Perineural Electrical Dry Needling and Neural Mobilization for Chemotherapy-Induced Peripheral Neuropathy: Case Report
Abstract
:1. Introduction
Background
2. Case Description
2.1. Patients
2.2. Treating Clinician
2.3. Evaluation Procedure
2.4. Outcome Measures
2.5. Intervention
2.6. Treatment Adverse Events
2.7. Statistical Analysis
3. Results
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Bae, E.H.; Greenwald, M.K.; Schwartz, A.G. Chemotherapy-induced peripheral neuropathy: Mechanisms and therapeutic avenues. Neurotherapeutics 2021, 18, 2384–2396. [Google Scholar] [CrossRef] [PubMed]
- Chua, K.C.; El-Haj, N.; Priotti, J.; Kroetz, D.L. Mechanistic insights into the pathogenesis of microtubule-targeting agent-induced peripheral neuropathy from pharmacogenetic and functional studies. Basic Clin. Pharmacol Toxicol. 2022, 130, 60–74. [Google Scholar] [CrossRef]
- Colvin, L.A. Chemotherapy-induced peripheral neuropathy: Where are we now? Pain 2019, 160, S1–S10. [Google Scholar] [CrossRef]
- Staff, N.P.; Grisold, A.; Grisold, W.; Windebank, A.J. Chemotherapy-induced peripheral neuropathy: A current review. Ann Neurol. 2017, 81, 772–781. [Google Scholar] [CrossRef]
- Was, H.; Borkowska, A.; Bagues, A.; Tu, L.; Liu, J.Y.H.; Lu, Z.; Rudd, J.A.; Nurgali, K.; Abalo, R. Mechanisms of chemotherapy-induced neurotoxicity. Front. Pharmacol. 2022, 13, 750507. [Google Scholar] [CrossRef]
- Zajączkowska, R.; Kocot-Kępska, M.; Leppert, W.; Wrzosek, A.; Mika, J.; Wordliczek, J. Mechanisms of chemotherapy-induced peripheral neuropathy. Int. J. Mol. Sci. 2019, 20, 1451. [Google Scholar] [CrossRef]
- Basson, A.; Olivier, B.; Ellis, R.; Coppieters, M.; Stewart, A.; Mudzi, W. The effectiveness of neural mobilization for neuromusculoskeletal conditions: A systematic review and meta-analysis. J. Orthop. Sports Phys. Ther. 2017, 47, 593–615. [Google Scholar] [CrossRef]
- Nasr, A.J.; Zafereo, J. The effects of dry needling and neurodynamic exercise on idiopathic peripheral neuropathy: A case report. J. Bodyw. Mov. Ther. 2019, 23, 306–310. [Google Scholar] [CrossRef]
- Thoomes, E.; Ellis, R.; Dilley, A.; Falla, D.; Thoomes-de Graaf, M. Excursion of the median nerve during a contra-lateral cervical lateral glide movement in people with and without cervical radiculopathy. Musculoskelet Sci. Pract. 2021, 52, 102349. [Google Scholar] [CrossRef]
- Hegazy, M.M.; Gomaa, E.F.; Abd El Mageed, S.F.; El Habashy, H.R. H-reflex latency changes after combined application of traction and neural mobilization in cervical radiculopathy. Egypt. J. Neurol. Psychiatr. Neurosurg. 2019, 55, 69. [Google Scholar] [CrossRef]
- Baptista, F.M.; Nery, E.; Cruz, E.B.; Afreixo, V.; Silva, A.G. Effectiveness of neural mobilisation on pain intensity, functional status, and physical performance in adults with musculoskeletal pain—A systematic review with meta-analysis. Clin. Rehabil. 2024, 38, 145–183. [Google Scholar] [CrossRef] [PubMed]
- Dunning, J.; Butts, R.; Mourad, F.; Young, I.; Flannagan, S.; Perreault, T. Dry needling: A literature review with implications for clinical practice guidelines. Phys Ther Rev. 2014, 19, 252–265. [Google Scholar] [CrossRef] [PubMed]
- Doyle, T.M.; Salvemini, D. Mini-Review: Mitochondrial dysfunction and chemotherapy-induced neuropathic pain. Neurosci. Lett. 2021, 760, 136087. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.M.; Lehky, T.J.; Brell, J.M.; Dorsey, S.G. Discovering cytokines as targets for chemotherapy-induced painful peripheral neuropathy. Cytokine 2012, 59, 3–9. [Google Scholar] [CrossRef]
