High Myopia and Its Associated Factors in JPHC-NEXT Eye Study: A Cross-Sectional Observational Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Ethics Approval and Consent to Participate
2.2. Study Design and Participants
2.3. Screening Examination
2.4. Information on Past Medical History
2.5. Definitive Examination
2.6. Statistical Analysis
3. Results
3.1. Participants
3.2. Associations Between Systemic Factors and High Myopia
3.3. Associated Between Ocular Features and High Myopia
3.4. IOP and Age Associated with High Myopia
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Ikuno, Y.; Ohji, M. High Myopia and the Vitreoretina; Complocations. In Retina (Philadelphia, PA), 5th ed.; Ryan, S.J., Ed.; Elsevier: Los Angeles, CA, USA, 2013; Volume 3, pp. 1912–1919. [Google Scholar]
- Wong, T.Y.; Ferreira, A.; Hughes, R.; Carter, G.; Mitchell, P. Epidemiology and disease burden of pathologic myopia and myopic choroidal neovascularization: An evidence-based systematic review. Am. J. Ophthalmol. 2014, 157, 9–25. [Google Scholar] [CrossRef] [PubMed]
- Hsu, W.M.; Cheng, C.Y.; Liu, J.H.; Tsai, S.Y.; Chou, P. Prevalence and causes of visual impairment in an elderly Chinese population in Taiwan: The Shihpai Eye Study. Ophthalmology 2004, 111, 62–69. [Google Scholar] [CrossRef] [PubMed]
- Holden, B.A.; Fricke, T.R.; Wilson, D.A.; Jong, M.; Naidoo, K.S.; Sankaridurg, P.; Wong, T.Y.; Naduvilath, T.J.; Resnikoff, S. Global Prevalence of Myopia and High Myopia and Temporal Trends from 2000 through 2050. Ophthalmology 2016, 123, 1036–1042. [Google Scholar] [CrossRef] [Green Version]
- Goldschmidt, E.; Jacobsen, N. Genetic and environmental effects on myopia development and progression. Eye 2014, 28, 126–133. [Google Scholar] [CrossRef]
- Dirani, M.; Chamberlain, M.; Shekar, S.N.; Islam, A.F.; Garoufalis, P.; Chen, C.Y.; Guymer, R.H.; Baird, P.N. Heritability of refractive error and ocular biometrics: The Genes in Myopia (GEM) twin study. Investig. Ophthalmol. Vis. Sci. 2006, 47, 4756–4761. [Google Scholar] [CrossRef]
- Ramessur, R.; Williams, K.M.; Hammond, C.J. Risk factors for myopia in a discordant monozygotic twin study. Ophthalmic Physiol. Opt. J. Br. Coll. Ophthalmic Opt. Optom. 2015, 35, 643–651. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rose, K.A.; Morgan, I.G.; Smith, W.; Burlutsky, G.; Mitchell, P.; Saw, S.M. Myopia, lifestyle, and schooling in students of Chinese ethnicity in Singapore and Sydney. Arch. Ophthalmol. 2008, 126, 527–530. [Google Scholar] [CrossRef]
- Wu, P.C.; Tsai, C.L.; Wu, H.L.; Yang, Y.H.; Kuo, H.K. Outdoor activity during class recess reduces myopia onset and progression in school children. Ophthalmology 2013, 120, 1080–1085. [Google Scholar] [CrossRef]
