Evaluation of Platelet Indices and Inflammation Markers in Preeclampsia
Abstract
:1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Brown, M.A.; Magee, L.A.; Kenny, L.C.; Karumanchi, S.A.; McCarthy, F.P.; Saito, S.; Hall, D.R.; Warren, C.E.; Adoyi, G.; Ishaku, S. Hypertensive Disorders of Pregnancy. Hypertension 2018, 72, 24–43. [Google Scholar] [CrossRef]
- Abalos, E.; Cuesta, C.; Grosso, A.L.; Chou, D.; Say, L. Global and regional estimates of preeclampsia and eclampsia: A systematic review. Eur. J. Obstet. Gynecol. Reprod. Biol. 2013, 170, 1–7. [Google Scholar] [CrossRef]
- Gilbert, J.S.; Ryan, M.J.; LaMarca, B.B.; Sedeek, M.; Murphy, S.R.; Granger, J.P. Pathophysiology of hypertension during preeclampsia: Linking placental ischemia with endothelial dysfunction. Am. J. Physiol.-Heart Circ. Physiol. 2008, 294, H541H550. [Google Scholar] [CrossRef]
- Kohli, S.; Ranjan, S.; Hoffmann, J.; Kashif, M.; Daniel, E.A.; Al-Dabet, M.D.M.; Bock, F.; Nazir, S.; Huebner, H.; Mertens, P.R.; et al. Maternal extracellular vesicles and platelets promote preeclampsia via inflammasome activation in trophoblasts. Blood J. Am. Soc. Hematol. 2016, 128, 2153–2164. [Google Scholar] [CrossRef] [PubMed]
- Guan, X.; Fu, Y.; Liu, Y.; Cui, M.; Zhang, C.; Zhang, Q.; Li, C.; Zhao, J.; Wang, C.; Song, J.; et al. The role of inflammatory biomarkers in the development and progression of pre-eclampsia: A systematic review and meta-analysis. Front. Immunol. 2023, 14, 1156039. [Google Scholar] [CrossRef]
- Fantone, S.; Giannubilo, S.R.; Marzioni, D.; Tossetta, G. HTRA family proteins in pregnancy outcome. Tissue Cell 2021, 72, 101549. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Z.; Chen, H.; Ju, H.; Sun, M.; Jin, H. Platelet indices in patients with chronic inflammatory arthritis: A systematic review and meta-analysis. Platelets 2020, 31, 834–844. [Google Scholar] [CrossRef] [PubMed]
- Takeuchi, H.; Abe, M.; Takumi, Y.; Hashimoto, T.; Kobayashi, R.; Osoegawa, A.; Sugio, K. The prognostic impact of the platelet distribution width-to-platelet count ratio in patients with breast cancer. PLoS ONE 2017, 12, e0189166. [Google Scholar] [CrossRef] [PubMed]
- Izzi, B.; Gialluisi, A.; Gianfagna, F.; Orlandi, S.; De Curtis, A.; Magnacca, S.; Costanzo, S.; Di Castelnuovo, A.; Donati, M.B.; de Gaetano, G.; et al. Platelet Distribution Width Is Associated with P-Selectin Dependent Platelet Function: Results from the Moli-Family Cohort Study. Cells 2021, 10, 2737. [Google Scholar] [CrossRef] [PubMed]
- Mureșan, A.V.; Russu, E.; Arbănași, E.M.; Kaller, R.; Hosu, I.; Arbănași, E.M.; Voidăzan, S.T. The predictive value of NLR, MLR, and PLR in the outcome of end-stage kidney disease patients. Biomedicines 2022, 10, 1272. [Google Scholar] [CrossRef] [PubMed]
- Sahin, R.; Tanacan, A.; Serbetci, H.; Agaoglu, Z.; Haksever, M.; Kara, O.; Sahin, D. The Association of Systemic Immune-Inflammation Index (SII), Systemic Immune-Response Index (SIRI), and Neutrophil-to-Lymphocyte Ratio (NLR) with Cesarean Scar Pregnancy (CSP). J. Reprod. Immunol. 2024, 164, 104275. [Google Scholar] [CrossRef] [PubMed]
- İpek, G.; Tanaçan, A.; Ağaoğlu, Z.; Peker, A.; Şahin, D. Can SIRI or other inflammatory indices predict HELLP syndrome in the first trimester? J. Reprod. Immunol. 2023, 159, 104126. [Google Scholar] [CrossRef]
