Impaired Kidney Function, Subclinical Myocardial Injury, and Their Joint Associations with Cardiovascular Mortality in the General Population †
Abstract
1. Introduction
2. Methods
2.1. Study Population
2.2. Ascertainment of Kidney Function
2.3. Defining Subclinical Myocardial Injury (SCMI)
2.4. Ascertainment of Cardiovascular Mortality
2.5. Other Variables
2.6. Statistical Analysis
3. Results
4. Discussion
5. Limitations
6. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Vondenhoff, S.; Schunk, S.J.; Noels, H. Increased cardiovascular risk in patients with chronic kidney disease. Erhöhtes kardiovaskuläres Risiko bei Patienten mit chronischer Niereninsuffizienz. Herz 2024, 49, 95–104. [Google Scholar] [CrossRef]
- Sarnak, M.; Amann, K.; Bangalore, S.; Cavalcante, J.L.; Charytan, D.M.; Craig, J.C.; Gill, J.S.; Hlatky, M.A.; Jardine, A.G.; Landmesser, U.; et al. Chronic kidney disease and coronary artery disease: JACC state-of-the-art review. J. Am. Coll. Cardiol. 2019, 74, 1823–1838. [Google Scholar] [CrossRef]
- Vashistha, V.; Lee, M.; Wu, Y.L.; Kaur, S.; Ovbiagele, B. Low glomerular filtration rate and risk of myocardial infarction: A systematic review and meta-analysis. Int. J. Cardiol. 2016, 223, 401–409. [Google Scholar] [CrossRef] [PubMed]
- Mayne, K.J.; Lees, J.S.; Mark, P.B. Cardiovascular complications of chronic kidney disease. Medicine 2023, 51, 190–195. [Google Scholar] [CrossRef]
- Burnier, M.; Damianaki, A. Hypertension as cardiovascular risk factor in chronic kidney disease. Circ. Res. 2023, 132, 1050–1063. [Google Scholar] [CrossRef] [PubMed]
- Noels, H.; van der Vorst, E.P.C.; Rubin, S.; Emmett, A.; Marx, N.; Tomaszewski, M.; Jankowski, J. Renal–cardiac crosstalk in the pathogenesis and progression of heart failure. Circ. Res. 2025, 136, 1306–1334. [Google Scholar] [CrossRef] [PubMed]
- Cai, Q.; Mukku, V.K.; Ahmad, M. Coronary artery disease in patients with chronic kidney disease: A clinical update. Curr. Cardiol. Rev. 2013, 9, 331–339. [Google Scholar] [CrossRef]
- Collins, A.J.; Vassalotti, J.A.; Wang, C.; Li, S.; Gilbertson, D.T.; Liu, J.; Foley, R.N.; Chen, S.-C.; Arneson, T.J. Who should be targeted for CKD screening? Impact of diabetes, hypertension, and cardiovascular disease. Am. J. Kidney Dis. 2009, 53 (Suppl. 3), S71–S77. [Google Scholar] [CrossRef]
- Truyen, T.T.T.T.; Uy-Evanado, A.; Holmstrom, L.; Reinier, K.; Chugh, H.; Jui, J.; Herzog, C.A.; Chugh, S.S. Sudden Cardiac Arrest Associated with Hemodialysis: A Community-Based Study. Kidney360 2025, 6, 805–813. [Google Scholar] [CrossRef]
- van Domburg, R.T.; Klootwijk, P.; Deckers, J.W.; van Bergen, P.F.; Jonker, J.J.; Simoons, M.L. The cardiac infarction injury score as a predictor for long-term mortality in survivors of a myocardial infarction. Eur. Heart J. 1998, 19, 1034–1041. [Google Scholar] [CrossRef]
- O’Neal, W.T.; Shah, A.J.; Efird, J.T.; Rautaharju, P.M.; Soliman, E.Z. Subclinical myocardial injury identified by cardiac infarction/injury score and the risk of mortality in men and women free of cardiovascular disease. Am. J. Cardiol. 2014, 114, 1018–1023. [Google Scholar] [CrossRef]
- Rautaharju, P.M.; Warren, J.W.; Jain, U.; Wolf, H.K.; Nielsen, C.L. Cardiac infarction injury score: An electrocardiographic coding scheme for ischemic heart disease. Circulation 1981, 64, 249–256. [Google Scholar] [CrossRef]
- Jakubiak, G.K.; Starzak, M.; Pawlas, N.; Chwalba, A.; Stanek, A.; Cieślar, G. Correlation Between Cardiac Troponin Serum Concentration and Selected Parameters of Subclinical Cardiovascular Dysfunction in Patients With and Without Arterial Hypertension: Retrospective Cross-Sectional Analysis of Real-World Data. J. Clin. Med. 2025, 14, 5961. [Google Scholar] [CrossRef]
- U.S. Department of Health and Human Services. Plan and Operation of the Third National Health and Nutrition Examination Survey, 1988–1994, Series 1: Programs and Collection Procedures, Vital and Health Statistics, No. 32; National Center for Health Statistics: Hyattsville, MD, USA, 1994.