- He, M.; Xiang, F.; Zeng, Y.; Mai, J.; Chen, Q.; Zhang, J.; Smith, W.; Rose, K.; Morgan, I.G. Effect of Time Spent Outdoors at School on the Development of Myopia Among Children in China: A Randomized Clinical Trial. JAMA 2015, 314, 1142–1148. [Google Scholar] [CrossRef]
- Rudnicka, A.R.; Owen, C.G.; Nightingale, C.M.; Cook, D.G.; Whincup, P.H. Ethnic differences in the prevalence of myopia and ocular biometry in 10- and 11-year-old children: The Child Heart and Health Study in England (CHASE). Investig. Ophthalmol. Vis. Sci. 2010, 51, 6270–6276. [Google Scholar] [CrossRef]
- Tideman, J.W.; Polling, J.R.; Voortman, T.; Jaddoe, V.W.; Uitterlinden, A.G.; Hofman, A.; Vingerling, J.R.; Franco, O.H.; Klaver, C.C. Low serum vitamin D is associated with axial length and risk of myopia in young children. Eur. J. Epidemiol. 2016, 31, 491–499. [Google Scholar] [CrossRef] [PubMed]
- Galvis, V.; Lopez-Jaramillo, P.; Tello, A.; Castellanos-Castellanos, Y.A.; Camacho, P.A.; Cohen, D.D.; Gomez-Arbelaez, D.; Merayo-Lloves, J. Is myopia another clinical manifestation of insulin resistance? Med. Hypotheses 2016, 90, 32–40. [Google Scholar] [CrossRef] [PubMed]
- Hsu, C.C.; Huang, N.; Lin, P.Y.; Tsai, D.C.; Tsai, C.Y.; Woung, L.C.; Liu, C.J. Prevalence and risk factors for myopia in second-grade primary school children in Taipei: A population-based study. J. Chin. Med. Assoc. 2016, 79, 625–632. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Torii, H.; Ohnuma, K.; Kurihara, T.; Tsubota, K.; Negishi, K. Violet Light Transmission is Related to Myopia Progression in Adult High Myopia. Sci. Rep. 2017, 7, 14523. [Google Scholar] [CrossRef]
- Torii, H.; Kurihara, T.; Seko, Y.; Negishi, K.; Ohnuma, K.; Inaba, T.; Kawashima, M.; Jiang, X.; Kondo, S.; Miyauchi, M.; et al. Violet Light Exposure Can Be a Preventive Strategy Against Myopia Progression. EBioMedicine 2017, 15, 210–219. [Google Scholar] [CrossRef]
- Karouta, C.; Ashby, R.S. Correlation between light levels and the development of deprivation myopia. Investig. Ophthalmol. Vis. Sci. 2014, 56, 299–309. [Google Scholar] [CrossRef]
- Ezelum, C.; Razavi, H.; Sivasubramaniam, S.; Gilbert, C.E.; Murthy, G.V.; Entekume, G.; Abubakar, T. Refractive error in Nigerian adults: Prevalence, type, and spectacle coverage. Investig. Ophthalmol. Vis. Sci. 2011, 52, 5449–5456. [Google Scholar] [CrossRef]
- Liang, Y.B.; Wong, T.Y.; Sun, L.P.; Tao, Q.S.; Wang, J.J.; Yang, X.H.; Xiong, Y.; Wang, N.L.; Friedman, D.S. Refractive errors in a rural Chinese adult population the Handan eye study. Ophthalmology 2009, 116, 2119–2127. [Google Scholar] [CrossRef]
