Localization of Microvascular Changes in Systemic Disease Without Retinopathy Using Optical Coherence Tomography Angiography (OCTA)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Population
2.2. Demographics and Clinical Data
2.3. OCTA Image Generation
2.4. Image Processing and Fractal Dimension Determination
2.5. Statistical Analysis
3. Results
3.1. Study Population
3.2. Fractal Dimensions
3.3. Localization and Magnitude of FD Change
3.4. Area Under the ROC Curve
3.5. Optimization of the AUC
3.6. HbA1c Correlation
4. Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Klein, B.E. Overview of epidemiologic studies of diabetic retinopathy. Ophthalmic Epidemiol. 2007, 14, 179–183. [Google Scholar] [CrossRef] [PubMed]
- Harjasouliha, A.; Raiji, V.; Garcia Gonzalez, J.M. Review of hypertensive retinopathy. Dis. Mon. 2017, 63, 63–69. [Google Scholar] [CrossRef] [PubMed]
- Flaxel, C.J.; Adelman, R.A.; Bailey, S.T.; Fawzi, A.; Lim, J.I.; Vemulakonda, G.A.; Ying, G.-S. Diabetic Retinopathy Preferred Practice Pattern®. Ophthalmology 2020, 127, P66–P145. [Google Scholar] [CrossRef] [PubMed]
- Vujosevic, S.; Parra, M.M.; Hartnett, M.E.; O’toole, L.; Nuzzi, A.; Limoli, C.; Villani, E.; Nucci, P. Optical coherence tomography as retinal imaging biomarker of neuroinflammation/neurodegeneration in systemic disorders in adults and children. Eye 2023, 37, 203–219. [Google Scholar] [CrossRef]
- Wagner, S.K.; Fu, D.J.; Faes, L.; Liu, X.; Huemer, J.; Khalid, H.; Ferraz, D.; Korot, E.; Kelly, C.; Balaskas, K.; et al. Insights into Systemic Disease through Retinal Imaging-Based Oculomics. Transl. Vis. Sci. Technol. 2020, 9, 6. [Google Scholar] [CrossRef]
- Karanam, V.C.; Tamariz, L.; Batawi, H.; Wang, J.; Galor, A. Functional slit lamp biomicroscopy metrics correlate with cardiovascular risk. Ocul. Surf. 2019, 17, 64–69. [Google Scholar] [CrossRef]
- Hwang, J.; Karanam, V.; Wang, J.; Feuer, W.J.; Garg, R.K.; Tamariz, L.; Galor, A.M. Conjunctival Vessels in Diabetes Using Functional Slit Lamp Biomicroscopy. Cornea 2020. ahead of print. [Google Scholar] [CrossRef]
- Batawi, H.; Shalabi, N.; Joag, M.; Koru-Sengul, T.; Rodriguez, J.; Green, P.T.; Campigotto, M.; Karp, C.L.; Galor, A. Sub-basal Corneal Nerve Plexus Analysis Using a New Software Technology. Eye Contact Lens. 2018, 44 (Suppl. S1), S199–S205. [Google Scholar] [CrossRef]
- Nentwich, M.M.; Ulbig, M.W. Diabetic retinopathy—Ocular complications of diabetes mellitus. World J. Diabetes 2015, 6, 489–499. [Google Scholar] [CrossRef]
- Liew, G.; Michaelides, M.; Bunce, C. A comparison of the causes of blindness certifications in England and Wales in working age adults (16–64 years), 1999–2000 with 2009–2010. BMJ Open 2014, 4, e004015. [Google Scholar] [CrossRef]
- Dziedziak, J.; Zaleska-Żmijewska, A.; Szaflik, J.P.; Cudnoch-Jędrzejewska, A. Impact of Arterial Hypertension on the Eye: A Review of the Pathogenesis, Diagnostic Methods, and Treatment of Hypertensive Retinopathy. Med. Sci. Monit. 2022, 28, e935135. [Google Scholar] [CrossRef] [PubMed]
- Cheung, N.; Wang, J.J.; Klein, R.; Couper, D.J.; Sharrett, A.R.; Wong, T.Y. Diabetic retinopathy and the risk of coronary heart disease: The Atherosclerosis Risk in Communities Study. Diabetes Care 2007, 30, 1742–1746. [Google Scholar] [CrossRef] [PubMed]