- Karagun, S.; Dal, Y.; Yildiz, H.; Karaca, S.G.; Nessar, A.Z.; Coskun, A. First-Trimester Threatened Abortion: Can Red Blood Cell Distribution Width-Standard Deviation Predict Miscarriage? Gynecol. Obstet. Reprod. Med. 2024, 30, 152–158. [Google Scholar] [CrossRef]
- Seyhanli, Z.; Bayraktar, B.; Baysoz, O.B.; Karabay, G.; Sucu, S.T.; Ulusoy, C.O.; Aktemur, G.; Bucak, M.; Cakir, B.T.; Kurt, D.; et al. The role of first trimester serum inflammatory indexes (NLR, PLR, MLR, SII, SIRI, and PIV) and the β-hCG to PAPP-A ratio in predicting preeclampsia. J. Reprod. Immunol. 2024, 162, 104190. [Google Scholar] [CrossRef] [PubMed]
- Yücel, B.; Ustun, B. Neutrophil to lymphocyte ratio, platelet to lymphocyte ratio, mean platelet volume, red cell distribution width and plateletcrit in preeclampsia. Pregnancy Hypertens. Int. J. Women’s Cardiovasc. Health 2017, 7, 29–32. [Google Scholar] [CrossRef] [PubMed]
- Sitotaw, C.; Asrie, F.; Melku, M. Evaluation of platelet and white cell parameters among pregnant women with Preeclampsia in Gondar, Northwest Ethiopia: A comparative cross-sectional study. Pregnancy Hypertens. 2018, 13, 242–247. [Google Scholar] [CrossRef] [PubMed]
- Chappell, L.C.; Brocklehurst, P.; Green, M.; Hardy, P.; Hunter, R.; Beardmore-Gray, A.; Bowler, U.; Brockbank, A.; Chiocchia, V.; Cox, A.; et al. Planned delivery for pre-eclampsia between 34 and 37 weeks of gestation: The PHOENIX RCT. In Health Technology Assessment; National Institute for Health and Care Research: Southampton, UK, 2022. [Google Scholar] [CrossRef]
- ACOG Committee on Obstetric Practice. Practice bulletin #33: Diagnosis and management of preeclampsia and eclampsia. Obstet. Gynecol. 2002, 99, 159–167. [Google Scholar] [CrossRef]
- Sibai, B.M. Diagnosis and management of gestational hypertension and preeclampsia. Obstet Gynecol. 2003, 102, 181–192. [Google Scholar] [CrossRef]
- Walle, M.; Gelaw, Y.; Getu, F.; Asrie, F.; Getaneh, Z. Preeclampsia has an association with both platelet count and mean platelet volume: A systematic review and meta-analysis. PLoS ONE 2022, 17, e0274398. [Google Scholar] [CrossRef]
- Ye, D.; Li, S.; Ding, Y.; Ma, Z.; He, R. Clinical value of mean platelet volume in predicting and diagnosing pre-eclampsia: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2023, 10, 1251304. [Google Scholar] [CrossRef]
- Karateke, A.; Kurt, R.K.; Baloğlu, A. Relation of platelet distribution width (PDW) and platelet crit (PCT) to preeclampsia. Ginekol. Pol. 2015, 86, 372–375. [Google Scholar] [CrossRef]
- Monteith, C.; Egan, K.; O’Connor, H.; Maguire, P.; Kevane, B.; Szklanna, P.B. Early onset preeclampsia is associated with an elevated mean platelet volume (MPV) and a greater rise in MPV from time of booking compared with pregnant controls: Results of the CAPE study. J. Perinat. Med. 2018, 46, 1010–1015. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Duan, J.; Wen, Z.; Xiong, H.; Chen, X.; Liu, Y.; Liao, K.; Huang, C. Are the Derived Indexes of Peripheral Whole Blood Cell Counts (NLR, PLR, LMR/MLR) Clinically Significant Prognostic Biomarkers in Multiple Myeloma? A Systematic Review And Meta-Analysis. Front. Oncol. 2021, 11, 766672. [Google Scholar] [CrossRef]
