The Effect on Extubation of Early vs. Late Definitive Closure of the Patent Ductus Arteriosus in Premature Infants: A Target Trial Emulation Using Electronic Health Records
Abstract
:1. Introduction
2. Materials and Methods
2.1. Specification of the Target Trial
2.1.1. Eligibility Criteria
2.1.2. Treatment Strategies
2.1.3. Treatment Assignment
2.1.4. Outcome
2.1.5. Follow-Up
2.1.6. Casual Contrast
2.1.7. Analysis
2.2. Emulation of the Target Trial
2.2.1. Treatment Assignment
2.2.2. Causal Contrast
2.2.3. Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Jaillard, S.; Larrue, B.; Rakza, T.; Magnenant, E.; Warembourg, H.; Storme, L. Consequences of Delayed Surgical Closure of Patent Ductus Arteriosus in Very Premature Infants. Ann. Thorac. Surg. 2006, 81, 231–234. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.H.; Ro, S.K.; Lee, H.J.; Park, H.K.; Chung, W.-S.; Kim, Y.H.; Kang, J.H.; Kim, H. Surgical Ligation on Significant Patent Ductus Arteriosus in Very Low Birth Weight Infants: Comparison between Early and Late Ligations. Korean J. Thorac. Cardiovasc. Surg. 2014, 47, 444–450. [Google Scholar] [CrossRef] [PubMed]
- Ibrahim, M.H.; Azab, A.A.; Kamal, N.M.; Salama, M.A.; Elshorbagy, H.H.; Abdallah, E.A.A.; Hammad, A.; Sherief, L.M. Outcomes of Early Ligation of Patent Ductus Arteriosus in Preterms, Multicenter Experience. Medicine 2015, 94, e915. [Google Scholar] [CrossRef] [PubMed]
- Fonseca, E.; Georgiev, S.G.; Gorenflo, M.; Loukanov, T.S. Patent Ductus Arteriosus in Preterm Infants: Benefits of Early Surgical Closure. Asian Cardiovasc. Thorac. Ann. 2014, 22, 391–396. [Google Scholar] [CrossRef] [PubMed]
- Yan, H.; Ma, F.; Li, Y.; Zhou, K.; Hua, Y.; Wan, C. The Optimal Timing of Surgical Ligation of Patent Ductus Arteriosus in Preterm or Very-Low-Birth-Weight Infants: A Systematic Review and Meta-Analysis. Medicine 2020, 99, e19356. [Google Scholar] [CrossRef] [PubMed]
- Bjorkman, K.R.; Miles, K.G.; Bellew, L.E.; Schneider, K.A.; Magness, S.M.; Higano, N.S.; Ollberding, N.J.; Hoyos Cordon, X.; Hirsch, R.M.; Hysinger, E.; et al. Patent Ductus Arteriosus and Lung Magnetic Resonance Imaging Phenotype in Moderate and Severe Bronchopulmonary Dysplasia-Pulmonary Hypertension. Am. J. Respir. Crit. Care Med. 2024, 210, 318–328. [Google Scholar] [CrossRef] [PubMed]
- Gentle, S.J.; Travers, C.P.; Clark, M.; Carlo, W.A.; Ambalavanan, N. Patent Ductus Arteriosus and Development of Bronchopulmonary Dysplasia-Associated Pulmonary Hypertension. Am. J. Respir. Crit. Care Med. 2023, 207, 921–928. [Google Scholar] [CrossRef] [PubMed]
- Nawaytou, H.; Hills, N.K.; Clyman, R.I. Patent Ductus Arteriosus and the Risk of Bronchopulmonary Dysplasia-Associated Pulmonary Hypertension. Pediatr. Res. 2023, 94, 547–554. [Google Scholar] [CrossRef] [PubMed]
- Villamor, E.; van Westering-Kroon, E.; Gonzalez-Luis, G.E.; Bartoš, F.; Abman, S.H.; Huizing, M.J. Patent Ductus Arteriosus and Bronchopulmonary Dysplasia-Associated Pulmonary Hypertension: A Bayesian Meta-Analysis. JAMA Netw. Open 2023, 6, e2345299. [Google Scholar] [CrossRef] [PubMed]
- Hsiao, C.-C.; Wung, J.-T.; Tsao, L.-Y.; Chang, W.-C. Early or Late Surgical Ligation of Medical Refractory Patent Ductus Arteriosus in Premature Infants. J. Formos. Med. Assoc. 2009, 108, 72–77. [Google Scholar] [CrossRef] [PubMed]
