Ineffectiveness of KeraVio Treatment with Violet Light-Emitting Glasses Without Riboflavin Drops for Progressive Keratoconus
Abstract
:1. Introduction
2. Methods
2.1. Inclusion and Exclusion Criteria
2.2. KeraVio Treatment
2.3. Outcome Measures
2.4. Statistical Analysis
3. Results
3.1. Subject Demographics
3.2. Corneal Parameters
3.3. Visual Acuity and Refraction
4. Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Rabinowitz, Y.S. Keratoconus. Surv. Ophthalmol. 1998, 42, 297–319. [Google Scholar] [CrossRef]
- Beltaief, O.; Farah, H.; Kamoun, R.; Ben Said, A.; Ouertani, A. La greffe de cornéee chez l’enfant [Penetrating keratoplasty in children]. Tunis Med. 2003, 81, 477–481. [Google Scholar]
- Reeves, S.W.; Stinnett, S.; Adelman, R.A.; Afshari, N.A. Risk factors for progression to penetrating keratoplasty in patients with keratoconus. Am. J. Ophthalmol. 2005, 140, 607–611. [Google Scholar] [CrossRef] [PubMed]
- Wu, D.; Lim, D.K.; Lim, B.X.H.; Wong, N.; Hafezi, F.; Manotosh, R.; Lim, C.H.L. Corneal Cross-Linking: The Evolution of Treatment for Corneal Diseases. Front. Pharmacol. 2021, 12, 686630. [Google Scholar] [CrossRef] [PubMed]
- Kobashi, H.; Torii, H.; Toda, I.; Kondo, S.; Itoi, M.; Tsubota, K. Clinical outcomes of KeraVio using violet light: Emitting glasses and riboflavin drops for corneal ectasia: A pilot study. Br. J. Ophthalmol. 2021, 105, 1376–1382. [Google Scholar] [CrossRef] [PubMed]
- Kobashi, H.; Yunoki, S.; Kato, N.; Shimazaki, J.; Ide, T.; Tsubota, K. Evaluation of the Physiological Corneal Intrastromal Riboflavin Concentration and the Corneal Elastic Modulus After Violet Light Irradiation. Transl. Vis. Sci. Technol. 2021, 10, 12. [Google Scholar] [CrossRef] [PubMed]
- Torii, H.; Kurihara, T.; Seko, Y.; Negishi, K.; Ohnuma, K.; Inaba, T.; Kawashima, M.; Jiang, X.; Kondo, S.; Miyauchi, M.; et al. Violet Light Exposure Can Be a Preventive Strategy Against Myopia Progression. eBioMedicine 2017, 15, 210–219. [Google Scholar] [CrossRef] [PubMed]
- Torii, H.; Mori, K.; Okano, T.; Kondo, S.; Yang, H.Y.; Yotsukura, E.; Hanyuda, A.; Ogawa, M.; Negishi, K.; Kurihara, T.; et al. Short-Term Exposure to Violet Light Emitted from Eyeglass Frames in Myopic Children: A Randomized Pilot Clinical Trial. J. Clin. Med. 2022, 11, 6000. [Google Scholar] [CrossRef] [PubMed]
- Kymionis, G.D.; Grentzelos, M.A.; Plaka, A.D.; Tsoulnaras, K.I.; Diakonis, V.F.; Liakopoulos, D.A.; Kankariya, V.P.; Pallikaris, A.I. Correlation of the corneal collagen cross-linking demarcation line using confocal microscopy and anterior segment optical coherence tomography in keratoconic patients. Am. J. Ophthalmol. 2014, 157, 110–115.e1. [Google Scholar] [CrossRef] [PubMed]
- Kymionis, G.D.; Tsoulnaras, K.I.; Grentzelos, M.A.; Plaka, A.D.; Mikropoulos, D.G.; Liakopoulos, D.A.; Tsakalis, N.G.; Pallikaris, I.G. Corneal stroma demarcation line after standard and high-intensity collagen crosslinking determined with anterior segment optical coherence tomography. J. Cataract. Refract. Surg. 2014, 40, 736–740. [Google Scholar] [CrossRef] [PubMed]
- Kobashi, H.; Yano, T.; Tsubota, K. Combination of violet light irradiation and collagenase treatments in a rabbit model of keratoconus. Front. Med. 2023, 10, 1109689. [Google Scholar] [CrossRef] [PubMed]
- Sakata, R.; Sakisaka, T.; Matsuo, H.; Miyata, K.; Aihara, M. Effect of Travoprost and Nonsteroidal Anti-Inflammatory Drug on Diurnal Intraocular Pressure in Normal Subjects with Low-Teen Baseline Intraocular Pressure. J. Ocul. Pharmacol. Ther. 2016, 32, 365–370. [Google Scholar] [CrossRef] [PubMed]
- Sakata, R.; Sakisaka, T.; Matsuo, H.; Miyata, K.; Aihara, M. Time Course of Prostaglandin Analog-related Conjunctival Hyperemia and the Effect of a Nonsteroidal Anti-inflammatory Ophthalmic Solution. J. Glaucoma 2016, 25, e204–e208. [Google Scholar] [CrossRef] [PubMed]
