882 | 332 | 413 |
Ash (g/kg DM) | 51 | 50 | 74 | 66 |
CP (g/kg DM) | 143 | 144 | 134 | 134 |
EE (g/kg DM) | 38 | 52 | 38 | 48 |
NDF (g/kg DM) | 492 | 512 | 503 | 515 |
ADF (g/kg DM) | 312 | 341 | 310 | 329 |
UFL (unit/kg DM) | 0.8 | 0.8 | 0.8 | 0.8 |
PDIN (g/kg DM) | 82 | 84 | 89 | 88 |
PDIE (g/kg DM) | 75 | 63 | 69 | 67 |
Item | Co | TOC | TCC | TOC + CC | SEM | p-Value | ||
---|---|---|---|---|---|---|---|---|
Diet | Period | Diet × Period | ||||||
Chemical composition (%) | ||||||||
Fat | 2.46 | 2.12 | 2.61 | 2.49 | 0.106 | 0.568 | <0.001 | 0.163 |
Proteins | 3.55 | 3.61 | 3.83 | 3.72 | 0.070 | 0.767 | <0.001 | 0.459 |
Lactose | 4.53 | 4.53 | 4.44 | 4.56 | 0.027 | 0.745 | <0.001 | 0.390 |
Solids non-fat | 9.14 | 9.05 | 9.24 | 9.30 | 0.075 | 0.839 | <0.001 | 0.541 |
Total Solids | 11.8 | 11.3 | 12.0 | 11.8 | 0.157 | 0.623 | <0.001 | 0.210 |
Ash | 0.789 | 0.788 | 0.809 | 0.798 | 0.006 | 0.628 | 0.003 | 0.014 |
Daily production (g/day) | ||||||||
Milk | 415 | 362 | 325 | 403 | 11.5 | 0.311 | <0.001 | 0.178 |
Energy-corrected milk | 353 | 280 | 268 | 329 | 0.016 | 0.353 | <0.001 | 0.147 |
Fat corrected milk | 335 | 260 | 253 | 306 | 0.016 | 0.335 | <0.001 | 0.222 |
Fat | 7.15 | 5.11 | 5.66 | 5.88 | 0.369 | 0.593 | <0.001 | 0.392 |
Proteins | 10.1 | 9.09 | 8.71 | 9.92 | 0.372 | 0.685 | <0.001 | 0.173 |
Lactose | 13.6 | 12.2 | 11.0 | 13.2 | 0.541 | 0.481 | <0.001 | 0.129 |
Solids non-fat | 26.7 | 23.5 | 22.0 | 26.1 | 1.01 | 0.500 | <0.001 | 0.110 |
Total Solids | 34.0 | 26.7 | 27.2 | 32.0 | 1.27 | 0.381 | <0.001 | 0.077 |
Ash | 2.02 | 1.75 | 1.69 | 2.00 | 0.072 | 0.571 | <0.001 | 0.113 |
Net energy of milk (NEmilk) (Mcal/kg) | 0.610 | 0.574 | 0.628 | 0.614 | 0.013 | 0.630 | <0.001 | 0.197 |
pH | 6.57 | 6.65 | 6.63 | 6.61 | 0.046 | 0.937 | <0.001 | 0.838 |
Acidity (°D) | 15.9 | 15.7 | 15.7 | 15.3 | 0.224 | 0.823 | <0.001 | 0.061 |
Co | TOC | TCC | TOC + CC | SEM | p-Value | |
---|---|---|---|---|---|---|
Yield (kg/lactation) | ||||||
Milk | 49.8 | 43.5 | 39.0 | 48.3 | 2.14 | 0.264 |
Fat | 1.36 | 0.926 | 0.987 | 1.17 | 0.085 | 0.254 |
Proteins | 1.76 | 1.54 | 1.42 | 1.76 | 0.069 | 0.228 |
Lactose | 2.25 | 1.96 | 1.73 | 2.19 | 0.096 | 0.192 |
Solids nonfat | 4.54 | 3.89 | 3.55 | 4.45 | 0.185 | 0.178 |
Total Solids | 5.87 | 4.82 | 4.53 | 5.62 | 0.253 | 0.184 |
Ash | 0.390 | 0.341 | 0.314 | 0.382 | 0.016 | 0.266 |
Diet 1 | p-Value | |||||||
---|---|---|---|---|---|---|---|---|
Co | TOC | TCC | TOC + CC | SEM | Diet | Period | Diet × Period | |
C4:0 | 0.286 a | 0.139 ab | 0.039 b | 0.081 b | 0.027 | 0.003 | 0.029 | 0.221 |
C6:0 | 0.798 | 0.755 | 0.769 | 0.790 | 0.046 | 0.995 | <0.001 | 0.221 |