- Salazar, T.E.; Richardson, M.R.; Beli, E.; George, J.; Kim, Y.; Duan, Y.; Moldovan, L.; Yan, Y.; Bhatwadekar, A.; Jadhav, V.; et al. Electroacupuncture promotes central nervous system-dependent release of mesenchymal stem cells. Stem Cells 2017, 35, 1303–1315. [Google Scholar] [CrossRef]
- Louw, A.; Puentedura, E.; Schmidt, S.; Zimney, K. Pain Neuroscience Education: Teaching People About Pain, 2nd ed.; Orthopedic Physical Therapy Products: Minneapolis, MN, USA, 2018. [Google Scholar]
- Cuenca-Zaldívar, J.N.; del Corral-Villar, C.; García-Torres, S.; Araujo-Zamora, R.; Gragera-Peña, P.; Martínez-Lozano, P.; Sánchez-Romero, E.A. Fourteen-year retrospective cohort study on the impact of climatic factors on chronic musculoskeletal pain: A Spanish primary care analysis. Int. J. Rheum Dis. 2025, 28, e70125. [Google Scholar] [CrossRef]
- Mahfouz, F.M.; Li, T.; Joda, M.; Harrison, M.; Horvath, L.G.; Grimison, P.; King, T.; Marx, G.; Goldstein, D.; Park, S.B. Sleep dysfunction associated with worse chemotherapy-induced peripheral neurotoxicity functional outcomes. Support. Care Cancer 2024, 32, 46. [Google Scholar] [CrossRef]
- Shah, V.V.; Muzyka, D.; Guidarelli, C.; Sowalsky, K.; Horak, F.B.; Winters-Stone, K.M. Chemotherapy-induced peripheral neuropathy and falls in cancer survivors relate to digital balance and gait impairments. JCO Precis. Oncol. 2024, 8, e2300312. [Google Scholar] [CrossRef]
- Dommerholt, J. Dry needling—Peripheral and central considerations. J. Man Manip. Ther. 2011, 19, 223–227. [Google Scholar] [CrossRef]
- Butts, R.; Dunning, J. Peripheral and spinal mechanisms of pain and dry needling mediated analgesia: A clinical resource guide for health care professionals. Int. J. Phys. Med. Rehabil. 2016, 4, 2–18. [Google Scholar] [CrossRef]
- Jin, Z.-F.; Shi, L.; Cao, H.-M.; Li, Y.; Xu, S.-X.; Zhang, Y. Electroacupuncture improves neurovascular unit reconstruction by promoting collateral circulation and angiogenesis. Neural Regen Res. 2017, 12, 2000. [Google Scholar] [CrossRef]
- Cha, M.H.; Nam, T.S.; Kwak, Y.; Lee, H.; Lee, B.H. Changes in cytokine expression after electroacupuncture in neuropathic rats. Evidence-Based Complement. Altern. Med. 2012, 2012, 1–6. [Google Scholar] [CrossRef] [PubMed]
- Zhou, M.; Zhang, Q.; Huo, M.; Song, H.; Chang, H.; Cao, J.; Fang, Y.; Zhang, D. The mechanistic basis for the effects of electroacupuncture on neuropathic pain within the central nervous system. Biomed Pharmacother. 2023, 161, 114516. [Google Scholar] [CrossRef] [PubMed]
- Zheng, Y.; Jiang, M.; Wei, Z.; Chi, H.; Kang, Y.; Li, S.; Zheng, Y.; He, X.; Shao, X.; Fang, J.; et al. Electroacupuncture alleviates neuropathic pain in a rat model of CCD via suppressing P2 × 3 expression in dorsal root ganglia. Chin. Med. 2024, 19, 156. [Google Scholar] [CrossRef]
- Hsiao, I.H.; Yen, C.M.; Hsu, H.C.; Liao, H.Y.; Lin, Y.W. Chemogenetics modulation of electroacupuncture analgesia in mice spared nerve injury-induced neuropathic pain through TRPV1 signaling pathway. Int. J. Mol. Sci. 2024, 25, 1771. [Google Scholar] [CrossRef]
- Liu, Y.-P.; Luo, Z.-R.; Wang, C.; Cai, H.; Zhao, T.-T.; Li, H.; Shao, S.-J.; Guo, H.-D. Electroacupuncture promoted nerve repair after peripheral nerve injury by regulating miR-1b and its target brain-derived neurotrophic factor. Front. Neurosci. 2020, 14, 525144. [Google Scholar] [CrossRef]
- Chien, T.J.; Liu, C.Y.; Fang, C.J.; Kuo, C.Y. The efficacy of acupuncture in chemotherapy-induced peripheral neuropathy: Systematic review and meta-analysis. Integr Cancer Ther. 2019, 18, 1–10. [Google Scholar] [CrossRef]
