Biomass Characteristics and Energy Yields of Tobacco (Nicotiana tabacum L.) Cultivated in Eastern Poland
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Biomass Energy Potential
3.2. Methane Potential of Tobacco Silage
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Diamantidis, N.D.; Koukis, E.G. Agricultural crops and residues as feedstock for non-food products in Western Europe. Ind. Crop. Prod. 2000, 11, 97–106. [Google Scholar] [CrossRef]
- Andrianov, V.; Borisjuk, N.; Pogrebnyak, N.; Brinker, A.; Dixon, J.; Spitsin, S.; Flynn, J.; Matyszczuk, P.; Andryszak, K.; Laurelli, M.; et al. Tobacco as a production platform for biofuel: Overexpression of Arabidopsis DGAT and LEC2 genes increases accumulation and shifts the composition of lipids in green biomass. Plant Biotechnol. J. 2010, 8, 277–287. [Google Scholar] [CrossRef] [PubMed]
- Barla, F.G.; Kumar, S. Tobacco biomass as a source of advanced biofuels. Biofuels 2016, 10, 335–346. [Google Scholar] [CrossRef]
- Usta, N. Use of tobacco seed oil methyl ester in a turbocharged indirect injection diesel engine. Biomass Bioenergy 2005, 28, 77–86. [Google Scholar] [CrossRef]
- Guo, G.; Zhang, J.; Li, D.; Cai, B.; Zhang, X. Enhanced saccharification and ethanolic fermentation of tobacco stalks by chemical pretreatment. J. Biotechnol. 2010, 150, 173–174. [Google Scholar] [CrossRef]
- FAOSTAT. Food and Agriculture Organization of the United Nations, Database on Crops Statistics. 2018. Available online: http://www.fao.org/faostat/en/#data/QC (accessed on 8 May 2020).
- GUS (Main Statistical Office of Poland). Rocznik Statystyczny Rolnictwa; Zakład Wydawnictw Statystycznych: Warsaw, Poland, 2018; ISSN 2080-8798.
- Gwiazdowski, R.; Barna, A.; Wepa, M.; Marchewka, R. Skutki Wdrożenia Dyrektywy Tytoniowej: Raport Centrum im. Adama Smitha o Ekonomicznych Skutkach Wdrożenia Rewizji Dyrektywy 2001/37/WE Parlamentu Europejskiego i Rady Europy z 5 czerwca 2001 Roku; Centrum im. Adama Smitha: Warsaw, Poland, 2013; ISBN 978-83-86885-65-7. (In Polish) [Google Scholar]
- Barna, A.; Marchewka, R.; Wepa, M. Raport—Uwarunkowania Prawne oraz Polityka Podatkowa Państwa Wobec Wyrobów Tytoniowych a Rynek Pracy w Polskiej branży Tytoniu; Związek Przedsiębiorców i Pracodawców: Warsaw, Poland, 2013; p. 72. (In Polish) [Google Scholar]
- Berbeć, A.; Madej, A. Obecna sytuacja i perspektywy uprawy tytoniu w Polsce na tle świata i Unii Europejskiej (in polish). Studia Rap. IUNG PIB 2012, 31, 51–67. [Google Scholar]
- Doroszewska, T.; Berbeć, A.; Czarnecka, D.; Kawka, M. Choroby i Szkodniki Tytoniu; IUNG-PIB: Puławy, Poland, 2013; ISBN 978-83-7562-154-9. (In Polish) [Google Scholar]
- Budzianowska, A.; Budzianowski, J. Tytoń źródłem biopaliw. Przegl Lek 2012, 69, 1149–1152. (In Polish) [Google Scholar]
- Radojičić, V.; Ećim-Djurić, O.S.M.; Djulančić, N.; Kulić, G. Possibilities of Virginia Tobacco Stalks Utilization. Tutun Tob. 2014, 64, 71–76. [Google Scholar]
- Cornelissen, S.; Koper, M.; Deng, Y.Y. The role of bioenergy in a fully sustainable global energy system. Biomass Bioenergy 2012, 41, 21–33. [Google Scholar] [CrossRef]
- Tsavkelova, E.A.; Netrusow, A.I. Biogas production from cellulose-containing substrates. A review. Appl. Biochem. Microbiol. 2012, 48, 421–433. [Google Scholar] [CrossRef]
- EU Climate Strategies and Targets: 2030 Climate & Energy Framework. Available online: https://ec.europa.eu/clima/policies/strategies/2030_en (accessed on 12 October 2020).