C8:0 | 1.54 | 1.52 | 1.61 | 1.74 | 0.060 | 0.394 | 0.157 | 0.387 |
C10:0 | 5.39 | 5.41 | 5.48 | 5.13 | 0.142 | 0.586 | 0.495 | 0.707 |
C11:0 | 0.327 | 0.199 | 0.355 | 0.273 | 0.030 | 0.166 | 0.004 | 0.182 |
C12:0 | 2.48 | 2.71 | 2.90 | 2.43 | 0.075 | 0.074 | 0.104 | 0.748 |
C13:0 | 0.143 | 0.129 | 0.168 | 0.152 | 0.006 | 0.108 | 0.011 | 0.755 |
C14:0 | 7.05 | 6.85 | 7.74 | 6.89 | 0.161 | 0.112 | 0.021 | 0.958 |
C14:1 | 0.634 ab | 0.685 ab | 0.523 b | 0.841 a | 0.034 | 0.001 | <0.001 | 0.001 |
C15:0 | 1.56 b | 1.64 ab | 1.82 a | 1.63 b | 0.040 | 0.040 | <0.001 | 0.559 |
C15:1 | 0.440 | 0.477 | 0.365 | 0.506 | 0.017 | 0.008 | <0.001 | <0.001 |
C16:0 | 25.2 | 24.1 | 25.2 | 25.5 | 0.331 | 0.554 | <0.001 | 0.881 |
C16:1 | 1.15 | 1.11 | 1.13 | 1.15 | 0.039 | 0.987 | <0.001 | 0.554 |
C17:0 | 1.31 | 1.34 | 1.24 | 1.41 | 0.032 | 0.582 | 0.112 | 0.385 |
C17:1 | 0.460 | 0.447 | 0.454 | 0.517 | 0.013 | 0.302 | <0.001 | 0.936 |
C18:0 | 15.4 | 15.4 | 14.6 | 15.6 | 0.347 | 0.887 | <0.001 | 0.037 |
9t-C18:1 | 1.95 a | 1.32 b | 0.158 c | 0.101 c | 0.114 | <0.001 | <0.001 | <0.001 |
C18:1n-9 | 24.7 b | 27.8 a | 26.8 a | 28.0 a | 0.464 | 0.015 | 0.997 | 0.476 |
6t-C18:2 | 0.307 a | 0.209 ab | 0.168 b | 0.152 b | 0.016 | 0.001 | <0.001 | 0.005 |
C18:2n-6 | 1.62 | 1.67 | 1.98 | 1.93 | 0.063 | 0.050 | 0.043 | 0.466 |
C18:3n-3 | 0.655 ab | 0.695 a | 0.483 ab | 0.425 b | 0.039 | 0.029 | 0.019 | 0.016 |
C18:3n-6 | 0.522 ab | 0.199 b | 0.454 a | 0.091 b | 0.065 | 0.039 | 0.053 | 0.455 |
C20:0 | 0.849 a | 0.645 ab | 0.454 b | 0.841 a | 0.050 | 0.014 | 0.743 | 0.100 |
C20:1 | 0.297 | 0.457 | 0.207 | 0.172 | 0.037 | 0.060 | 0.630 | 0.848 |
C20:2 | 0.317 | 0.258 | 0.296 | 0.122 | 0.037 | 0.285 | 0.781 | 0.882 |
C20:3n-3 | 0.256 | 0.129 | 0.197 | 0.122 | 0.028 | 0.386 | 0.188 | 0.869 |
C20:3n-6 | 0.225 | 0.288 | 0.227 | 0.172 | 0.024 | 0.566 | 0.707 | 0.357 |
C20:4n-6 | 0.327 | 0.228 | 0.227 | 0.213 | 0.042 | 0.754 | 0.063 | 0.891 |
C20:5n-3 | 0.317 | 0.338 | 0.345 | 0.243 | 0.035 | 0.648 | 0.294 | 0.985 |
C21:0 | 0.736 b | 0.705 b | 1.23 a | 1.06 ab | 0.060 | 0.003 | 0.227 | 0.099 |
C22:0 | 0.470 | 0.338 | 0.720 | 0.415 | 0.098 | 0.537 | 0.518 | 0.696 |
C22:1n-9 | 0.399 | 0.377 | 0.197 | 0.182 | 0.058 | 0.454 | 0.048 | 0.039 |
C22:2 | 0.348 | 0.298 | 0.158 | 0.142 | 0.031 | 0.087 | 0.019 | 0.237 |
C22:6n-3 | 0.378 a | 0.278 ab | 0.296 a | 0.172 b | 0.023 | 0.014 | 0.168 | 0.024 |
C23:0 | 0.501 | 0.338 | 0.552 | 0.334 | 0.053 | 0.269 | 0.280 | 0.583 |
C24:0 | 0.389 | 0.228 | 0.355 | 0.273 | 0.051 | 0.678 | 0.177 | 0.658 |
C24:1 | 0.256 | 0.348 | 0.138 | 0.192 | 0.032 | 0.110 | 0.878 | 0.303 |
Summary 2 | ||||||||