- Pan, C.W.; Wong, T.Y.; Lavanya, R.; Wu, R.Y.; Zheng, Y.F.; Lin, X.Y.; Mitchell, P.; Aung, T.; Saw, S.M. Prevalence and risk factors for refractive errors in Indians: The Singapore Indian Eye Study (SINDI). Investig. Ophthalmol. Vis. Sci. 2011, 52, 3166–3173. [Google Scholar] [CrossRef]
- Saw, S.M.; Gazzard, G.; Koh, D.; Farook, M.; Widjaja, D.; Lee, J.; Tan, D.T. Prevalence rates of refractive errors in Sumatra, Indonesia. Investig. Ophthalmol. Vis. Sci. 2002, 43, 3174–3180. [Google Scholar]
- Tarczy-Hornoch, K.; Ying-Lai, M.; Varma, R. Myopic refractive error in adult Latinos: The Los Angeles Latino Eye Study. Investig. Ophthalmol. Vis. Sci. 2006, 47, 1845–1852. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.J.; Chiang, T.H.; Wang, T.H.; Lin, L.L.; Shih, Y.F. Changes of the ocular refraction among freshmen in National Taiwan University between 1988 and 2005. Eye 2009, 23, 1168–1169. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Foster, P.J.; Hee, J.; Ng, T.P.; Tielsch, J.M.; Chew, S.J.; Johnson, G.J.; Seah, S.K. Prevalence and risk factors for refractive errors in adult Chinese in Singapore. Investig. Ophthalmol. Vis. Sci. 2000, 41, 2486–2494. [Google Scholar]
- Xu, L.; Li, J.; Cui, T.; Hu, A.; Fan, G.; Zhang, R.; Yang, H.; Sun, B.; Jonas, J.B. Refractive error in urban and rural adult Chinese in Beijing. Ophthalmology 2005, 112, 1676–1683. [Google Scholar] [CrossRef]
- Gardiner, P.A. The relation of myopia to growth. Lancet 1954, 266, 476–479. [Google Scholar] [CrossRef]
- Johansen, E.V. Simple myopia in schoolboys in relation to body height and weight. Acta Ophthalmol. 1950, 28, 355–361. [Google Scholar] [CrossRef]
- Rim, T.H.; Kim, S.H.; Lim, K.H.; Kim, H.Y.; Baek, S.H. Body Stature as an Age-Dependent Risk Factor for Myopia in a South Korean Population. Semin. Ophthalmol. 2017, 32, 326–336. [Google Scholar] [CrossRef]
- Nangia, V.; Jonas, J.B.; Matin, A.; Kulkarni, M.; Sinha, A.; Gupta, R. Body height and ocular dimensions in the adult population in rural Central India. The Central India Eye and Medical Study. Graefes Arch. Clin. Exp. Ophthalmol. 2010, 248, 1657–1666. [Google Scholar] [CrossRef]
- Roy, A.; Kar, M.; Mandal, D.; Ray, R.S.; Kar, C. Variation of Axial Ocular Dimensions with Age, Sex, Height, BMI-and Their Relation to Refractive Status. J. Clin. Diagn. Res. JCDR 2015, 9, AC01. [Google Scholar] [CrossRef]
- Saw, S.M.; Chua, W.H.; Hong, C.Y.; Wu, H.M.; Chia, K.S.; Stone, R.A.; Tan, D. Height and its relationship to refraction and biometry parameters in Singapore Chinese children. Investig. Ophthalmol. Vis. Sci. 2002, 43, 1408–1413. [Google Scholar]
- Edwards, M.H. Do variations in normal nutrition play a role in the development of myopia? Optom. Vis. Sci. Off. Publ. Am. Acad. Optom. 1996, 73, 638–643. [Google Scholar] [CrossRef] [PubMed]
