Robotic-Assisted Simple Prostatectomy: A Systematic Review
Abstract
1. Introduction
2. Methods
2.1. Evidence Acquisition
2.2. Inclusion and Exclusion Criteria
2.3. Data Extraction and Outcome Measures
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Elshal, A.M.; El-Nahas, A.R.; Barakat, T.S.; Elsaadany, M.M.; El-Hefnawy, A.S. Transvesical open prostatectomy for benign prostatic hyperplasia in the era of minimally invasive surgery: Perioperative outcomes of a contemporary series. Arab. J. Urol. 2013, 11, 362–368. [Google Scholar] [CrossRef] [PubMed]
- Mariano, M.B.; Graziottin, T.M.; Tefilli, M.V. Laparoscopic prostatectomy with vascular control for benign prostatic hyperplasia. J. Urol. 2002, 167, 2528–2529. [Google Scholar] [CrossRef]
- Sotelo, R.; Clavijo, R.; Carmona, O.; Garcia, A.; Banda, E.; Miranda, M.; Fagin, R. Robotic simple prostatectomy. J. Urol. 2008, 179, 513–515. [Google Scholar] [CrossRef] [PubMed]
- Meyer, D.; Weprin, S.; Zukovski, E.B.; Porpiglia, F.; Hampton, L.J.; Autorino, R. Rationale for Robotic-assisted Simple Prostatectomy for Benign Prostatic Obstruction. Eur. Urol. Focus 2018, 4, 643–647. [Google Scholar] [CrossRef]
- Foster, H.E.; Barry, M.J.; Dahm, P.; Gandhi, M.C.; Kaplan, S.A.; Kohler, T.S.; Lerner, L.B.; Lightner, D.J.; Parsons, J.K.; Roehrborn, C.G.; et al. Surgical Management of Lower Urinary Tract Symptoms Attributed to Benign Prostatic Hyperplasia: AUA Guideline. J. Urol. 2018, 200, 612–619. [Google Scholar] [CrossRef]
- Gratzke, C.; Bachmann, A.; Descazeaud, A.; Drake, M.J.; Madersbacher, S.; Mamoulakis, C.; Oelke, M.; Tikkinen, K.A.O.; Gravas, S. EAU Guidelines on the Assessment of Non-neurogenic Male Lower Urinary Tract Symptoms including Benign Prostatic Obstruction. Eur. Urol. 2015, 67, 1099–1109. [Google Scholar] [CrossRef]
- Vincent, M.W.; Gilling, P.J. HoLEP has come of age. World J. Urol. 2015, 33, 487–493. [Google Scholar] [CrossRef]
- Placer, J.; Gelabert-Mas, A.; Vallmanya, F.; Manresa, J.M.; Menendez, V.; Cortadellas, R.; Arango, O. Holmium laser enucleation of prostate: Outcome and complications of self-taught learning curve. Urology 2009, 73, 1042–1048. [Google Scholar] [CrossRef]
- Robert, G.; Cornu, J.N.; Fourmarier, M.; Saussine, C.; Descazeaud, A.; Azzouzi, A.R.; Vicaut, E.; Lukacs, B. Multicentre prospective evaluation of the learning curve of holmium laser enucleation of the prostate (HoLEP). BJU Int. 2016, 117, 495–499. [Google Scholar] [CrossRef]
- Banapour, P.; Patel, N.; Kane, C.J.; Cohen, S.A.; Parsons, J.K. Robotic-assisted simple prostatectomy: A systematic review and report of a single institution case series. Prostate Cancer Prostatic Dis. 2014, 17, 1–5. [Google Scholar] [CrossRef]
- Robotic-Assisted Robotic Adenomectomy: A Systematic Review. Available online: https://osf.io/kdf7p/ (accessed on 6 April 2020).