- Matyka, M. Production and economic aspects of cultivation of perennial plants for energy purposes. Monogr. Rozpr. Nauk. IUNG PIB 2013, 35, 1–98. [Google Scholar]
- Oniszk-Popławska, A.; Matyka, M.; Dagny-Ryńska, E. Evaluation of a long-term potential for the development of agricultural biogas plants: A case study for the Lubelskie Province, Poland. Renew. Sustain. Energy Rev. 2014, 36, 329–349. [Google Scholar] [CrossRef]
- Matyka, M.; Księżak, J. Potencjalne możliwości produkcji biogazu z mozgi trzcinowatej. Probl. Inżynierii Rol. 2013, 80, 79–86. [Google Scholar]
- Bilalis, D.; Karkanis, A.; Efthimiadou, A.; Konstantas, A.; Triantafyllidis, V. Effects of irrigation system and green manure on yield and nicotine content of Virginia (flue-cured) Organic tobacco (Nicotiana tabaccum), under Mediterranean conditions. Ind. Crop. Prod. 2009, 29, 388–394. [Google Scholar] [CrossRef]
- Szewczuk, C. Wpływ dolistnego dokarmiania tytoniu na plony i jakość liści. Ann. Univ. Mariae Curie-Skłodowska Lub. Sect. E 2009, 64, 46–51. (In Polish) [Google Scholar]
- Pawełek, E. Zbiór i suszenie Virginii w regionie leżajskim. Przegląd Tyton. 2000, 9, 6–9. (In Polish) [Google Scholar]
- McKendry, P. Energy production from biomass (part 1): Overview of biomass. Bioresour. Technol. 2002, 83, 37–46. [Google Scholar] [CrossRef]
- Prade, T.; Svensson, S.E.; Andersson, A.; Mattsson, J.E. Biomass and energy yield of industrial hemp grown for biogas and solid fuel. Biomass Bioenergy 2011, 35, 3040–3049. [Google Scholar] [CrossRef]
- Jureková, Z.; Húska, D.; Kotrla, M.; Prčík, M.; Hauptvogl, M. Comparison of Energy Sources Grown on Agricultural Land. Acta Reg. Environ. 2015, 12, 38–43. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Krzyżaniak, M.; Załuski, D.; Tworkowski, J.; Szczukowski, S. Effects of Site, Genotype and Subsequent Harvest Rotation on Willow Productivity. Agriculture 2020, 10, 412. [Google Scholar] [CrossRef]
- Niemczyk, M.; Wojda, T.; Kantorowicz, W. Przydatność hodowlana wybranych odmian topoli w plantacjach energetycznych o krótkim cyklu produkcji. Sylwan 2016, 160, 292–298. [Google Scholar]
- Sheen, S.J. Biomass and chemical composition of tobacco plants under high density growth. Beitr Tabakforsch. Int. 1983, 12, 35–42. [Google Scholar] [CrossRef]
- Wildman, S.G. Tobacco, a potential food crop. Crops and Soil Magazine, January 1979, pp. 7–9. Beitr Tabakforsch. Int. 1979, 12, 35–42. [Google Scholar]
- Stolarski, M.J.; Warmiński, K.; Krzyżaniak, M. Energy Value of Yield and Biomass Quality of Poplar Grown in Two Consecutive 4-Year Harvest Rotations in the North-East of Poland. Energies 2020, 13, 1495. [Google Scholar] [CrossRef]
- Stolarski, M.J.; Krzyżaniak, M.; Szczukowski, S.; Tworkowski, J. Efektywność energetyczna produkcji biomasy wierzby w jednorocznym i trzyletnim cyklu zbioru. Fragm. Agron 2014, 31, 88–95. [Google Scholar]
- Mijailovic, I.; Radojicic, V.; Ecim-Djuric, O.; Stefanovic, G.; Kulic, G. Energy potential of tobacco stalks in briquettes and pellets production. J. Environ. Prot. Ecol. 2014, 15, 1034–1041. [Google Scholar]