- Bao, T.; Patil, S.; Chen, C.; Zhi, I.W.; Li, Q.S.; Piulson, L.; Mao, J.J. Effect of acupuncture vs. sham procedure on chemotherapy-induced peripheral neuropathy symptoms. JAMA Netw Open. 2020, 3, e200681. [Google Scholar] [CrossRef]
- Stoller, S.; Capozza, S.; Alberti, P.; Lustberg, M.; Kleckner, I.R. Framework to leverage physical therapists for the assessment and treatment of chemotherapy-induced peripheral neurotoxicity (CIPN). Support. Care Cancer 2023, 31, 293. [Google Scholar] [CrossRef]
- American Academy of Manipulative Therapy. DN-2: Dry Needling for Lumbopelvic & Lower Extremity Conditions: An Evidence-Based Approach. Available online: https://spinalmanipulation.org/dates-and-locations/dn-2-dry-needling/ (accessed on 25 January 2025).
- Bobos, P.; Ziebart, C.; Furtado, R.; Lu, Z.; MacDermid, J.C. Psychometric properties of the global rating of change scales in patients with low back pain, upper and lower extremity disorders. A systematic review with meta-analysis. J. Orthop. 2020, 21, 40–48. [Google Scholar] [CrossRef]
- Jensen, M.P.; McFarland, C.A. Increasing the reliability and validity of pain intensity measurement in chronic pain patients. Pain 1993, 55, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Alghadir, A.; Anwer, S.; Iqbal, A.; Iqbal, Z. Test-retest reliability, validity, and minimum detectable change of visual analog, numerical rating, and verbal rating scales for measurement of osteoarthritic knee pain. J. Pain Res. 2018, 11, 851–856. [Google Scholar] [CrossRef] [PubMed]
- Andersen Hammond, E.; Pitz, M.; Steinfeld, K.; Lambert, P.; Shay, B. An exploratory randomized trial of physical therapy for the treatment of chemotherapy-induced peripheral neuropathy. Neurorehabil Neural Repair. 2020, 34, 235–246. [Google Scholar] [CrossRef]
- Farrar, J.T.; Young, J.P.; LaMoreaux, L.; Werth, J.L.; Poole, M.R. Clinical importance of changes in chronic pain intensity measured on an 11-point numerical pain rating scale. Pain 2001, 94, 149–158. [Google Scholar] [CrossRef] [PubMed]
- Hawker, G.A.; Mian, S.; Kendzerska, T.; French, M. Measures of adult pain: Visual Analog Scale for Pain (VAS Pain), Numeric Rating Scale for Pain (NRS Pain), McGill Pain Questionnaire (MPQ), Short-Form McGill Pain Questionnaire (SF-MPQ), Chronic Pain Grade Scale (CPGS), Short Form-36 Bodily Pain Scale (SF-36 BPS), and Measure of Intermittent and Constant Osteoarthritis Pain (ICOAP). Arthr. Care Res. 2011, 63, S240–S252. [Google Scholar] [CrossRef]
- Kamper, S.J.; Maher, C.G.; Mackay, G. Global Rating of Change scales: A review of strengths and weaknesses and considerations for design. J. Man. Manip. Ther. 2009, 17, 163–170. [Google Scholar] [CrossRef]
- Schmitt, J.; Abbott, J.H. Global ratings of change do not accurately reflect functional change over time in clinical practice. J. Orthop. Sports Phys. Ther. 2015, 45, 106–111. [Google Scholar] [CrossRef]
- Mehta, S.P.; Fulton, A.; Quach, C.; Thistle, M.; Toledo, C.; Evans, N.A. Measurement properties of the Lower Extremity Functional Scale: A systematic review. J. Orthop. Sports Phys. Ther. 2016, 46, 200–216. [Google Scholar] [CrossRef]
- Zhang, Y.; Zang, Y.; Martin, R.L. Clinically most relevant psychometric properties of the Lower Extremity Functional Scale: A systematic review. Disabil. Rehabil. 2024. Online ahead of print. [Google Scholar] [CrossRef]