- Wang, J.; Zhu, Q.W.; Cheng, X.Y.; Liu, J.Y.; Zhang, L.L.; Tao, Y.M.; Cui, Y.B.; Wei, Y. Assessment efficacy of neutrophil-lymphocyte ratio and monocyte-lymphocyte ratio in preeclampsia. J. Reprod. Immunol. 2019, 132, 29–34. [Google Scholar] [CrossRef]
- Kang, Q.; Li, W.; Yu, N.; Fan, L.; Zhang, Y.; Sha, M.; Xiao, J.; Wu, J.; Kang, Q.; Chen, S. Preeklampside nötrofil-lenfosit oranının öngörücü rolü: 3982 hastayı içeren bir meta-analiz. Pregnancy Hypertens. 2020, 20, 111–118. [Google Scholar] [CrossRef] [PubMed]
- Yavuzcan, A.; Caglar, M.; Ustun, Y.; Dilbaz, S.; Yidiz, E.; Ozbilgec, S.; Kumru, S.; Ozdemir, I. Mean Platelet Volume, Neutrophil-Lymphocyte Ratio and Platelet-Lymphocyte Ratio in Severe Preeclampsia. Ginekol. Pol. 2014, 85, 197–203. [Google Scholar] [CrossRef]
- Ye, D.; Li, S.; Ma, Z.; Ding, Y.; He, R. Diagnostic value of platelet to lymphocyte ratio in preeclampsia: A systematic review and meta-analysis. J. Matern. Fetal Neonatal Med. 2023, 36, 2234540. [Google Scholar] [CrossRef] [PubMed]
- Conde-Rico, E.T.; Naves-Sánchez, J.; González, A.P.; Luna-Anguiano, J.L.F.; Paque-Bautista, C.; Sosa-Bustamante, G.P. Inflammatory indexes and their association with the severity of preeclampsia. Rev. Med. Inst. Mex. Seguro Soc. 2023, 61, S178–S184. [Google Scholar] [PubMed]
- Maziashvili, G.; Juliana, K.; Kanimozhi, V.S.S.P.; Javakhishvili, G.; Gurabanidze, V.; Gagua, T.; Maziashvili, T.; Lomouri, K. The Use of Systemic Inflammatory Markers from Routine Blood Tests in Predicting Preeclampsia and the Impact of Age on Marker Levels. Cureus 2023, 15, e35836. [Google Scholar] [CrossRef] [PubMed]
- Gölbaşı, C.; Gölbaşı, H.; Gültekin, C.K.; Gülseren, V.; Akşit, M.Z.; Bayraktar, B.; Çolak, A.; Taner, C.E. Ischemia modified albumin levels in intrauterine growth restriction: Levels are increased in fetal cord blood but not in maternal blood. Ginekol. Pol. 2022, 93, 993–998. [Google Scholar] [CrossRef] [PubMed]
- Vural, T.; Karaca, S.Y.; Bayraktar, B.; Gölbaşi, C.; Ekin, A.; Özeren, M. Clinical Significance of Isolated Gestational Proteinuria: A Prospective Analysis of Maternal and Neonatal Outcomes. J. Clin. Obstet. Gynecol. 2024, 34, 132–140. [Google Scholar] [CrossRef]
Mild Preeclampsia (n = 84) | Severe Preeclampsia (n = 34) | Control (n = 118) | p-Value | |
---|---|---|---|---|
Maternal age (years), mean ± SD | 30.68 ± 6.36 | 29.22 ± 5.71 | 29.22 ± 4.9 | 0.178 |
BMI (kg/m2), mean ± SD | 34.41 ± 6.56 | 32.71 ± 5.83 | 32.70 ± 4.22 | 0.068 |
Gravidity median, Q1–Q3 | 2 (1–3) | 2 (1–3) | 2 (1–3) | 0.679 |
Parity median, Q1–Q3 | 1 (0–2) | 0.5 (0–1) | 1 (0–1) | 0.560 |
Primiparity (n, %) | 40 (47.6%) | 18 (52.9%) | 57 (48.3%) | 0.864 |
Smoker (n, %) | 7 (8.3%) | 3 (8.8%) | 4 (3.4%) | 0.254 |
Gestational age at sampling median, Q1–Q3 | 34 (30–36) | 32 (31–35) | 33 (30–35) | 0.798 |
Mild Preeclampsia (n = 84) | Severe Preeclampsia (n = 34) | Control (n = 118) | p-Value | Post Hoc Comparisons p-Value | |||
---|---|---|---|---|---|---|---|
Mild–Severe | Mild–Control | Severe–Control | |||||
Hemoglobin, g/dL | 12.00 ± 1.28 | 11.99 ± 1.35 | 11.54 ± 1.31 | 0.032 | 0.989 | 0.016 | 0.080 |
WBC (×10⁹/L) | 10.84 (9.34–12.74) | 11.13 (8.79–15.34) | 10.45 (8.56–12.00) | 0.132 | |||
Neutrophil (×109/L) | 8.21 (6.65–9.92) | 8.60 (5.93–11.51) | 7.93 (6.61–9.28) | 0.612 | |||