- Indahsari, O.P. Briquettes from Tobacco Stems as the New Alternative Energy. J. Kim. Terap. Indones. (Indones. J. Appl. Chem.) 2018, 19, 73–80. [Google Scholar] [CrossRef]
- Weiland, P. Biogas production: Current state and perspectives. Appl. Microbiol. Biotechnol. 2010, 85, 849–860. [Google Scholar] [CrossRef]
- Kacprzak, A.; Matyka, M.; Krzystek, L.; Ledakowicz, S. Wpływ stopnia nawożenia i czynników atmosferycznych na wydajność produkcji biogazu z wybranych roślin energetycznych. Inż. Ap. Chem. 2012, 4, 141–142. (In Polish) [Google Scholar]
- Oleszek, M.; Król, A.; Tys, J.; Matyka, M.; Kulik, M. Comparison of biogas production from wild and cultivated varieties of reed canary grass. Bioresour. Technol. 2014, 156, 303–306. [Google Scholar] [CrossRef]
- Li, L.; Wang, R.; Jiang, Z.; Li, W.; Liu, G.; Chen, C. Anaerobic digestion of tobacco stalk: Biomethane production performance and kinetic analysis. Environ. Sci. Pollut. Res. 2019, 26, 14250–14258. [Google Scholar] [CrossRef] [PubMed]
- Leffingwell, J. Basic chemical constituents of tobacco leaf and differences among tobacco types. Reprinted from Tobacco. In Production, Chemistry, and Technology; Layten, D., Davis, M.T., Eds.; Blackwell Science: Hoboken, NJ, USA, 1999; pp. 265–284, Chapter 8. [Google Scholar]
- Miś, T. Ocena odmian tytoniu uprawianych w rejonie województwa podkarpackiego (in polish). Biul. Inst. Hod. Aklim. Roślin 2003, 228, 363–371. [Google Scholar]
- Wijatyk, B. Rynek tytoniu. In Strategiczne Opcje dla Polskiego Sektora Agrobiznesu w Świetle Analiz Ekonomicznych; Majewski, E., Dalton, G., Eds.; SGGW: Warszawa, Poland, 2000; p. 408. (In Polish) [Google Scholar]
Area | Production (Thousands of Mg) | Area Harvested (Thousands of ha) | Average Yield (Mg ha−1) |
---|---|---|---|
China | 2242.2 | 1003.7 | 2.2 |
Brazil | 762.3 | 356.5 | 2.1 |
India | 749.9 | 417.7 | 1.8 |
USA | 241.9 | 117.9 | 2.0 |
Indonesia | 181.1 | 203.0 | 0.9 |
Pakistan | 106.7 | 46.3 | 2.3 |
Malawi | 95.4 | 86.1 | 1.1 |
Argentina | 104.1 | 54.7 | 1.9 |
Zambia | 115.9 | 65.7 | 1.8 |
Italy | 59.3 | 17.2 | 3.4 |
Poland | 33.2 | 16.4 | 2.0 |
UE-27 * | 178.3 | 77.9 | 2.3 |
World (total) | 6094.9 | 3368.9 | 1.8 |
Tobacco Plantation | Virginia A | Virginia B | Virginia C | Burley |
---|---|---|---|---|
Variety of tobacco | HYV 23 | HYV 23 | VRG 10TL | TN10 |
Soil classification | Podzoluvisol | Loess soil | Pseudo Podzoluvisol | |
S—Sand | LS- loamy sand (on sandy loam) | |||
Complex of agricultural suitability of soils: from 1 (best) to 9 (worst) | 6 | 2 | 5 | |
Soil pH | 5.0 | 6.0 | 5.9 | |
Soil P2O5 content (mg 100g−1) | 16.2 | 18.1 | 16.8 | |
Soil K2O content (mg 100g−1) | 15.8 | 19.1 | 17.0 | |
Soil Mg content (mg 100g−1) | 5.9 | 7.6 | 7.2 | |
Mineral fertilization N-P2O5-K2O (kg ha−1) | 130-50-130 | 50-45-100 | 100-43-103 | |
Organic fertilization N-P2O5-K2O (kg ha−1) | 0 | 100-33-38 | 0 | |
Density of plants (per hectare) | 22,000 | 20,000 | 23,000 | |
Irrigation | Yes | No | No |
Plantation and Type of Tobacco | Virginia A | Virginia B | Virginia C | Burley | Average |
---|---|---|---|---|---|
Yield of fresh matter (FM), (leaves + stems) (Mg ha−1) | 62.3 a * | 55.7 a | 34.8 b | 59.8 a | 53.2 |