- Yuh, B.; Laungani, R.; Perlmutter, A.; Eun, D.; Peabody, J.O.; Mohler, J.L.; Stricker, H.; Guru, K.A. Robot-assisted Millin’s retropubic prostatectomy: Case series. Can. J. Urol. 2008, 15, 4101–4105. [Google Scholar]
- John, H.; Bucher, C.; Engel, N.; Fischer, B.; Fehr, J.L. Preperitoneal robotic prostate adenomectomy. Urology 2009, 73, 811–815. [Google Scholar] [CrossRef]
- Uffort, E.E.; Jensen, J.C. Robotic-assisted laparoscopic simple prostatectomy: An alternative minimal invasive approach for prostate adenoma. J. Robot Surg. 2010, 4, 7–10. [Google Scholar] [CrossRef]
- Sutherland, D.E.; Perez, D.S.; Weeks, D.C. Robot-assisted simple prostatectomy for severe benign prostatic hyperplasia. J. Endourol. 2011, 25, 641–644. [Google Scholar] [CrossRef]
- Coelho, R.F.; Chauhan, S.; Sivaraman, A.; Palmer, K.J.; Orvieto, M.A.; Rocco, B.; Coughlin, G.; Patel, V.R. Modified technique of robotic-assisted simple prostatectomy: Advantages of a vesico-urethral anastomosis. BJU Int. 2012, 109, 426–433. [Google Scholar] [CrossRef]
- Vora, A.; Mittal, S.; Hwang, J.; Bandi, G. Robot-assisted simple prostatectomy: Multi-institutional outcomes for glands larger than 100 grams. J. Endourol. 2012, 26, 499–502. [Google Scholar] [CrossRef]
- Fareed, K.; Zaytoun, O.M.; Autorino, R.; White, W.M.; Crouzet, S.; Yakoubi, R.; Haber, G.P.; White, M.A.; Kaouk, J.H. Robotic single port suprapubic transvesical enucleation of the prostate (R-STEP): Initial experience. BJU Int. 2012, 110, 732–737. [Google Scholar] [CrossRef]
- Matei, D.V.; Brescia, A.; Mazzoleni, F.; Spinelli, M.; Musi, G.; Melegari, S.; Galasso, G.; Detti, S.; de Cobelli, O. Robot-assisted simple prostatectomy (RASP): Does it make sense? BJU Int. 2012, 110, E972–E979. [Google Scholar] [CrossRef]
- Clavijo, R.; Carmona, O.; De Andrade, R.; Garza, R.; Fernandez, G.; Sotelo, R. Robot-assisted intrafascial simple prostatectomy: Novel technique. J. Endourol. 2013, 27, 328–332. [Google Scholar] [CrossRef]
- Leslie, S.; Abreu, A.L.; Chopra, S.; Ramos, P.; Park, D.; Berger, A.K.; Desai, M.M.; Gill, I.S.; Aron, M. Transvesical robotic simple prostatectomy: Initial clinical experience. Eur. Urol. 2014, 66, 321–329. [Google Scholar] [CrossRef]
- Nestler, S.; Rubenwolf, P.; Neisius, A.; Thomas, C.; Roos, F.; Hampel, C.; Thüroff, J.W. Thüroff. Robot-Assisted Transvesical Enucleation of Benign Prostatic Hyperplasia: Lessons from a Single Surgeon’s Learning Curve. Urol. Pract. 2014, 1, 40–44. [Google Scholar] [CrossRef]
- Elsamra, S.E.; Gupta, N.; Ahmed, H.; Leavitt, D.; Kreshover, J.; Kavoussi, L.; Richstone, L. Robotic assisted laparoscopic simple suprapubic prostatectomy—The Smith Institute for Urology experience with an evolving technique. Asian J. Urol. 2014, 1, 55–59. [Google Scholar] [CrossRef]
- Stolzenburg, J.U.; Kallidonis, P.; Qazi, H.; Ho Thi, P.; Dietel, A.; Liatsikos, E.N.; Do, M. Extraperitoneal approach for robotic-assisted simple prostatectomy. Urology 2014, 84, 1099–1105. [Google Scholar] [CrossRef]
- Patel, M.N.; Hemal, A.K. Robot-assisted laparoscopic simple anatomic prostatectomy. Urol. Clin. North Am. 2014, 41, 485–492. [Google Scholar] [CrossRef] [PubMed]
- Nething, J.B.; Ricchiuti, D.J.; Irvine, R.; Drevna, D. Robotic simple prostatectomy: A consideration for large prostate adenomas. Arch. Ital. Urol. Androl. 2014, 86, 241–244. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Pokorny, M.; Novara, G.; Geurts, N.; Dovey, Z.; De Groote, R.; Ploumidis, A.; Schatteman, P.; de Naeyer, G.; Mottrie, A. Robot-assisted simple prostatectomy for treatment of lower urinary tract symptoms secondary to benign prostatic enlargement: Surgical technique and outcomes in a high-volume robotic centre. Eur. Urol. 2015, 68, 451–457. [Google Scholar] [CrossRef] [PubMed]