- Fledelius, H.C.; Fuchs, J.; Reck, A. Refraction in diabetics during metabolic dysregulation, acute or chronic. With special reference to the diabetic myopia concept. Acta Ophthalmol. 1990, 68, 275–280. [Google Scholar] [CrossRef] [PubMed]
- Gwinup, G.; Villarreal, A. Relationship of serum glucose concentration to changes in refraction. Diabetes 1976, 25, 29–31. [Google Scholar] [CrossRef] [PubMed]
- Lim, L.S.; Gazzard, G.; Low, Y.L.; Choo, R.; Tan, D.T.; Tong, L.; Yin Wong, T.; Saw, S.M. Dietary factors, myopia, and axial dimensions in children. Ophthalmology 2010, 117, 993–997. [Google Scholar] [CrossRef] [PubMed]
- Saw, S.M.; Chia, K.S.; Lindstrom, J.M.; Tan, D.T.; Stone, R.A. Childhood myopia and parental smoking. Br. J. Ophthalmol. 2004, 88, 934–937. [Google Scholar] [CrossRef] [Green Version]
- Mo, Y.; Wang, M.F.; Zhou, L.L. Risk factor analysis of 167 patients with high myopia. Int. J. Ophthalmol. 2010, 3, 80–82. [Google Scholar] [CrossRef]
- Asakuma, T.; Yasuda, M.; Ninomiya, T.; Noda, Y.; Arakawa, S.; Hashimoto, S.; Ohno-Matsui, K.; Kiyohara, Y.; Ishibashi, T. Prevalence and risk factors for myopic retinopathy in a Japanese population: The Hisayama Study. Ophthalmology 2012, 119, 1760–1765. [Google Scholar] [CrossRef]
- Hyman, L.; Gwiazda, J.; Hussein, M.; Norton, T.T.; Wang, Y.; Marsh-Tootle, W.; Everett, D. Relationship of age, sex, and ethnicity with myopia progression and axial elongation in the correction of myopia evaluation trial. Arch. Ophthalmol. 2005, 123, 977–987. [Google Scholar] [CrossRef]
- Wang, D.; Huang, W.; Li, Y.; Zheng, Y.; Foster, P.J.; Congdon, N.; He, M. Intraocular pressure, central corneal thickness, and glaucoma in chinese adults: The liwan eye study. Am. J. Ophthalmol. 2011, 152, 454–462.e451. [Google Scholar] [CrossRef]
- Wong, T.T.; Wong, T.Y.; Foster, P.J.; Crowston, J.G.; Fong, C.W.; Aung, T. The relationship of intraocular pressure with age, systolic blood pressure, and central corneal thickness in an asian population. Investig. Ophthalmol. Vis. Sci. 2009, 50, 4097–4102. [Google Scholar] [CrossRef]
- David, R.; Zangwill, L.M.; Tessler, Z.; Yassur, Y. The correlation between intraocular pressure and refractive status. Arch. Ophthalmol. 1985, 103, 1812–1815. [Google Scholar] [CrossRef] [PubMed]
- Han, X.; Yang, T.; Zhang, J.; Yu, S.; Guo, X.; Yan, W.; Hu, Y.; He, M. Longitudinal changes in intraocular pressure and association with systemic factors and refractive error: Lingtou Eye Cohort Study. BMJ Open 2018, 8, e019416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, A.J.; Saw, S.M.; Gazzard, G.; Cheng, A.; Tan, D.T. Intraocular pressure associations with refractive error and axial length in children. Br. J. Ophthalmol. 2004, 88, 5–7. [Google Scholar] [CrossRef] [PubMed]