- Cheung, N.; Wang, J.J.; Rogers, S.L.; Brancati, F.; Klein, R.; Sharrett, A.R.; Wong, T.Y. Diabetic retinopathy and risk of heart failure. J. Am. Coll. Cardiol. 2008, 51, 1573–1578. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Coresh, J.; Klein, R.; Muntner, P.; Couper, D.J.; Sharrett, A.R.; Klein, B.E.K.; Heiss, G.; Hubbard, L.D.; Duncan, B.B. Retinal microvascular abnormalities and renal dysfunction: The atherosclerosis risk in communities study. J. Am. Soc. Nephrol. 2004, 15, 2469–2476. [Google Scholar] [CrossRef] [PubMed]
- Wong, T.Y.; Klein, R.; Couper, D.J.; Cooper, L.S.; Shahar, E.; Hubbard, L.D.; Wofford, M.R.; Sharrett, A.R. Retinal microvascular abnormalities and incident stroke: The Atherosclerosis Risk in Communities Study. Lancet 2001, 358, 1134–1140. [Google Scholar] [CrossRef] [PubMed]
- Yasin Alibhai, A.; Moult, E.M.; Shahzad, R.; Rebhun, C.B.; Moreira-Neto, C.; McGowan, M.; Lee, D.; Lee, B.; Baumal, C.R.; Witkin, A.J.; et al. Quantifying Microvascular Changes Using OCT Angiography in Diabetic Eyes without Clinical Evidence of Retinopathy. Ophthalmol. Retina 2018, 2, 418–427. [Google Scholar] [CrossRef] [PubMed]
- Badhon, R.H.; Thompson, A.C.; Lim, J.I.; Leng, T.; Alam, M.N. Quantitative Characterization of Retinal Features in Translated OCTA. Exp. Biol. Med. 2024, 249, 10333. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
- Cao, D.; Yang, D.; Huang, Z.; Zeng, Y.; Wang, J.; Hu, Y.; Zhang, L. Optical coherence tomography angiography discerns preclinical diabetic retinopathy in eyes of patients with type 2 diabetes without clinical diabetic retinopathy. Acta Diabetol. 2018, 55, 469–477. [Google Scholar] [CrossRef] [PubMed]
- Sun, C.; Ladores, C.; Hong, J.; Nguyen, D.Q.; Chua, J.; Ting, D.; Schmetterer, L.; Wong, T.Y.; Cheng, C.-Y.; Tan, A.C.S. Systemic hypertension associated retinal microvascular changes can be detected with optical coherence tomography angiography. Sci. Rep. 2020, 10, 9580. [Google Scholar] [CrossRef] [PubMed]
- Faridi, A.; Jia, Y.; Gao, S.S.; Huang, D.; Bhavsar, K.V.; Wilson, D.J.; Sill, A.; Flaxel, C.J.; Hwang, T.S.; Lauer, A.K.; et al. Sensitivity and Specificity of OCT Angiography to Detect Choroidal Neovascularization. Ophthalmol. Retina 2017, 1, 294–303. [Google Scholar] [CrossRef] [PubMed]
- Dimitrova, G.; Chihara, E.; Takahashi, H.; Amano, H.; Okazaki, K. Quantitative Retinal Optical Coherence Tomography Angiography in Patients with Diabetes Without Diabetic Retinopathy. Invest. Ophthalmol. Vis. Sci. 2017, 58, 190–196. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Han, Y.; Sun, G.; Yang, F.; Liu, W.; Luo, J.; Cao, X.; Yin, P.; Myers, F.L.; Zhou, L. Detection of the Microvascular Changes of Diabetic Retinopathy Progression Using Optical Coherence Tomography Angiography. Transl. Vis. Sci. Technol. 2021, 10, 31. [Google Scholar] [CrossRef] [PubMed]
- Bernal-Morales, C.; Alé-Chilet, A.; Martín-Pinardel, R.; Barraso, M.; Hernández, T.; Oliva, C.; Vinagre, I.; Ortega, E.; Figueras-Roca, M.; Sala-Puigdollers, A.; et al. Optical Coherence Tomography Angiography in Type 1 Diabetes Mellitus. Report 4: Glycated Haemoglobin. Diagnostics 2021, 11, 1537. [Google Scholar] [CrossRef] [PubMed]