- Castillo, O.; Vidal-Mora, I.; Rodriguez-Carlin, A.; Silva, A.; Schatloff, O.; Borgna, V. Modified urethrovesical anastomosis during robot-assisted simple prostatectomy: Technique and results. Prostate Int. 2016, 4, 61–64. [Google Scholar] [CrossRef] [PubMed]
- Cacciamani, G.; Medina, L.; Ashrafi, A.; Landsberger, H.; Winter, M.; Mekhail, P.; Desai, M.; Aron, M.; Berger, A. Transvesical robot-assisted simple prostatectomy with 360 degrees circumferential reconstruction: Step-by-step technique. BJU Int. 2018, 122, 344–348. [Google Scholar] [CrossRef]
- Wang, P.; Xia, D.; Ye, S.; Kong, D.; Qin, J.; Jing, T.; Mao, Y.; Meng, H.; Wang, S. Robotic-assisted Urethra-sparing Simple Prostatectomy Via an Extraperitoneal Approach. Urology 2018, 119, 85–90. [Google Scholar] [CrossRef]
- Chavali, J.S.; Garisto, J.; Bertolo, R.; Agudelo, J.; Kaouk, J.H. Surgical Hints for Robot-Assisted Transvesical Simple Prostatectomy. Urology 2018, 122, 185. [Google Scholar] [CrossRef]
- Simone, G.; Misuraca, L.; Anceschi, U.; Minisola, F.; Ferriero, M.; Guaglianone, S.; Tuderti, G.; Gallucci, M. Urethra and Ejaculation Preserving Robot-assisted Simple Prostatectomy: Near-infrared Fluorescence Imaging-guided Madigan Technique. Eur. Urol. 2019, 75, 492–497. [Google Scholar] [CrossRef] [PubMed]
- Johnson, B.; Sorokin, I.; Singla, N.; Roehrborn, C.; Gahan, J.C. Determining the Learning Curve for Robot-Assisted Simple Prostatectomy in Surgeons Familiar with Robotic Surgery. J. Endourol. 2018, 32, 865–870. [Google Scholar] [CrossRef] [PubMed]
- Steinberg, R.L.; Passoni, N.; Garbens, A.; Johnson, B.A.; Gahan, J.C. Initial experience with extraperitoneal robotic-assisted simple prostatectomy using the da Vinci SP surgical system. J. Robot Surg. 2019. [Google Scholar] [CrossRef]
- Dubey, D.; Hemal, A.K. Robotic-assisted simple prostatectomy with complete urethrovesical reconstruction. Indian J. Urol. 2012, 28, 231–232. [Google Scholar] [CrossRef]
- Hoy, N.Y.; Van Zyl, S.; St Martin, B.A. Initial Canadian experience with robotic simple prostatectomy: Case series and literature review. Can. Urol. Assoc. J. 2015, 9, E626–E630. [Google Scholar] [CrossRef]
- Autorino, R.; Zargar, H.; Mariano, M.B.; Sanchez-Salas, R.; Sotelo, R.J.; Chlosta, P.L.; Castillo, O.; Matei, D.V.; Celia, A.; Koc, G.; et al. Perioperative Outcomes of Robotic and Laparoscopic Simple Prostatectomy: A European-American Multi-institutional Analysis. Eur. Urol. 2015, 68, 86–94. [Google Scholar] [CrossRef]
- Martin Garzon, O.D.; Azhar, R.A.; Brunacci, L.; Ramirez-Troche, N.E.; Medina Navarro, L.; Hernandez, L.C.; Nunez Bragayrac, L.; Sotelo Noguera, R.J. One-Year Outcome Comparison of Laparoscopic, Robotic, and Robotic Intrafascial Simple Prostatectomy for Benign Prostatic Hyperplasia. J. Endourol. 2016, 30, 312–318. [Google Scholar] [CrossRef]
- Pavan, N.; Zargar, H.; Sanchez-Salas, R.; Castillo, O.; Celia, A.; Gallo, G.; Sivaraman, A.; Cathelineau, X.; Autorino, R. Robot-assisted Versus Standard Laparoscopy for Simple Prostatectomy: Multicenter Comparative Outcomes. Urology 2016, 91, 104–110. [Google Scholar] [CrossRef]
- Umari, P.; Fossati, N.; Gandaglia, G.; Pokorny, M.; De Groote, R.; Geurts, N.; Goossens, M.; Schatterman, P.; De Naeyer, G.; Mottrie, A. Robotic Assisted Simple Prostatectomy versus Holmium Laser Enucleation of the Prostate for Lower Urinary Tract Symptoms in Patients with Large Volume Prostate: A Comparative Analysis from a High Volume Center. J. Urol. 2017, 197, 1108–1114. [Google Scholar] [CrossRef]