- Matamoros, E.; Ingrand, P.; Pelen, F.; Bentaleb, Y.; Weber, M.; Korobelnik, J.F.; Souied, E.; Leveziel, N. Prevalence of Myopia in France: A Cross-Sectional Analysis. Med. Baltim. 2015, 94, e1976. [Google Scholar] [CrossRef] [PubMed]
- Attebo, K.; Ivers, R.Q.; Mitchell, P. Refractive errors in an older population: The Blue Mountains Eye Study. Ophthalmology 1999, 106, 1066–1072. [Google Scholar] [CrossRef]
- Chen, S.J.; Lu, P.; Zhang, W.F.; Lu, J.H. High myopia as a risk factor in primary open angle glaucoma. Int. J. Ophthalmol. 2012, 5, 750–753. [Google Scholar] [CrossRef]
Mean ± SD | |||
---|---|---|---|
Variables | Non-High Myopia | High Myopia | p Value |
All (n = 5984) | |||
Age | 62.8 ± 10.3 | 55.7 ± 10.5 | <0.001 |
HT | 157.6 ± 8.7 | 158.8 ± 8.0 | 0.009 |
BMI | 23.2 ± 3.3 | 22.8 ± 4.1 | 0.093 |
HR | 63.8 ± 13.5 | 64.3 ± 14.8 | 0.669 |
SBP | 124.8 ± 17.6 | 121.0 ± 18.9 | 0.001 |
DBP | 74.4 ± 11.6 | 73.9 ± 13.3 | 0.504 |
GOT | 24.1 ± 37.9 | 22.1 ± 8.4 | 0.422 |
GPT | 21.3 ± 31.7 | 20.6 ± 12.9 | 0.737 |
GGTP | 34.0 ± 43.9 | 30.0 ± 24.3 | 0.022 |
T CHOL | 209.4 ± 35.6 | 213.0 ± 35.0 | 0.082 |
TG | 96.0 † | 84.0 † | 0.595 †† |
HDL CHOL | 63.1 ± 15.7 | 65.3 ± 15.4 | 0.034 |
LDL CHOL | 126.7 ± 31.7 | 130.8 ± 31.7 | 0.052 |
GLU | 96.0† | 93.0 † | <0.001 †† |
HbA1c | 5.8 ± 0.7 | 5.7 ± 0.5 | 0.004 |
Creatinine | 0.7 ± 0.3 | 0.7 ± 0.1 | 0.014 |
IOP | 13.3 † | 14.3 † | <0.001 †† |
Corneal radius | 7.6 † | 7.6 † | 0.070 †† |
Central corneal thickness | 553.0 † | 557.0 † | 0.102 †† |
Corneal endothelial cell number | 2747.0 † | 2740.0† | 0.174 †† |
Men (n = 2427) | |||
Age | 64.2 ± 10.4 | 58.7 ± 11.2 | <0.001 |
HT | 164.8 ± 6.5 | 166.7 ± 6.4 | 0.007 |
BMI | 23.8 ± 3.1 | 24.3 ± 4.2 | 0.169 |
HR | 62.6 ± 13.7 | 63.4 ± 14.5 | 0.666 |
SBP | 128.6 ± 17.1 | 129.4 ± 17.9 | 0.684 |
DBP | 76.8 ± 11.6 | 78.5 ± 12.4 | 0.176 |
GOT | 26.4 ± 58.1 | 23.6 ± 8.0 | 0.677 |
GPT | 24.7 ± 47.3 | 24.9 ± 12.1 | 0.972 |
GGTP | 46.3 ± 58.7 | 40.0 ± 24.2 | 0.374 |
T CHOL | 119.3 ± 33.7 | 209.3 ± 31.3 | 0.003 |
TG | 105.0 † | 117.0 † | 0.023 †† |
HDL CHOL | 57.0 ± 14.5 | 56.4 ± 13.7 | 0.733 |
LDL CHOL | 121.0 ± 30.7 | 129.7 ± 29.9 | 0.020 |
GLU | 99.0 † | 99.0 † | 0.597 †† |
HbA1c | 5.8 ± 0.8 | 5.7 ± 0.5 | 0.215 |
Creatinine | 0.9 ± 0.3 | 0.9 ± 0.1 | 0.733 |
IOP | 13.3 † | 15.0 † | <0.001 †† |
Corneal radius | 7.7 † | 7.7 † | 0.198 †† |
Central corneal thickness | 556.0 † | 565.0 † | 0.391 †† |
Corneal endothelial cell number | 2793.0 † | 2789.5 † | 0.538 †† |
Women (n = 3557) | |||
Age | 61.8 ± 10.2 | 54.4 ± 9.9 | <0.001 |