- Sung, S.I.; Choi, S.Y.; Park, J.H.; Lee, M.S.; Yoo, H.S.; Ahn, S.Y.; Chang, Y.S.; Park, W.S. The Timing of Surgical Ligation for Patent Ductus Arteriosus Is Associated with Neonatal Morbidity in Extremely Preterm Infants Born at 23–25 Weeks of Gestation. J. Korean Med. Sci. 2014, 29, 581–586. [Google Scholar] [CrossRef] [PubMed]
- Martini, S.; Galletti, S.; Kelsall, W.; Angeli, E.; Agulli, M.; Gargiulo, G.D.; Chen, S.E.; Corvaglia, L.; Singh, Y. Ductal Ligation Timing and Neonatal Outcomes: A 12-Year Bicentric Comparison. Eur. J. Pediatr. 2021, 180, 2261–2270. [Google Scholar] [CrossRef] [PubMed]
- Shah, Z.S.; Clark, R.H.; Patt, H.A.; Backes, C.H.; Tolia, V.N. Trends in Procedural Closure of the Patent Ductus Arteriosus among Infants Born at 22 to 30 Weeks’ Gestation. J. Pediatr. 2023, 263, 113716. [Google Scholar] [CrossRef] [PubMed]
- Lai, K.-C.; Richardson, T.; Berman, D.; DeMauro, S.B.; King, B.C.; Lagatta, J.; Lee, H.C.; Lewis, T.; Noori, S.; O’Byrne, M.L.; et al. Current Trends in Invasive Closure of Patent Ductus Arteriosus in Very Low Birth Weight Infants in United States Children’s Hospitals, 2016–2021. J Pediatr 2023, 263, 113712. [Google Scholar] [CrossRef] [PubMed]
- Giaccone, A.; Jensen, E.; Davis, P.; Schmidt, B. Definitions of Extubation Success in Very Premature Infants: A Systematic Review. Arch. Dis. Child. Fetal Neonatal Ed. 2014, 99, F124–F127. [Google Scholar] [CrossRef] [PubMed]
- Clyman, R.I.; Hills, N.K.; Cambonie, G.; Debillon, T.; Ligi, I.; Gascoin, G.; Patkai, J.; Beuchee, A.; Favrais, G.; Durrmeyer, X.; et al. Patent Ductus Arteriosus, Tracheal Ventilation, and the Risk of Bronchopulmonary Dysplasia. Pediatr. Res. 2022, 91, 652–658. [Google Scholar] [CrossRef] [PubMed]
- Mirza, H.; Garcia, J.; McKinley, G.; Hubbard, L.; Sensing, W.; Schneider, J.; Oh, W.; Wadhawan, R. Duration of Significant Patent Ductus Arteriosus and Bronchopulmonary Dysplasia in Extremely Preterm Infants. J. Perinatol. 2019, 39, 1648–1655. [Google Scholar] [CrossRef] [PubMed]
- Clyman, R.I.; Hills, N.K.; Liebowitz, M.; Johng, S. Relationship between Duration of Infant Exposure to a Moderate-to-Large Patent Ductus Arteriosus Shunt and the Risk of Developing Bronchopulmonary Dysplasia or Death Before 36 Weeks. Am. J. Perinatol. 2020, 37, 216–223. [Google Scholar] [CrossRef] [PubMed]
- Clyman, R.I.; Hills, N.K. The Effect of Prolonged Tracheal Intubation on the Association between Patent Ductus Arteriosus and Bronchopulmonary Dysplasia (Grades 2 and 3). J. Perinatol. 2020, 40, 1358–1365. [Google Scholar] [CrossRef] [PubMed]
Protocol Component | Specification of the Target Trial | Target Trial Emulation |
---|---|---|
Eligibility criteria | Inclusion criteria:
| Same as target trial |
Treatment strategies ** |
|
|
Treatment assignment | Random assignment to a treatment arm without blinding | Each individual is classified into both strategies at baseline |
Primary outcome | Extubation | Same as target trial |
Follow-up period | Follow-up begins at the time of assignment and ends at 45 days or at death, whichever occurs first | Same as target trial |
Causal contrast | Per-protocol effect | Observational analog of per-protocol effect |
Analysis plan | Per-protocol analysis: censoring individuals if/when they do not adhere to their treatment assignment, with inverse probability of treatment weighting to adjust for selection bias | Same as target trial with the following modification: Since treatment assignment is unknown, eligible individuals contribute clones to each treatment arm. A given clone is censored at the time of deviation from the assigned treatment strategy |