- Zhang, M.W.; El Tayeb, M.M.; Borofsky, M.S.; Dauw, C.A.; Wagner, K.R.; Lowry, P.S.; Bird, E.T.; Hudson, T.C.; Lingeman, J.E. Comparison of Perioperative Outcomes Between Holmium Laser Enucleation of the Prostate and Robot-Assisted Simple Prostatectomy. J. Endourol. 2017, 31, 847–850. [Google Scholar] [CrossRef]
- Sorokin, I.; Sundaram, V.; Singla, N.; Walker, J.; Margulis, V.; Roehrborn, C.; Gahan, J.C. Robot-Assisted Versus Open Simple Prostatectomy for Benign Prostatic Hyperplasia in Large Glands: A Propensity Score-Matched Comparison of Perioperative and Short-Term Outcomes. J. Endourol. 2017, 31, 1164–1169. [Google Scholar] [CrossRef]
- Mourmouris, P.; Keskin, S.M.; Skolarikos, A.; Argun, O.B.; Karagiannis, A.A.; Tufek, I.; Obek, C.; Riza Kural, A. A prospective comparative analysis of robot-assisted vs open simple prostatectomy for benign prostatic hyperplasia. BJU Int. 2019, 123, 313–317. [Google Scholar] [CrossRef]
- Nestler, S.; Bach, T.; Herrmann, T.; Jutzi, S.; Roos, F.C.; Hampel, C.; Thuroff, J.W.; Thomas, C.; Neisius, A. Surgical treatment of large volume prostates: A matched pair analysis comparing the open, endoscopic (ThuVEP) and robotic approach. World J. Urol. 2019, 37, 1927–1931. [Google Scholar] [CrossRef]
- Parsons, J.K.; Rangarajan, S.S.; Palazzi, K.; Chang, D. A National, Comparative Analysis of Perioperative Outcomes of Open and Minimally Invasive Simple Prostatectomy. J. Endourol. 2015, 29, 919–924. [Google Scholar] [CrossRef]
- Vince, R.; Hampton, L.J.; Vartolomei, M.D.; Shariat, S.F.; Porpiglia, F.; Autorino, R. Robotic assisted simple prostatectomy: Recent advances. Curr. Opin. Urol. 2018, 28, 309–314. [Google Scholar] [CrossRef]
- Dixon, A.R.; Lord, P.H.; Madigan, M.R. The Madigan prostatectomy. J. Urol. 1990, 144, 1401–1403. [Google Scholar] [CrossRef]
- Lucca, I.; Shariat, S.F.; Hofbauer, S.L.; Klatte, T. Outcomes of minimally invasive simple prostatectomy for benign prostatic hyperplasia: A systematic review and meta-analysis. World J. Urol. 2015, 33, 563–570. [Google Scholar] [CrossRef]
- Li, J.; Cao, D.; Peng, L.; Ren, Z.; Gou, H.; Li, Y.; Wei, Q. Comparison Between Minimally Invasive Simple Prostatectomy and Open Simple Prostatectomy for Large Prostates: A Systematic Review and Meta-Analysis of Comparative Trials. J. Endourol. 2019, 33, 767–776. [Google Scholar] [CrossRef]
- Brunckhorst, O.; Ahmed, K.; Nehikhare, O.; Marra, G.; Challacombe, B.; Popert, R. Evaluation of the Learning Curve for Holmium Laser Enucleation of the Prostate Using Multiple Outcome Measures. Urology 2015, 86, 824–829. [Google Scholar] [CrossRef]
- Leonardo, C.; Lombardo, R.; Cindolo, L.; Antonelli, A.; Greco, F.; Porreca, A.; Veneziano, D.; Pastore, A.; Dalpiaz, O.; Ceruti, C.; et al. What is the standard surgical approach to large volume BPE? Systematic review of existing randomized clinical trials. Minerva Urol. Nefrol. 2020, 72, 22–29. [Google Scholar] [CrossRef]
- Ferretti, M.; Phillips, J. Prostatectomy for benign prostate disease: Open, laparoscopic and robotic techniques. Can. J. Urol. 2015, 22 (Suppl. 1), 60–66. [Google Scholar]
- Ou, R.; You, M.; Tang, P.; Chen, H.; Deng, X.; Xie, K. A randomized trial of transvesical prostatectomy versus transurethral resection of the prostate for prostate greater than 80 mL. Urology 2010, 76, 958–961. [Google Scholar] [CrossRef] [PubMed]