Total dry matter (DM) in FM (%) | 23.0 a | 28.4 b | 27.1 b | 22.4 a | 25.2 |
Volatile Solids (VS) content in FM (%) | 20.5 a | 21.1 a | 16.2 b | 15.9 b | 18.4 |
Yield of leaves (Mg ha−1) DM | 5.6 a | 5.0 a | 3.5 b | 4.7 a | 4.7 |
Yield of stems (Mg ha−1) DM | 8.7a | 10.8 b | 6.0 c | 8.7 a | 8.6 |
Leaf/stem ratio | 0.6 | 0.5 | 0.6 | 0.5 | 0.6 |
Yield (leaves + stems) (t·ha−1) DM | 14.3 ab | 15.8 a | 9.4 c | 13.4 b | 13.2 |
Higher heating value of leaves (MJ kg−1) | 17.2 a | 16.4 a | 16.2 a | 15.6 a | 16.3 |
Higher heating value of stems (MJ kg−1) | 18.4 a | 17.6 ab | 17.4 ab | 17.0 b | 17.6 |
Higher heating value (leaves + stems) (MJ kg−1) | 18.0 a | 17.0 ab | 16.8 ab | 16.3 b | 17.0 |
Biomass energy yield (GJ ha−1 yr−1) of leaves | 96.3 a | 81.8 ab | 56.5 c | 73.0 bc | 76.9 |
Biomass energy yield (GJ ha−1 yr−1) of stems | 160.3 a | 191.0 b | 103.8 c | 147.7 a | 150.7 |
Biomass energy yield (GJ ha−1 yr−1) of leaves + stems | 256.6 ab | 272.8 a | 160.3 c | 220.7 b | 227.6 |
Methane potential (Nm3 Mg−1 VS) | 298 b | 220 a | nd | 226 a | 248 |
Yield of methane (Nm3 ha−1 yr−1) | 3802 b | 2590 a | nd | 2149 a | 2847 |
Crop | Crop Yield DM (Mg ha−1 yr−1) | HHV (MJ kg−1) | Biomass Energy Yield (GJ ha−1 yr−1) |
---|---|---|---|
Tobacco | 9–16 | 16.3–18.0 | 160–273 |
Wheat (Triticum aestivum L.) | 14 1 7–13 3 | 12.3 1 | 123 1 128–231 3 |
Poplar | 10–15 1 2–8 6 | 17.3 1 | 173–259 1 33–230 8 |
Willow | 10–15 1 2–18 5 | 18.7 1 | 187–280 1 203–210 7 |
Switchgrass | 8 1 | 17.4 1 | 139 1 |
Miscanthus | 12–30 1 11–29 3 | 18.5 1 | 222–555 1 186–486 3 |
Industrial hemp | 10–14 2 | 17.5–19.12 | 246–296 2 |
Maize | 8–32 3 | 17.5 4 | 142–545 3 |
Crop | Crop yield (t FM ha−1) | Nm3 CH4 t−1 VS (MIN) | Nm3 CH4 t−1 VS (MAX) |
---|---|---|---|
Tobacco 1 | 35–62 | 220 | 298 |
Maize 1 | 36 | 346 | 437 |
Corn-cob-mix (CCM) 2 | 10–15 | 350 | 360 |
Fodder beet 2 | 80–120 | 398 | 424 |
Grass 2 | 22–31 | 286 | 324 |
Maize 2 | 40–60 | 291 | 338 |
Red clover 2 | 17–25 | 297 | 347 |
Rye grain 2 | 4–7 | 297 | 413 |
Sorghum 2 | 40–80 | 286 | 319 |
Sugar beet 2 | 40–70 | 387 | 408 |
Sunflower 2 | 31–42 | 231 | 297 |
Triticale 2 | 28–33 | 319 | 335 |
Wheat 2 | 30–50 | 351 | 378 |
Wheat grain 2 | 6–10 | 371 | 398 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berbeć, A.K.; Matyka, M. Biomass Characteristics and Energy Yields of Tobacco (Nicotiana tabacum L.) Cultivated in Eastern Poland. Agriculture 2020, 10, 551. https://doi.org/10.3390/agriculture10110551
Berbeć AK, Matyka M. Biomass Characteristics and Energy Yields of Tobacco (Nicotiana tabacum L.) Cultivated in Eastern Poland. Agriculture. 2020; 10(11):551. https://doi.org/10.3390/agriculture10110551
Chicago/Turabian StyleBerbeć, Adam Kleofas, and Mariusz Matyka. 2020. "Biomass Characteristics and Energy Yields of Tobacco (Nicotiana tabacum L.) Cultivated in Eastern Poland" Agriculture 10, no. 11: 551. https://doi.org/10.3390/agriculture10110551
APA StyleBerbeć, A. K., & Matyka, M. (2020). Biomass Characteristics and Energy Yields of Tobacco (Nicotiana tabacum L.) Cultivated in Eastern Poland. Agriculture, 10(11), 551. https://doi.org/10.3390/agriculture10110551