- Lai, J.Y. Photo-cross-linking of amniotic membranes for limbal epithelial cell cultivation. Mater. Sci. Eng. C Mater. Biol. Appl. 2014, 45, 313–319. [Google Scholar] [CrossRef] [PubMed]
- Sozer, O.; Ozalp, O.; Atalay, E.; Demir, S.S.; Alatas, İ.O.; Yildirim, N. Comparison of blood levels of vitamin B12, folic acid, riboflavin, and homocysteine in keratoconus and healthy subjects. J. Cataract. Refract. Surg. 2023, 49, 589–594. [Google Scholar] [CrossRef] [PubMed]
KeraVio with VL Irradiation | Control | * p-Value | |
---|---|---|---|
Eyes/patients (n) | 18/18 | 8/8 | n/a |
Age (years) | 28.56 ± 11.96 | 40.25 ± 11.72 | 0.030 |
Sex (female/male) (n) | 14/4 | 6/2 | n/a |
Kmax (diopters) | 56.17 ± 9.18 | 56.18 ± 8.35 | 0.816 |
Baseline | 1 Month | 3 Months | 6 Months | Change from Baseline to 6 Months | |
---|---|---|---|---|---|
Kmax (D) | |||||
KeraVio with VL irradiation | 56.17 ± 9.18 | 55.75 ± 8.93 | 55.88 ± 9.43 | 57.11 ± 10.17 | 0.94 ± 2.65 |
Control | 56.18 ± 8.35 | 56.43 ± 10.04 | 57.29 ± 10.18 | 57.23 ± 7.85 | 1.76 ± 2.75 |
* p-value | 0.816 | 0.816 | 0.600 | 0.624 | 0.705 |
Thinnest corneal thickness (μm) | |||||
KeraVio with VL irradiation | 429.47 ± 63.54 | 428.88 ± 64.45 | 424.24 ± 64.84 | 422.24 ± 67.85 | −6.44 ± 19.16 |
Control | 415.63 ± 77.14 | 408.63 ± 80.66 | 417.63 ± 80.57 | 417.17 ± 79.10 | −0.50 ± 2.95 |
* p-value | 0.600 | 0.462 | 0.641 | 0.753 | 0.029 |
Baseline | 1 Month | 3 Months | 6 Months | Change from Baseline to 6 Months | |
---|---|---|---|---|---|
Corrected distance visual acuity (logMAR) | |||||
KeraVio with VL irradiation | 0.20 ± 0.42 | 0.25 ± 0.48 | 0.27 ± 0.50 | 0.24 ± 0.46 | 0.03 ± 0.13 |
Control | 0.33 ± 0.41 | 0.31 ± 0.39 | 0.39 ± 0.46 | 0.37 ± 0.49 | 0.04 ± 0.12 |
* p-value | 0.534 | 0.728 | 0.388 | 0.604 | 0.616 |
Uncorrected distance visual acuity (logMAR) | |||||
KeraVio with VL irradiation | 0.84 ± 0.59 | 0.82 ± 0.63 | 0.80 ± 0.69 | 0.74 ± 0.61 | −0.09 ± 0.42 |
Control | 0.98 ± 0.47 | 0.87 ± 0.73 | 0.90 ± 0.72 | 1.07 ± 0.80 | 0.02 ± 0.30 |
* p-value | 0.600 | 0.863 | 0.918 | 0.352 | 0.404 |
Manifest refraction sphericalequivalent(D) | |||||
KeraVio with VL irradiation | −6.57 ± 7.29 | −6.54 ± 7.21 | −6.15 ± 6.89 | −5.67 ± 7.50 | 0.91 ± 2.40 |
Control | −7.73 ± 7.42 | −7.67 ± 7.30 | −7.97 ± 6.83 | −7.04 ± 7.70 | 0.03 ± 0.53 |
* p-value | 0.999 | 0.864 | 0.682 | 0.680 | 0.304 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kobashi, H.; Kumanomido, T.; Ide, T.; Kato, N.; Shimazaki, J.; Itoi, M.; Tsubota, K. Ineffectiveness of KeraVio Treatment with Violet Light-Emitting Glasses Without Riboflavin Drops for Progressive Keratoconus. J. Clin. Med. 2025, 14, 773. https://doi.org/10.3390/jcm14030773
Kobashi H, Kumanomido T, Ide T, Kato N, Shimazaki J, Itoi M, Tsubota K. Ineffectiveness of KeraVio Treatment with Violet Light-Emitting Glasses Without Riboflavin Drops for Progressive Keratoconus. Journal of Clinical Medicine. 2025; 14(3):773. https://doi.org/10.3390/jcm14030773
Chicago/Turabian StyleKobashi, Hidenaga, Takashi Kumanomido, Takeshi Ide, Naoko Kato, Jun Shimazaki, Motozumi Itoi, and Kazuo Tsubota. 2025. "Ineffectiveness of KeraVio Treatment with Violet Light-Emitting Glasses Without Riboflavin Drops for Progressive Keratoconus" Journal of Clinical Medicine 14, no. 3: 773. https://doi.org/10.3390/jcm14030773
APA StyleKobashi, H., Kumanomido, T., Ide, T., Kato, N., Shimazaki, J., Itoi, M., & Tsubota, K. (2025). Ineffectiveness of KeraVio Treatment with Violet Light-Emitting Glasses Without Riboflavin Drops for Progressive Keratoconus. Journal of Clinical Medicine, 14(3), 773. https://doi.org/10.3390/jcm14030773