Early Group n = 70 Unweighted | Late Group n = 38 Unweighted | Early Group n = 166 Weighted | Late Group n = 94 Weighted | |
---|---|---|---|---|
GA at birth, wks | 25 [24, 25] | 25 [2, 24] | 24 [23, 25] | 24 [24, 25] |
PMA at referral, wks | 28 [27, 28] | 27 [25, 28] | 27 [25, 28] | 27 [27, 28] |
Age at referral, days | 19 [13, 24] | 13 [6, 21] | 15 [11, 23] | 20 [13, 26] |
Birth weight, g | 745 [633, 859] | 733 [593, 870] | 680 [550, 852] | 736 [604, 849] |
Female (%) | 28 (40.0) | 22 (57.9) | 78 (46.7) | 38 (40.3) |
Year of referral | 2018 [2015, 2020] | 2021 [2016, 2022] | 2019 [2015, 2022] | 2017 [2015, 2020] |
APGAR1 * | 3.0 [1.0, 5.0] | 3.0 [1.0, 6.0] | 4.0 [2.0, 5.0] | 3.0 [1.0, 5.0] |
APGAR5 * | 6.5 [5.0, 8.0] | 6.0 [5.5, 8.0] | 7.0 [5.0, 7.0] | 6.0 [5.0, 8.0] |
Race (%) | ||||
White | 27 (38.6) | 13 (34.2) | 86 (51.9) | 39 (41.4) |
Black | 16 (22.9) | 12 (31.6) | 28 (17.1) | 20 (21.7) |
Asian | 2 (2.9) | 3 (7.9) | 3 (1.9) | 4 (4.0) |
Other/Unknown | 25 (35.7) | 10(26.3) | 48 (29.1) | 31 (32.0) |
Surfactant use (%) | 67 (95.7) | 33 (86.8) | 161 (96.8) | 88 (93.8) |
Inotropes use * | 11 (19.0) | 10 (43.5) | 28 (26.3) | 19 (24.3) |
PDA medications ** | 61 (87.1) | 28 (73.7) | 133 (80.1) | 81 (86.3) |
CHD type | ||||
Only PDA | 65 (92.9) | 36 (94.7) | 159 (96) | 88 (93.3) |
PDA and ASD | 4 (5.7) | 1 (2.6) | 5 (3) | 5 (5) |
PDA and VSD | 1 (1.4) | 1 (2.6) | 2 (1) | 2 (1.7) |
Day 7 | Day 14 | Day 30 | Day 45 | |
---|---|---|---|---|
Early PDA intervention (%) | 21 (6, 47) | 38 (10, 72) | 55 (25, 83) | 64 (38, 87) |
Late PDA intervention (%) | 6 (2, 12) | 16 (6, 39) | 49 (20, 89) | 65 (28, 98) |
Difference (ref. late) (%) | 15 (0, 41) | 22 (−11, 56) | 6 (−40, 46) | −1 (−46, 42) |
Day 7 | Day 14 | Day 30 | Day 45 | |
---|---|---|---|---|
Younger group (%) | 6 (0, 18) | 15 (3, 36) | 46 (17, 71) | 67 (32, 90) |
Older group (%) | 7 (0, 23) | 13 (0, 34) | 21 (5, 64) | 27 (8, 100) |
Difference (ref. older) (%) | −1 (−14, 6) | 2 (−15, 18) | 25 (−21, 53) | 40 (−45, 71) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Du, Z.; Wheeler, C.R.; Farias, M.; Porras, D.; Levy, P.T.; Madenci, A.L. The Effect on Extubation of Early vs. Late Definitive Closure of the Patent Ductus Arteriosus in Premature Infants: A Target Trial Emulation Using Electronic Health Records. J. Clin. Med. 2025, 14, 2072. https://doi.org/10.3390/jcm14062072
Du Z, Wheeler CR, Farias M, Porras D, Levy PT, Madenci AL. The Effect on Extubation of Early vs. Late Definitive Closure of the Patent Ductus Arteriosus in Premature Infants: A Target Trial Emulation Using Electronic Health Records. Journal of Clinical Medicine. 2025; 14(6):2072. https://doi.org/10.3390/jcm14062072
Chicago/Turabian StyleDu, Zhou, Craig R. Wheeler, Michael Farias, Diego Porras, Philip T. Levy, and Arin L. Madenci. 2025. "The Effect on Extubation of Early vs. Late Definitive Closure of the Patent Ductus Arteriosus in Premature Infants: A Target Trial Emulation Using Electronic Health Records" Journal of Clinical Medicine 14, no. 6: 2072. https://doi.org/10.3390/jcm14062072
APA StyleDu, Z., Wheeler, C. R., Farias, M., Porras, D., Levy, P. T., & Madenci, A. L. (2025). The Effect on Extubation of Early vs. Late Definitive Closure of the Patent Ductus Arteriosus in Premature Infants: A Target Trial Emulation Using Electronic Health Records. Journal of Clinical Medicine, 14(6), 2072. https://doi.org/10.3390/jcm14062072