- Zhu, G.; Xie, C.; Wang, X.; Tang, X. Bipolar plasmakinetic transurethral resection of prostate in 132 consecutive patients with large gland: Three-year follow-up results. Urology 2012, 79, 397–402. [Google Scholar] [CrossRef] [PubMed]
- Autorino, R.; Zargar, H.; Kaouk, J.H. Robotic-assisted laparoscopic surgery: Recent advances in urology. Fertil. Steril. 2014, 102, 939–949. [Google Scholar] [CrossRef]
- Bach, T.; Wolbling, F.; Gross, A.J.; Netsch, C.; Tauber, S.; Pottek, T.; Wulfing, C.; Brunken, C. Prospective assessment of perioperative course in 2648 patients after surgical treatment of benign prostatic obstruction. World J. Urol. 2017, 35, 285–292. [Google Scholar] [CrossRef]
- Jones, P.; Alzweri, L.; Rai, B.P.; Somani, B.K.; Bates, C.; Aboumarzouk, O.M. Holmium laser enucleation versus simple prostatectomy for treating large prostates: Results of a systematic review and meta-analysis. Arab. J. Urol. 2016, 14, 50–58. [Google Scholar] [CrossRef]
- De Carvalho, P.A.; Coelho, R.F. Surgical Treatment: Robotic Simple Prostatectomy. Big Prostate 2018. [Google Scholar] [CrossRef]
- Pariser, J.J.; Pearce, S.M.; Patel, S.G.; Bales, G.T. National Trends of Simple Prostatectomy for Benign Prostatic Hyperplasia With an Analysis of Risk Factors for Adverse Perioperative Outcomes. Urology 2015, 86, 721–725. [Google Scholar] [CrossRef]
- Salonia, A.; Suardi, N.; Naspro, R.; Mazzoccoli, B.; Zanni, G.; Gallina, A.; Bua, L.; Scattoni, V.; Rigatti, P.; Montorsi, F. Holmium laser enucleation versus open prostatectomy for benign prostatic hyperplasia: An inpatient cost analysis. Urology 2006, 68, 302–306. [Google Scholar] [CrossRef]
Study | Study Type | Year | Number of Patients | Approach | Prostate Volume (mL) | Operation Time (min) | Conversion to OSP (%) | EBL (mL) | Transfusion Rate (%) | Specimen Weight (g) | Catheher Removal Time (Days) | Length of Stay (Days) | Complications (%) | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Sotelo et al. [3] | NC | 2008 | 7 | T | 77.7 | 195 | 0 | 382 | 14.3 | 50.5 | 7.5 | 1.3 | 14 | |
Yuh et al. [12] | NC | 2008 | 3 | T | 323 | 211 | 0 | 558 | 33 | 301 | NA | 1.3 | 33 | |
John et al. [13] | NC | 2009 | 13 | E | 100 | 210 | 0 | 500 | 0 | 82 | 6 | 6 | 7.7 | |
Uffort et al. [14] | NC | 2010 | 15 | T | 70.9 | 128.8 | 0 | 139.3 | 0 | 46.4 | 4.6 | 2.5 | 7 | |
Sutherland et al. [15] | NC | 2011 | 9 | T | 136.5 | 183 | 11.1 | 206 | 0 | 112 | 13 | 1.3 | 56 | |
Vora et al. [17] | NC | 2012 | 13 | T | 163 | 179 | 0 | 219 | 0 | 127 | 2.7 | 8.8 | 7.7 | |
Fareed et al. [18] | NC | 2012 | 8 | E | 130 | 230 | 0 | 425 | 87.5 | 78 | 11 | 4.5 | 37.5 | |
Matei et al. [19] | NC | 2012 | 35 | T | 96.2 | 186 | 0 | 121 | 0 | 87 | 7.4 | 3.2 | 0 | |
Coelho et al. [16] | NC | 2012 | 6 | T | 157 | 90 | 0 | 208 | 0 | 145 | 4.8 | 1 | 0 | |
Dubey et al. [35] | NC | 2012 | 3 | E | NA | 220 | 0 | 160 | NA | NA | 3 | 3.5 | NA | |
Clavijo et al. [20] | NC | 2013 | 10 | T | 81 | 106 | 0 | 375 | 10 | 81 | 8.9 | 1 | 20 | |
Banapour et al. [10] | NC | 2014 | 16 | T+E | 141.8 | 228 | 0 | 197 | 0 | 94.2 | 8 | 1.3 | 12.5 | |
Leslie et al. [21] | NC | 2014 | 25 | T | 149.6 | 214 | 0 | 143 | 4 | 88 | 9 | 4 | 20 | |
Stolzenburg et al. [24] | NC | 2014 | 10 | E | 143.9 | 122.5 | 0 | 228.8 | 0 | 102 | 7.4 | 8.4 | 10 | |
Nestler et al. [22] | NC | 2014 | 18 | T | 91 | 193 | 0 | 190 | 5.5 | 91 | 5.3 | NA | 5.5 | |
Elsamra et al. [23] | NC | 2014 | 15 | T | 156 | 189 | 0 | 290 | 0 | 110 | 8.67 | 2.4 | 14 | |
Patel et al. [25] | NC | 2014 | 20 | T+E | NA | NA | NA | NA | NA | 134.7 | NA | 1.7 | NA | |
Nething et al. [26] | NC | 2014 | 7 | T | 144.9 | 204.7 | 0 | 521 | NA | 96.3 | 8.28 | 2.57 | 0 | |