- Lee, W.H.; Park, J.H.; Won, Y.; Lee, M.-W.; Shin, Y.-I.; Jo, Y.-J.; Kim, J.-Y. Retinal Microvascular Change in Hypertension as measured by Optical Coherence Tomography Angiography. Sci. Rep. 2019, 9, 156. [Google Scholar] [CrossRef] [PubMed]
- Lee, M.W.; Koo, H.M.; Lee, W.H.; Park, J.H.; Lee, Y.H.; Kim, J.Y. Impacts of Systemic Hypertension on the Macular Microvasculature in Diabetic Patients Without Clinical Diabetic Retinopathy. Investig. Ophthalmol. Vis. Sci. 2021, 62, 21. [Google Scholar] [CrossRef]
- Meleppat, R.K.; Miller, E.E.; Manna, S.K.; Zhang, P.; Pugh, E.N., Jr.; Zawadzki, R.J. Multiscale Hessian filtering for enhancement of OCT angiography images. In Ophthalmic Technologies XXIX; SPIE: Bellingham, WA, USA, 2019; 108581K. [Google Scholar] [CrossRef]
Controls (n = 60) | DM (n = 9) | HTN (n = 33) | DM and HTN (n = 12) | p-Value | |
---|---|---|---|---|---|
Demographics, mean ± SD or % (n) | |||||
Age, years | 55.20 ± 4.95 | 54.56 ± 5.13 | 56.70 ± 4.23 | 56.33 ± 4.48 | 0.41 |
Sex, male | 83% (50) | 100% (9) | 88% (29) | 92% (11) | 0.53 |
Race, Black | 30% (18) | 56% (5) | 52% (17) | 58% (7) | 0.61 |
Ethnicity, Hispanic | 30% (18) | 33% (3) | 49% (16) | 33% (4) | 0.36 |
Clinical Characteristics, mean ± SD or % (n) | |||||
HbA1C, % | 5.68 ± 0.46 (57/60) | 7.32 ± 1.39 a,b (9/9) | 5.98 ± 1.14 a (32/33) | 6.92 ± 0.61 a,b (12/12) | <0.001 |
Total cholesterol level, mg/dL | 193 ± 43.42 (56/60) | 168 ± 40.53 (9/9) | 186 ± 41.66 (32/33) | 160 ± 42.71 (11/12) | 0.07 |
Hyperlipidemia | 33% (20) | 78% (7) a | 58% (19) a | 50% (6) | 0.02 |
Smoking history Prior Current | 17% (10) 15% (9) | 11% (1) 22% (2) | 24% (8) 18% (6) | 25% (3) 17% (2) | 0.68 |
Sleep apnea | 55% (33) | 67% (6) | 67% (22) | 58% (7) | 0.76 |
BMI | 29.89 ± 4.85 (49/60) | 33.47 ± 5.83 (8/9) | 32.06 ± 5.21 (27/33) | 32.59 ± 6.11 (9/12) | 0.11 |
Controls (n = 60) | DM (n = 9) | HTN (n = 33) | DM and HTN (n = 12) | p-Value | |
---|---|---|---|---|---|
Superficial Vascular Plexus partition (n), mean FD ± SD | |||||
Entire Annulus (114) | 1.85 + 0.007 | 1.85 + 0.007 | 1.85 + 0.01 | 1.84 + 0.01 a | 0.08 |
C1 (114) | 1.61 ± 0.03 | 1.61 ± 0.004 | 1.61 ± 0.005 | 1.60 ± 0.03 | 0.68 |
C2 (114) | 1.63 ± 0.02 | 1.63 ± 0.009 | 1.62 ± 0.003 | 1.62 ± 0.02 | 0.49 |
C3 (114) | 1.60 ± 0.02 | 1.59 ± 0.006 | 1.59 ± 0.003 | 1.58 ± 0.02 a | 0.11 |
C4 (114) | 1.57 ± 0.009 | 1.57 ± 0.005 | 1.57 ± 0.002 | 1.57 ± 0.01 a | 0.39 |
C5 (114) | 1.57 ± 0.008 | 1.56 ± 0.006 | 1.57 ± 0.002 | 1.56 ± 0.01 a | 0.008 |
C6 (114) | 1.59 ± 0.008 | 1.59 ± 0.006 | 1.59 ± 0.003 | 1.58 ± 0.01 a,b | 0.05 |
Deep Vascular Plexus partition (n), mean FD ± SD | |||||
Entire Annulus (114) | 1.85 + 0.008 | 1.85 + 0.008 | 1.85 + 0.008 | 1.85 + 0.01 | 0.67 |
C1 (114) | 1.54 ± 0.05 | 1.56 ± 0.007 | 1.53 ± 0.01 | 1.54 ± 0.07 | 0.38 |
C2 (114) | 1.63 ± 0.02 | 1.63 ± 0.004 | 1.63 ± 0.003 | 1.63 ± 0.02 | 0.97 |
C3 (114) | 1.60 ± 0.02 | 1.59 ± 0.004 | 1.59 ± 0.002 | 1.59 ± 0.01 | 0.42 |
C4 (114) | 1.58 ± 0.008 | 1.58 ± 0.003 | 1.58 ± 0.002 | 1.57 ± 0.008 a,b | 0.14 |