SCFA | 8.02 | 7.83 | 7.90 | 7.75 | 0.211 | 0.987 | 0.048 | 0.585 |
MCFA | 10.6 | 10.6 | 11.7 | 10.6 | 0.238 | 0.593 | 0.003 | 0.931 |
LCFA | 81.4 | 81.6 | 80.4 | 81.7 | 0.375 | 0.891 | 0.104 | 0.666 |
SFA | 64.5 | 62.4 | 65.2 | 64.6 | 0.420 | 0.319 | 0.114 | 0.433 |
MUFA | 30.3 b | 33.0 a | 29.9 b | 31.6 ab | 0.374 | 0.005 | 0.623 | 0.662 |
PUFA | 5.27 a | 4.59 b | 4.83 b | 3.79 b | 0.270 | 0.014 | 0.333 | 0.904 |
DFA | 50.9 | 53.0 | 49.3 | 51.0 | 0.459 | 0.107 | 0.062 | 0.631 |
n-3 | 1.61 | 1.44 | 1.32 | 0.962 | 0.092 | 0.125 | 0.107 | 0.298 |
n-6 | 3.00 | 2.59 | 3.06 | 2.56 | 0.111 | 0.153 | 0.174 | 0.116 |
n-9 | 27.0 b | 29.5 a | 27.1 ab | 28.3 ab | 0.398 | 0.044 | 0.752 | 0.455 |
Ratio | ||||||||
n-6/n-3 | 1.87 ab | 1.80 b | 2.31 a | 2.66 a | 0.080 | 0.046 | 0.055 | 0.062 |
UFA/SFA | 0.551 ab | 0.602 a | 0.533 b | 0.549 ab | 0.010 | 0.036 | 0.144 | 0.778 |
PUFA/SFA | 0.082 | 0.090 | 0.070 | 0.060 | 0.007 | 0.112 | 0.162 | 0.841 |
MUFA/PUFA | 5.75 b | 7.19 ab | 6.19 b | 8.35 a | 0.264 | 0.009 | 0.978 | 0.325 |
Index 3 | ||||||||
AI | 1.57 | 1.44 | 1.70 | 1.57 | 0.041 | 0.468 | 0.023 | 0.953 |
TI | 2.17 b | 2.04 b | 2.27 ab | 2.36 a | 0.040 | 0.002 | 0.014 | 0.012 |
(C18:0+C18:1)/C16:0 | 1.67 | 1.85 | 1.64 | 1.71 | 0.033 | 0.455 | <0.001 | 0.678 |
Δ9C14 | 0.083 ab | 0.091 a | 0.063 b | 0.109 a | 0.004 | <0.001 | <0.001 | 0.001 |
Δ9C16 | 0.043 | 0.044 | 0.043 | 0.043 | 0.001 | 0.754 | <0.001 | 0.536 |
Δ9C18 | 0.634 | 0.654 | 0.649 | 0.643 | 0.005 | 0.531 | <0.001 | 0.001 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
El Otmani, S.; Chebli, Y.; Chentouf, M.; Hornick, J.-L.; Cabaraux, J.-F. Effects of Olive Cake and Cactus Cladodes as Alternative Feed Resources on Goat Milk Production and Quality. Agriculture 2021, 11, 3. https://doi.org/10.3390/agriculture11010003
El Otmani S, Chebli Y, Chentouf M, Hornick J-L, Cabaraux J-F. Effects of Olive Cake and Cactus Cladodes as Alternative Feed Resources on Goat Milk Production and Quality. Agriculture. 2021; 11(1):3. https://doi.org/10.3390/agriculture11010003
Chicago/Turabian StyleEl Otmani, Samira, Youssef Chebli, Mouad Chentouf, Jean-Luc Hornick, and Jean-François Cabaraux. 2021. "Effects of Olive Cake and Cactus Cladodes as Alternative Feed Resources on Goat Milk Production and Quality" Agriculture 11, no. 1: 3. https://doi.org/10.3390/agriculture11010003
APA StyleEl Otmani, S., Chebli, Y., Chentouf, M., Hornick, J.-L., & Cabaraux, J.-F. (2021). Effects of Olive Cake and Cactus Cladodes as Alternative Feed Resources on Goat Milk Production and Quality. Agriculture, 11(1), 3. https://doi.org/10.3390/agriculture11010003