Autorino et al. [37] | C | 2015 | 487 | T+E | 110 | 154.5 | 3.1 | 200 | 1 | 75 | 7 | 2 | 16.6 | |
Pokorny et al. [27] | NC | 2015 | 69 | T | 129 | 97 | 0 | 200 | 1.5 | 84 | 3 | 4 | 33 | |
Hoy et al. [36] | C | 2015 | 4 | T | 238 | 161.3 | 0 | 218.8 | 0 | 123.6 | NA | 2.3 | 0 | |
Castillo et al. [28] | NC | 2016 | 34 | T | 117 | 96 | 0 | 200 | 5.8 | 76 | 4.6 | 2.2 | 20.5 | |
Martin Garzon et al. [38] | C | 2016 | 154 | E | 78 | 157 | 0.7 | 455 | 6 | 71 | 9.3 | NA | 12 | |
Pavan et al. [39] | C | 2016 | 130 | T+E | 118.5 | 150 | 10.8 | 250 | NA | 77 | 5 | 5 | 16.9 | |
Umari et al. [40] | C | 2017 | 81 | T | 130 | 105 | 0 | 250 | 1.2 | 89 | 3 | 4 | 31 | |
Zhang et al. [41] | C | 2017 | 32 | E | NA | 274 | NA | NA | 9.4 | 110 | 8 | 2.3 | 3.1 | |
Sorokin et al. [42] | C | 2017 | 59 | T | 136.9 | 161.4 | 0 | 339 | 3.4 | 82.9 | 5.7 | 1.5 | 19 | |
Cacciamani et al. [29] | NC | 2018 | 23 | T | 108.1 | 160.6 | 0 | 98.6 | 0 | 63.1 | 7 | 2.1 | 4.3 | |
Wang et al. [30] | NC | 2018 | 27 | T | 82 | 169 | 0 | 235 | 0 | 47.5 | 1.6 | 3 | 22.2 | |
Chavali et al. [31] | NC | 2018 | 28 | T | 180 | 180 | 0 | 200 | 0 | 90 | 8 | 2 | 14 | |
Johnson et al. [33] | NC | 2018 | 120 | T | 121.5 | 157 | 0 | NA | 3.3 | 74 | 4 | 1 | 18.3 | |
Nestler et al. [44] | C | 2019 | 35 | NA | 94.5 | 182 | 0 | NA | 9.4 | 77 | 5 | 5 | 25 | |
Mourmouris et al. [43] | C | 2019 | 26 | T | NA | 133.6 | 0 | 274 | 0 | 115 | 3 | 3.4 | 3.8 | |
Simone et al. [32] | NC | 2019 | 12 | T | 102 | 150 | 0 | 250 | 8 | 78 | 7 | 3 | 30 | |
Steinberg et al. [34] | NC | 2019 | 10 | E | 104 | 172 | 0 | 141 | 0 | 65 | 1.9 | 1.1 | 0 | |
Study | Study Type | Preop IPSS | Postop IPSS | Preop QoL | Postop QoL | Preop IIEF/SHIM | Postop IIEF/SHIM | Preop Qmax (mL/sn) | Postop Qmax (mL/sn) | Preop PVR (mL) | Postop PVR (mL) | Postop İncontinence | Bladder neck Contracture (n) | Follow up (Months) |
Sotelo et al. [3] | NC | 22 | 1.7 | 3.8 | 2.3 | NA | NA | 17.7 | 55.5 | NA | NA | NA | N/A | 0 |
Yuh et al. [12] | NC | 17.7 | NA | 4.1 | NA | NA | NA | NA | NA | NA | NA | 0 | 1 | NA |
John et al. [13] | NC | NA | NA | NA | NA | NA | NA | NA | 23 | 85 | 0 | NA | 1 | 13 |
Uffort et al. [14] | NC | 23.9 | 1.8 | 4.9 | 2.2 | NA | NA | NA | NA | 265.8 | 44.2 | NA | N/A | 3 |
Sutherland et al. [15] | NC | 17.8 | 7.8 | NA | NA | 12.7 (SHIM) | 12.5 (SHIM) | NA | NA | 214 | 18.2 | 1 | N/A | 9 |
Vora et al. [17] | NC | 18.2 | 5.3 | NA | NA | NA | NA | 4.4 | 19.1 | 207.3 | 12.7 | 0 | N/A | 7.2 |
Fareed et al. [18] | NC | 19.5 | 3 | NA | NA | NA | NA | 5.2 | 18 | 60 | 37 | 0 | N/A | 1 |
Matei et al. [19] | NC | 28 | 7 | NA | NA | NA | NA | 6.6 | 18.9 | NA | NA | NA | N/A | 0 |
Coelho et al. [16] | NC | 19.8 | 5.5 | NA | NA | NA | NA | 7.7 | 19 | NA | NA | 0 | N/A | 2 |
Dubey et al. [35] | NC | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | N/A | NA |
Clavijo et al. [20] | NC | 18.8 | 1.7 | 3.7 | 0.5 | NA | NA | 12.4 | 33.5 | NA | NA | 0 | N/A | 1 |
Banapour et al. [10] | NC | 22 | 7 | 4 | 2 | NA | NA | NA | NA | 194 | 56 | 0 | N/A | 0 |
Leslie et al. [21] | NC | 23.9 | 3.6 | NA | NA | 12.8 (SHIM) | NA | 11.3 | 20 | 208.1 | 36.9 | 1 | N/A | 6 |
Stolzenburg et al. [24] | NC | 21.9 | 3.4 | NA | NA | NA | NA | 9.3 | 20.7 | 121.9 | 57.5 | 0 | N/A | 6 |
Nestler et al. [22] | NC | 25 | 6.1 | 5 | 1.1 | 59 (IIEF) | 56.8 (IIEF) | 9 | 28.2 | NA | NA | 1 | 0 | 1 |
Elsamra et al. [23] | NC | 16.2 | 4.5 | NA | NA | NA | NA | NA | NA | 428 | 33 | 3 | N/A | 3 |
Patel et al. [25] | NC | 14.7 | NA | NA | NA | NA | NA | NA | NA | 414 | NA | NA | N/A | NA |