HT | 152.5 ± 6.2 | 155.4 ± 5.9 | 0.001 |
BMI | 22.8 ± 3.5 | 22.2 ± 3.9 | 0.012 |
HR | 64.6 ± 13.4 | 64.6 ± 15.0 | 0.964 |
SBP | 122.1 ± 17.5 | 117.4 ± 18.2 | <0.001 |
DBP | 72.7 ± 11.3 | 71.9 ± 13.2 | 0.358 |
GOT | 22.5 ± 9.2 | 21.5 ± 8.5 | 0.168 |
GPT | 19.0 ± 11.7 | 18.7 ± 12.9 | 0.815 |
GGTP | 25.4 ± 26.2 | 25.6 ± 23.2 | 0.920 |
T CHOL | 216.4 ± 35.1 | 214.6 ± 36.4 | 0.461 |
TG | 90.0 † | 83.0 † | 0.076 †† |
HDL CHOL | 67.3 ± 15.1 | 69.2 ± 14.4 | 0.117 |
LDL CHOL | 130.6 ± 31.8 | 131.3 ± 32.5 | 0.783 |
GLU | 95.0 † | 91.0 † | <0.001 †† |
HbA1c | 5.8 ± 0.6 | 5.6 ± 0.5 | 0.011 |
Creatinine | 0.6 ± 0.1 | 0.6 ± 0.1 | 0.235 |
IOP | 13.7 † | 14.0 † | 0.038 †† |
Corneal radius | 7.6 † | 7.6 † | 0.327 †† |
Central corneal thickness | 551.0 † | 553.5 † | 0.159 †† |
Corneal endothelial cell number | 2740.0 † | 2725.0 † | 0.159 †† |
OR | 95% CI | p Value | ||
---|---|---|---|---|
Men | ||||
Age | ≤58 | 1 | ||
59–65 | 0.44 | (0.221–0.886) | ||
66–70 | 0.43 | (0.197–0.930) | ||
≥71 | 0.48 | (0.219–1.059) | ||
p for trend | 0.049 | |||
HT | ≤160 | 1 | ||
161–164 | 0.95 | (0.388–2.318) | ||
165–168 | 1.42 | (0.620–3.271) | ||
≥169 | 1.65 | (0.722–3.784) | ||
p for trend | 0.131 | |||
BMI | ≤21.6 | 1 | ||
21.7–23.5 | 1.41 | (0.660–3.020) | ||
23.6–25.6 | 0.96 | (0.423–2.188) | ||
≥25.7 | 1.07 | (0.479–2.368) | ||
p for trend | 0.836 | |||
SBP | ≤116 | 1 | ||
117–127 | 0.61 | (0.272–1.364) | ||
128–138 | 0.98 | (0.481–1.978) | ||
≥139 | 0.83 | (0.396–1.741) | ||
p for trend | 0.912 | |||
TG | ≤73 | 1 | ||
74–105 | 2.93 | (1.126–7.616) | ||
106–149 | 3.10 | (1.183–8.103) | ||
≥150 | 2.79 | (1.018–7.619) | ||
p for trend | 0.117 | |||
HDL CHOL | ≤46 | 1 | ||
47–54 | 0.78 | (0.374–1.625) | ||
55–64 | 0.99 | (0.473–2.065) | ||
≥65 | 1.14 | (0.529–2.442) | ||
p for trend | 0.682 | |||
LDL CHOL | ≤100 | 1 | ||
101–119 | 2.07 | (0.909–4.729) | ||
120–139 | 1.44 | (0.615–3.371) | ||
≥140 | 1.72 | (0.758–3.892) | ||
p for trend | 0.348 | |||
HbA1c | ≤5.3 | 1 | ||
5.4–5.5 | 0.84 | (0.390–1.797) | ||
5.6–5.9 | 0.75 | (0.355–1.579) | ||
≥6.0 | 0.83 | (0.377–1.811) | ||
p for trend | 0.453 | |||
IOP | ≤11.2 | 1 | ||
11.3–13.2 | 3.34 | (0.927–12.002) | ||
13.3–15.2 | 5.18 | (1.487–18.037) | ||
≥15.3 | 7.73 | (2.235–26.768) | ||
p for trend | <0.001 | |||
Central corneal thickness | ≤531 | 1 | ||
532–556 | 0.93 | (0.421–2.053) | ||
557–583 | 1.05 | (0.483–2.269) | ||
≥584 | 1.01 | (0.471–2.180) | ||
p for trend | 0.847 | |||
Women | ||||
Age | ≤54 | 1 | ||
55–62 | 0.57 | (0.358–0.904) | ||
63–68 | 0.35 | (0.208–0.586) | ||
≥69 | 0.21 | (0.106–0.405) | ||
p for trend | <0.001 | |||
HT | ≤147 | 1 | ||
148–152 | 0.88 | (0.486–1.594) | ||