- Huang, J.; Yang, C.; Zhao, K.; Zhao, Z.; Chen, Y.; Wang, T.; Qu, Y. Transcutaneous electrical nerve stimulation in rodent models of neuropathic pain: A meta-analysis. Front. Neurosci. 2022, 16, 831413. [Google Scholar] [CrossRef]
- Sluka, K.A.; Walsh, D. Transcutaneous electrical nerve stimulation: Basic science mechanisms and clinical effectiveness. J. Pain 2003, 4, 109–121. [Google Scholar] [CrossRef] [PubMed]
- Dalamagka, M.I. Acupuncture and electrotherapy: An alternative and complementary treatment method. World J. Adv. Res. Rev. 2023, 17, 556–563. [Google Scholar] [CrossRef]
- Ellis, R.F.; Hing, W.A. Neural mobilization: A systematic review of randomized controlled trials with an analysis of therapeutic efficacy. J. Man. Manip. Ther. 2008, 16, 8–22. [Google Scholar] [CrossRef]
- Alshami, A.M.; Alshammari, T.K.; AlMuhaish, M.I.; Hegazi, T.M.; Tamal, M.; Abdulla, F.A. Sciatic nerve excursion during neural mobilization with ankle movement using dynamic ultrasound imaging: A cross-sectional study. J. Ultrasound. 2022, 25, 241–249. [Google Scholar] [CrossRef]
- Ellis, R.F.; Hing, W.A.; McNair, P.J. Comparison of longitudinal sciatic nerve movement with different mobilization exercises: An in vivo study utilizing ultrasound imaging. J. Orthop. Sports Phys. Ther. 2012, 42, 667–675. [Google Scholar] [CrossRef]
- Gilbert, K.K.; James, C.R.; Apte, G.; Brown, C.; Sizer, P.S.; Brismée, J.-M.; Smith, M.P. Effects of simulated neural mobilization on fluid movement in cadaveric peripheral nerve sections: Implications for the treatment of neuropathic pain and dysfunction. J. Man. Manip. Ther. 2015, 23, 219–225. [Google Scholar] [CrossRef]
- Carlesso, L.C.; MacDermid, J.C.; Santaguida, L.P. Standardization of adverse event terminology and reporting in orthopaedic physical therapy: Application to the cervical spine. J. Orthop. Sports Phys. Ther. 2010, 40, 455–463. [Google Scholar] [CrossRef]
- Wei, J.-A.; Hu, X.; Zhang, B.; Liu, L.; Chen, K.; So, K.-F.; Li, M.; Zhang, L. Electroacupuncture activates inhibitory neural circuits in the somatosensory cortex to relieve neuropathic pain. iScience 2021, 24, 102066. [Google Scholar] [CrossRef]
- Zimney, K.; Van Bogaert, W.; Louw, A. The biology of chronic pain and its implications for pain neuroscience education: State of the art. J. Clin. Med. 2023, 12, 4199. [Google Scholar] [CrossRef]
- Carta, G.; Fornasari, B.E.; Fregnan, F.; Ronchi, G.; De Zanet, S.; Muratori, L.; Nato, G.; Fogli, M.; Gambarotta, G.; Geuna, S.; et al. Neurodynamic treatment promotes mechanical pain modulation in sensory neurons and nerve regeneration in rats. Biomedicines 2022, 10, 1296. [Google Scholar] [CrossRef]
- Schmid, A.B.; Brunner, F.; Luomajoki, H.; Held, U.; Bachmann, L.M.; Künzer, S.; Coppieters, M.W. Reliability of clinical tests to evaluate nerve function and mechanosensitivity of the upper limb peripheral nervous system. BMC Musculoskelet. Disord. 2009, 10, 11. [Google Scholar] [CrossRef]
- Burgess, N.E.; Gilbert, K.K.; Sobczak, S.; Sizer, P.S.; Homen, D.; Lierly, M.; Kearns, G.A.; Brismée, J.-M. Upper limb neurodynamic mobilization disperses intraneural fluid in cervical nerve roots: A human cadaveric investigation. Musculoskelet. Sci. Pr. 2023, 68, 102876. [Google Scholar] [CrossRef]
- Martín Pérez, S.E.; Martín Pérez, I.M.; Sánchez-Romero, E.A.; Sosa Reina, M.D.; Muñoz Fernández, A.C.; Alonso Pérez, J.L.; Villafañe, J.H. Percutaneous electrical nerve stimulation (PENS) for infrapatellar saphenous neuralgia management in a patient with myasthenia gravis (MG). Int. J. Environ. Res. Public Health 2023, 20, 2617. [Google Scholar] [CrossRef]