C5 (114) | 1.58 ± 0.006 | 1.57 ± 0.003 a | 1.58 ± 0.002 | 1.57 ± 0.01 a | 0.08 |
C6 (114) | 1.61 ± 0.02 | 1.60 ± 0.008 | 1.60 ± 0.004 | 1.60 ± 0.03 | 0.94 |
Area Under the ROC Curve | DM | HTN | DM and HTN |
---|---|---|---|
Superficial Vascular Plexus Entire Annulus | 0.411 | 0.453 | 0.703 |
Superficial Vascular Plexus C1 | 0.544 | 0.532 | 0.590 |
Superficial Vascular Plexus C2 | 0.533 | 0.600 | 0.642 |
Superficial Vascular Plexus C3 | 0.586 | 0.642 | 0.706 |
Superficial Vascular Plexus C4 | 0.566 | 0.570 | 0.669 |
Superficial Vascular Plexus C5 | 0.630 | 0.669 | 0.761 |
Superficial Vascular Plexus C6 | 0.663 | 0.573 | 0.767 |
Deep Vascular Plexus Entire Annulus | 0.561 | 0.584 | 0.593 |
Deep Vascular Plexus C1 | 0.440 | 0.571 | 0.494 |
Deep Vascular Plexus C2 | 0.488 | 0.489 | 0.493 |
Deep Vascular Plexus C3 | 0.569 | 0.560 | 0.581 |
Deep Vascular Plexus C4 | 0.651 | 0.560 | 0.711 |
Deep Vascular Plexus C5 | 0.668 | 0.558 | 0.682 |
Deep Vascular Plexus C6 | 0.544 | 0.512 | 0.558 |
Area Under the ROC Curve | 0.808 |
Sensitivity: For values ≤ 3.15 | 91.7% |
Specificity: For values ≤ 3.15 | 60.0% |
HbA1c Pearson Coefficient | p-Value | |
---|---|---|
Superficial Vascular Plexus Entire Annulus | −0.127 | 0.185 |
Superficial Vascular Plexus C1 | −0.161 | 0.093 |
Superficial Vascular Plexus C2 | −0.195 | 0.042 |
Superficial Vascular Plexus C3 | −0.124 | 0.198 |
Superficial Vascular Plexus C4 | −0.102 | 0.288 |
Superficial Vascular Plexus C5 | −0.223 | 0.019 |
Superficial Vascular Plexus C6 | −0.173 | 0.071 |
Deep Vascular Plexus Entire Annulus | −0.129 | 0.180 |
Deep Vascular Plexus C1 | 0.062 | 0.520 |
Deep Vascular Plexus C2 | −0.189 | 0.048 |
Deep Vascular Plexus C3 | −0.230 | 0.016 |
Deep Vascular Plexus C4 | −0.216 | 0.024 |
Deep Vascular Plexus C5 | −0.182 | 0.057 |
Deep Vascular Plexus C6 | −0.122 | 0.203 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hattenhauer, A.; Cabrera, K.; Locatelli, E.V.T.; Donthineni, P.R.; Goldhardt, R.; Wang, J.; Galor, A. Localization of Microvascular Changes in Systemic Disease Without Retinopathy Using Optical Coherence Tomography Angiography (OCTA). J. Clin. Med. 2025, 14, 372. https://doi.org/10.3390/jcm14020372
Hattenhauer A, Cabrera K, Locatelli EVT, Donthineni PR, Goldhardt R, Wang J, Galor A. Localization of Microvascular Changes in Systemic Disease Without Retinopathy Using Optical Coherence Tomography Angiography (OCTA). Journal of Clinical Medicine. 2025; 14(2):372. https://doi.org/10.3390/jcm14020372
Chicago/Turabian StyleHattenhauer, Alex, Kimberly Cabrera, Elyana V. T. Locatelli, Pragnya Rao Donthineni, Raquel Goldhardt, Jianhua Wang, and Anat Galor. 2025. "Localization of Microvascular Changes in Systemic Disease Without Retinopathy Using Optical Coherence Tomography Angiography (OCTA)" Journal of Clinical Medicine 14, no. 2: 372. https://doi.org/10.3390/jcm14020372
APA StyleHattenhauer, A., Cabrera, K., Locatelli, E. V. T., Donthineni, P. R., Goldhardt, R., Wang, J., & Galor, A. (2025). Localization of Microvascular Changes in Systemic Disease Without Retinopathy Using Optical Coherence Tomography Angiography (OCTA). Journal of Clinical Medicine, 14(2), 372. https://doi.org/10.3390/jcm14020372