153–156 | 1.03 | (0.571–1.872) | ||
≥157 | 1.35 | (0.752–2.424) | ||
p for trend | 0.195 | |||
BMI | ≤20.3 | 1 | ||
20.4–22.3 | 0.76 | (0.481–1.205) | ||
22.4–24.6 | 0.58 | (0.344–0.977) | ||
≥24.7 | 0.68 | (0.399–1.156) | ||
p for trend | 0.120 | |||
SBP | ≤108 | 1 | ||
109–120 | 0.74 | (0.458–1.191) | ||
121–132 | 0.87 | (0.520–1.457) | ||
≥133 | 1.02 | (0.605–1.729) | ||
p for trend | 0.698 | |||
TG | ≤66 | 1 | ||
67–89 | 0.85 | (0.530–1.352) | ||
90–124 | 0.77 | (0.455–1.288) | ||
≥125 | 0.94 | (0.547–1.619) | ||
p for trend | 0.624 | |||
HDL CHOL | ≤56 | 1 | ||
57–65 | 1.37 | (0.810–2.298) | ||
66–75 | 1.25 | (0.735–2.116) | ||
≥76 | 1.02 | (0.583–1.785) | ||
p for trend | 0.801 | |||
LDL CHOL | ≤107 | 1 | ||
108–127 | 1.07 | (0.629–1.830) | ||
128–149 | 2.07 | (1.273–3.352) | ||
≥150 | 1.27 | (0.744–2.149) | ||
p for trend | 0.121 | |||
HbA1c | ≤5.4 | 1 | ||
5.5–5.6 | 1.29 | (0.833–1.993) | ||
5.7–5.8 | 0.85 | (0.493–1.463) | ||
≥5.9 | 1.03 | (0.618–1.731) | ||
p for trend | 0.738 | |||
IOP | ≤11.6 | 1 | ||
11.7–13.6 | 2.23 | (1.226–4.052) | ||
13.7–15.6 | 2.25 | (1.213–4.157) | ||
≥15.7 | 2.33 | (1.239–4.367) | ||
p for trend | 0.023 | |||
Central corneal thickness | ≤524 | 1 | ||
525–550 | 0.83 | (0.508–1.361) | ||
551–574 | 0.70 | (0.423–1.164) | ||
≥575 | 0.92 | (0.561–1.523) | ||
p for trend | 0.730 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mori, K.; Kurihara, T.; Uchino, M.; Torii, H.; Kawashima, M.; Sasaki, M.; Ozawa, Y.; Yamagishi, K.; Iso, H.; Sawada, N.; et al. High Myopia and Its Associated Factors in JPHC-NEXT Eye Study: A Cross-Sectional Observational Study. J. Clin. Med. 2019, 8, 1788. https://doi.org/10.3390/jcm8111788
Mori K, Kurihara T, Uchino M, Torii H, Kawashima M, Sasaki M, Ozawa Y, Yamagishi K, Iso H, Sawada N, et al. High Myopia and Its Associated Factors in JPHC-NEXT Eye Study: A Cross-Sectional Observational Study. Journal of Clinical Medicine. 2019; 8(11):1788. https://doi.org/10.3390/jcm8111788
Chicago/Turabian StyleMori, Kiwako, Toshihide Kurihara, Miki Uchino, Hidemasa Torii, Motoko Kawashima, Mariko Sasaki, Yoko Ozawa, Kazumasa Yamagishi, Hiroyasu Iso, Norie Sawada, and et al. 2019. "High Myopia and Its Associated Factors in JPHC-NEXT Eye Study: A Cross-Sectional Observational Study" Journal of Clinical Medicine 8, no. 11: 1788. https://doi.org/10.3390/jcm8111788
APA StyleMori, K., Kurihara, T., Uchino, M., Torii, H., Kawashima, M., Sasaki, M., Ozawa, Y., Yamagishi, K., Iso, H., Sawada, N., Tsugane, S., Yuki, K., & Tsubota, K. (2019). High Myopia and Its Associated Factors in JPHC-NEXT Eye Study: A Cross-Sectional Observational Study. Journal of Clinical Medicine, 8(11), 1788. https://doi.org/10.3390/jcm8111788