Platelet (×109/L) | 245.57 ± 60.22 | 215.14 ± 75.80 | 249.75 ± 66.36 | 0.025 | 0.024 | 0.655 | 0.007 |
Lymphocyte (×109/L) | 2.02 (1.52–2.36) | 2.00 (1.66–2.19) | 1.93 (1.64–2.18) | 0.917 | |||
Monocyte (×109/L) | 0.68 (0.49–0.85) | 0.60 (0.38–0.81) | 0.71 (0.61–0.89) | 0.055 | |||
MPV (×109/L) | 10.40 (10.15–11.55) | 11.20 (10.30–12.10) | 10.50 (10.10–11.50) | 0.104 | |||
PCT (%) | 0.27 (0.23–0.31) | 0.26 (0.20–0.30) | 0.25 (0.22–0.30) | 0.272 | |||
PLCR (%) | 31.46 (24.60–37.39) | 35.80 (29.10–40.40) | 31.86 (26.20–37.37) | 0.084 | |||
PDW (%) | 14.10 (11.60–16.40) | 15.00 (12.60–18.20) | 12.15 (10.70–14.20) | <0.001 | 0.502 | 0.001 | <0.001 |
NLR | 4.22 (3.10–6.07) | 4.04 (2.91–6.70) | 4.03 (3.19–5.40) | 0.887 | |||
PLR | 124 (102–160) | 101 (79–121) | 128 (101–163) | 0.010 | 0.020 | 0.990 | 0.011 |
MLR | 0.34 (0.25–0.45) | 0.32 (0.21–0.42) | 0.37 (0.31–0.48) | 0.016 | 0.999 | 0.105 | 0.036 |
MPVLR | 5.26 (4.28–7.31) | 5.70 (6.63–7.89) | 5.42 (4.71–6.89) | 0.776 | |||
Proteinuria | 501 (384–958) | 968 (492–3759) | NA | 0.009 |
Mild Preeclampsia (n = 84) | Severe Preeclampsia (n = 34) | Control (n = 118) | p-Value | Post Hoc Comparisons p-Value | |||
---|---|---|---|---|---|---|---|
Mild–Severe | Mild–Control | Severe–Control | |||||
Gestational age at delivery (week) | 37 (35–37) | 34 (33–37) | 39 (38–40) | <0.001 | 0.153 | <0.001 | <0.001 |
Birth weight (grams) | 2514 ± 799 | 2010 ± 634 | 3139 ± 482 | <0.001 | <0.001 | <0.001 | <0.001 |
Preterm birth (<37 week) (n, %) | 37 (44.0%) | 27 (79.4%) | 15 (12.7%) | <0.001 | <0.001 | <0.001 | <0.001 |
Cesarean section (n, %) | 64 (76.2%) | 28 (82.4) | 69 (58.5%) | 0.005 | 0.464 | 0.009 | 0.011 |
Fetal distress (n, %) | 7 (8.3%) | 8 (23.5%) | 5 (4.2%) | 0.002 | 0.025 | 0.225 | <0.001 |
APGAR score at the first minute | 9 (8–9) | 8 (6–9) | 9 (8–9) | <0.001 | 0.005 | 0.082 | <0.001 |
APGAR score at the fifth minute | 10 (9–10) | 9 (8–10) | 10 (10–10) | <0.001 | 0.003 | 0.032 | <0.001 |
NICU admission (n, %) | 27 (32.1%) | 23 (67.6%) | 13 (11%) | <0.001 | <0.001 | <0.001 | <0.001 |
CANO (n, %) | 45 (53.6%) | 28 (82.4%) | 20 (16.9%) | <0.001 | 0.004 | <0.001 | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tokgöz Çakır, B.; Aktemur, G.; Karabay, G.; Şeyhanlı, Z.; Çetin, S.; Filiz, A.A.; Vanlı Tonyalı, N.; Çağlar, A.T. Evaluation of Platelet Indices and Inflammation Markers in Preeclampsia. J. Clin. Med. 2025, 14, 1406. https://doi.org/10.3390/jcm14051406
Tokgöz Çakır B, Aktemur G, Karabay G, Şeyhanlı Z, Çetin S, Filiz AA, Vanlı Tonyalı N, Çağlar AT. Evaluation of Platelet Indices and Inflammation Markers in Preeclampsia. Journal of Clinical Medicine. 2025; 14(5):1406. https://doi.org/10.3390/jcm14051406
Chicago/Turabian StyleTokgöz Çakır, Betül, Gizem Aktemur, Gülşan Karabay, Zeynep Şeyhanlı, Sevinç Çetin, Ahmet Arif Filiz, Nazan Vanlı Tonyalı, and Ali Turhan Çağlar. 2025. "Evaluation of Platelet Indices and Inflammation Markers in Preeclampsia" Journal of Clinical Medicine 14, no. 5: 1406. https://doi.org/10.3390/jcm14051406
APA StyleTokgöz Çakır, B., Aktemur, G., Karabay, G., Şeyhanlı, Z., Çetin, S., Filiz, A. A., Vanlı Tonyalı, N., & Çağlar, A. T. (2025). Evaluation of Platelet Indices and Inflammation Markers in Preeclampsia. Journal of Clinical Medicine, 14(5), 1406. https://doi.org/10.3390/jcm14051406