Nething et al. [26] | NC | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | N/A | 10 |
Autorino et al. [37] | C | 23 | 7 | 4 | NA | 15 (SHIM) | 15 (SHIM) | 8 | 25 | 108 | NA | NA | 3 patients | 12 |
Pokorny et al. [27] | NC | 25 | 3 | NA | NA | NA | NA | 7 | 23 | 73 | 0 | 0 | N/A | 6 |
Hoy et al. [36] | C | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | N/A | 3 |
Castillo et al. [28] | NC | 23.5 | 7.1 | NA | NA | NA | NA | 10.4 | 23.1 | NA | NA | 0 | 1 patient | 12 |
Martin Garzon et al. [38] | C | 22 | 6.5 | 3.8 | 1 | 18.5 (SHIM) | 16 (SHIM) | 11.5 | 33 | NA | NA | 9 | 1 patient developed anterior urethral stricture | 12 |
Pavan et al. [39] | C | 23 | 5 | 6 | NA | 18 (SHIM) | 17 (SHIM) | 9 | 22 | NA | NA | NA | N/A | 10.3 |
Umari et al. [40] | C | 25 | 5 | NA | NA | NA | NA | 8 | 23 | 73 | 0 | 1 | 0 | 12 |
Zhang et al.[41] | C | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | NA | N/A | NA |
Sorokin et al. [42] | C | 18.8 | 7.3 | 3.9 | 1.3 | NA | NA | 9.8 | 22.4 | 118 | 3.5 | 0 | 0 | 6 |
Cacciamani et al. [29] | NC | 23.1 | NA | NA | NA | NA | NA | NA | NA | NA | NA | 0 | N/A | 3 |
Wang et al. [30] | NC | 25 | NA | 6 | NA | 18 (IIEF) | 17.5 (IIEF) | 6 | NA | 85 | NA | 0 | No strictue but 7 patients required closure of small urethrotomies | 16.4 |
Chavali et al. [31] | NC | 19 | NA | NA | NA | NA | NA | 9 | NA | 120 | NA | NA | N/A | NA |
Johnson et al. [33] | NC | NA | NA | NA | NA | NA | NA | 8.9 | 18.8 | NA | 9 | 0 | N/A | 3.2 |
Nestler et al. [44] | C | 23 | NA | 5 | NA | NA | NA | NA | NA | NA | NA | 0 | N/A | 12 |
Mourmouris et al. [43] | C | 22.9 | 5.7 | NA | NA | NA | NA | 10.1 | 19.1 | 178.5 | 25.5 | NA | N/A | 3 |
Simone et al. [32] | NC | 33 | 6 | NA | NA | 27 (IIEF) | 27 (IIEF) | 7.7 | 18.6 | 175 | 30 | 0 | N/A | 12 |
Steinberg et al. [34] | NC | 20.8 | 12.9 | NA | NA | NA | NA | 8.6 | 11.2 | 119 | 40.9 | 1 (transient) | N/A | 28.7 |
Reference | Versus | Study Design | Number of Cases | Baseline Characteristics | Main Findings |
---|---|---|---|---|---|
Pavan et al. [39] | LSP | Multileft retrospective | 319 (LSP = 189; RASP = 130) | Median prostate volume larger for RASP (118.5 versus 109 mL; p = 0.02) | -No significant difference for blood loss, catheter time, hospital stay, major complication rate -On MVA technique not influencing ‘trifecta’ outcome |
Martin Garzon et al. [38] | LSP | Single left retrospective | 315 (LSP = 82; IF-RASP = 75) | No differences | -Similar surgical outcomes and functional outcomes at 1 year |
Umari et al. [40] | HoLEP | Single left retrospective | 126 (HoLEP = 45; RASP = 81) | RASP patients younger (median age 69 versus 74, p = 0.032), less healthy (Charlson index >2 in 62% versus 29%, p < 0.001), with higher preoperative IPSS (25 versus 21, p = 0.049) | -Similar improvement for Qmax, PVR, IPSS -Similar operative time -Catheter time (3 versus 2, p = 0.005) and hospital stay (4 versus 2 days, p = 0.0001) longer for RASP -Complication rates similar |
Zhang et al. [40] | HoLEP | Bileft retrospective | 632 (HoLEP = 600; RASP = 32) | No differences | -Mean operative time shorter for HoLEP (103 versus 274 min, p < 0.001 -HoLEP with lower transfusion rate (1.8 versus 9.4%, p = 0.03), shorter catheter time (0.7 versus 8 days, p < 0.001), and shorter hospital stay (1.3 versus 2.3 days, p < 0.001) -Complication rates similar |
Sorokin et al. [42] | OSP | Single left retrospective propensity score matched | 188 (OSP = 59; RASP = 59) | No differences | -RASP with shorter mean hospital stay (1.5 versus 2.6 days, p < 0.001), but longer operative time (161 versus 93 min, p < 0.001) -Lower blood loss (339 versus 587 mL, p < 0.001) and hemoglobin drop (12.3% versus 19.5%, p = 0.001) for RASP -No differences in transfusion rates, functional outcomes, complication rate |