- Ghasemi, A.; Zahediasl, S. Normality tests for statistical analysis: A guide for non-statisticians. Int. J. Endocrinol. Metab. 2012, 10, 486–489. [Google Scholar] [CrossRef]
Baseline Variable | Patient A | Patient B | Patient C |
---|---|---|---|
Age (Years) | 52 | 70 | 72 |
Sex | Female | Female | Female |
Time Since Onset (Months) | 8 | 12 | 11 |
Diabetic | No | Yes | Yes |
History of Diabetic Peripheral Neuropathy | No | No | No |
BMI | 30.8 | 20.9 | 31.5 |
NPRS | 4 | 10 | 6 |
LEFS | 64 | 28 | 11 |
Anatomy/Target Tissue | Location | Needle Angulation |
---|---|---|
Lateral dorsal cutaneous nerve | Within the depression midway between the prominence of the lateral malleolus and Achilles tendon | Medial |
Lateral dorsal cutaneous nerve | In the depression just distal to the apex of the lateral malleolus | A-P or P-A |
Lateral dorsal cutaneous nerve | Within the depression just plantar and distal to the base of the 5th metatarsal | Medial |
Lateral dorsal cutaneous nerve | Within the depression just plantar and proximal to the head of the 5th metatarsal | Medial |
Tibial nerve | Halfway between the medial malleolus and Achilles tendon | Perpendicular |
Proximal belly of abductor hallucis and medial plantar nerve | In the depression just medial to the navicular tuberosity | Medial to Lateral |
Medial aspect of distal plantar aponeurosis, medial plantar nerve, and neurovascular supply to medial foot | In the depression distal and inferomedial to the base of the 1st metatarsal | Medial to Lateral |
Medial aspect of distal plantar aponeurosis, medial plantar nerve, and neurovascular supply to medial foot | In the depression proximal and inferomedial to the 1st metatarsophalangeal joint | Medial to Lateral |
1st dorsal interossei, medial branch of deep peroneal nerve, and dorsalis pedis artery | Dorsum of foot, within 1st dorsal interosseus, in the depression just distal to the junction of the 1st and 2nd metatarsal bones | Oblique Distal |
Intermediate dorsal cutaneous nerve and dorsolateral aspect of distal plantar aponeurosis | In the web space between the 4th and 5th toes | Perpendicular |
Baseline Score | Discharge Score | Net Change Score | |
---|---|---|---|
Patient A | |||
NPRS | 4 | 0 | −4 |
LEFS | 64 | 76 | +12 |
GROC | - | +6 | +6 |
Patient B | |||
NPRS | 10 | 2 | −8 |
LEFS | 28 | 47 | +19 |
GROC | - | +5 | +5 |
Patient C | |||
NPRS | 6 | 3 | −3 |
LEFS | 11 | 24 | +13 |
GROC | - | +3 | +3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Granger, A.; Dunning, J.; Young, I. Perineural Electrical Dry Needling and Neural Mobilization for Chemotherapy-Induced Peripheral Neuropathy: Case Report. J. Clin. Med. 2025, 14, 2318. https://doi.org/10.3390/jcm14072318
Granger A, Dunning J, Young I. Perineural Electrical Dry Needling and Neural Mobilization for Chemotherapy-Induced Peripheral Neuropathy: Case Report. Journal of Clinical Medicine. 2025; 14(7):2318. https://doi.org/10.3390/jcm14072318
Chicago/Turabian StyleGranger, Austin, James Dunning, and Ian Young. 2025. "Perineural Electrical Dry Needling and Neural Mobilization for Chemotherapy-Induced Peripheral Neuropathy: Case Report" Journal of Clinical Medicine 14, no. 7: 2318. https://doi.org/10.3390/jcm14072318
APA StyleGranger, A., Dunning, J., & Young, I. (2025). Perineural Electrical Dry Needling and Neural Mobilization for Chemotherapy-Induced Peripheral Neuropathy: Case Report. Journal of Clinical Medicine, 14(7), 2318. https://doi.org/10.3390/jcm14072318