Mourmouris et al. [43] | OSP | Bileft prospective | 41 (OSP = 15; RASP = 26) | RASP patients younger (median age 66.73 versus 70.46 p = 0.032), | -RASP achieves similar functional outcomes and provides significant advantages, such as decreased blood loss, faster catheter removal (because of the uneventful postoperative course), a shorter LOS and a lower complication rate, at the cost of a longer operating time |
Nestler et al. [44] | OSP, ThuVEP | Multileft, Matched Pair Analysis | 105 (OSP = 35; RASP = 35; ThuVEP = 35) | No differences | -Blood loss in OSP was significantly higher compared to the minimal invasive approaches. ThuVEP showed a median operation time of 83 min and was therefore significantly faster than OSP with 130 min (p = 0.004) and RASP needing 182 min. Significant advantages for the minimal invasive approaches compared to open surgery concerning blood loss, transfusion rates and early continence |
Autorino et al. [37] | LSP | Multileft, Retrospective | 1330 (RASP = 487; LSP = 843) | Median Charlson Index for LSP patients: 4 and for RASP patients: 2 Median prostate volume is larger in RASP patients (110 versus 99 mL) | Trifecta outcome, arbitrarily defined as a combination of the following postoperative events: International Prostate Symptom Score <8, maximum flow rate >15 mL/s, and no perioperative complications. Trifecta outcome was not significantly influenced by the type of procedure (robotic versus laparoscopic; p = 0.136; odds ratio: 1.6; 95% confidence interval, 0.8–2.9), whereas operative time (p = 0.01; OR: 0.9; 95% CI, 0.9–1.0) and estimated blood loss (p = 0.03; OR: 0.9; 95% CI, 0.9–1.0) were the only two significant factors. |
Hoy et al. [36] | OSP | Single left Retrospective | 32 (RASP = 4; OSP = 28) | No differences RASP patients younger (median age 69.3 versus 75.18, p = 0.17), Prostate volume on TRUS (mL); RASP = 239 ± 49.8 OSP = 180 ± 54.7 0.09 | -There was a significant difference in the mean length of operation, with RASP exceeding OSP (161 versus 79 min; p = 0.008). -The mean intraoperative blood loss was significantly higher in the open group (835.7 versus 218.8 mL; p = 0.0001). -Mean LOS was shorter in the RASP group (2.3 versus 5.5 days; p = 0.0001). -No significant differences were noted in the 90-day transfusion rate (p = 0.13), or overall complication rate at 0% with RASP versus 57.1% with OSP (p = 0.10). |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kordan, Y.; Canda, A.E.; Köseoğlu, E.; Balbay, D.; Laguna, M.P.; de la Rosette, J. Robotic-Assisted Simple Prostatectomy: A Systematic Review. J. Clin. Med. 2020, 9, 1798. https://doi.org/10.3390/jcm9061798
Kordan Y, Canda AE, Köseoğlu E, Balbay D, Laguna MP, de la Rosette J. Robotic-Assisted Simple Prostatectomy: A Systematic Review. Journal of Clinical Medicine. 2020; 9(6):1798. https://doi.org/10.3390/jcm9061798
Chicago/Turabian StyleKordan, Yakup, Abdullah Erdem Canda, Ersin Köseoğlu, Derya Balbay, M. Pilar Laguna, and Jean de la Rosette. 2020. "Robotic-Assisted Simple Prostatectomy: A Systematic Review" Journal of Clinical Medicine 9, no. 6: 1798. https://doi.org/10.3390/jcm9061798
APA StyleKordan, Y., Canda, A. E., Köseoğlu, E., Balbay, D., Laguna, M. P., & de la Rosette, J. (2020). Robotic-Assisted Simple Prostatectomy: A Systematic Review. Journal of Clinical Medicine, 9(6), 1798. https://doi.org/10.3390/jcm9061798