- Thomas, A.; Belsky, D.W.; Gu, Y. Healthy lifestyle behaviors and biological aging in the U.S. National Health and Nutrition Examination Surveys 1999–2018. J. Gerontol. A Biol. Sci. Med. Sci. 2023, 78, 1535–1542. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Robyak, K.; Zhu, Y. The CKD-EPI 2021 equation and other creatinine-based race-independent eGFR equations in chronic kidney disease diagnosis and staging. J. Appl. Lab. Med. 2023, 8, 952–961. [Google Scholar] [CrossRef]
- Chebrolu, S.; Kazibwe, R.; Soliman, E.Z. Association between family income, subclinical myocardial injury, and cardiovascular mortality in the general population. Clin. Cardiol. 2024, 47, e70036. [Google Scholar] [CrossRef] [PubMed]
- Elbadawi, N.S.; Sobih, M.H.; Soliman, M.Z.; Mostafa, M.A.; Kazibwe, R.; Soliman, E.Z. Association between atherogenic dyslipidemia and subclinical myocardial injury in the general population. J. Clin. Med. 2024, 13, 4946. [Google Scholar] [CrossRef]
- Yamamoto, S.; Kon, V. Mechanisms for increased cardiovascular disease in chronic kidney dysfunction. Curr. Opin. Nephrol. Hypertens. 2009, 18, 181–188. [Google Scholar] [CrossRef] [PubMed]
- Ndumele, C.E.; Rangaswami, J.; Chow, S.L.; Neeland, I.J.; Tuttle, K.R.; Khan, S.S.; Coresh, J.; Mathew, R.O.; Baker-Smith, C.M.; Carnethon, M.R.; et al. Cardiovascular–kidney–metabolic health: A presidential advisory from the American Heart Association. Circulation 2023, 148, 1606–1635. [Google Scholar] [CrossRef]
- Shlipak, M.G.; Katz, R.; Kestenbaum, B.; Fried, L.F.; Siscovick, D.; Sarnak, M.J. Clinical and subclinical cardiovascular disease and kidney function decline in the elderly. Atherosclerosis 2009, 204, 298–303. [Google Scholar] [CrossRef]
- Park, M.; Shlipak, M.G.; Katz, R.; Agarwal, S.; Ix, J.H.; Hsu, C.-y.; Carmen, A. Subclinical cardiac abnormalities and kidney function decline: The Multi-Ethnic Study of Atherosclerosis. Clin. J. Am. Soc. Nephrol. 2012, 7, 1137–1144. [Google Scholar] [CrossRef]
- Hallan, S.; Astor, B.; Romundstad, S.; Aasarød, K.; Kvenild, K.; Coresh, J. Association of kidney function and albuminuria with cardiovascular mortality in older vs younger individuals: The HUNT II study. Arch. Intern. Med. 2007, 167, 2490–2496. [Google Scholar] [CrossRef] [PubMed]
- Di Lullo, L.; Gorini, A.; Russo, D.; Santoboni, A.; Ronco, C. Left ventricular hypertrophy in chronic kidney disease patients: From pathophysiology to treatment. Cardiorenal Med. 2015, 5, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.J.; Hsu, Y.L.; Chuang, Y.H.; Lin, H.Y.; Chen, Y.H.; Chan, T.C. Association between renal function and cardiovascular mortality: A retrospective cohort study of elderly from health check-up. BMJ Open 2021, 11, e049307. [Google Scholar] [CrossRef]
- Ataklte, F.; Song, R.J.; Upadhyay, A.; Musa Yola, I.; Vasan, R.S.; Xanthakis, V. Association of mildly reduced kidney function with cardiovascular disease: The Framingham Heart Study. J. Am. Heart Assoc. 2021, 10, e020301. [Google Scholar] [CrossRef]
- Schirone, L.; Forte, M.; D’Ambrosio, L.; Valenti, V.; Vecchio, D.; Schiavon, S.; Spinosa, G.; Sarto, G.; Petrozza, V.; Frati, G.; et al. An overview of the molecular mechanisms associated with myocardial ischemic injury: State of the art and translational perspectives. Cells 2022, 11, 1165. [Google Scholar] [CrossRef]
- Rubin, J.; Matsushita, K.; Ballantyne, C.M.; Hoogeveen, R.; Coresh, J.; Selvin, E. Chronic hyperglycemia and subclinical myocardial injury. J. Am. Coll. Cardiol. 2012, 59, 484–489. [Google Scholar] [CrossRef]
- Smith, D.L.; Graham, E.L.; Douglas, J.A.; Jack, K.; Conner, M.J.; Arena, R.; Chaudhry, S. Subclinical cardiac dysfunction is associated with reduced cardiorespiratory fitness and cardiometabolic risk factors in firefighters. Am. J. Med. 2022, 135, 752–760. [Google Scholar] [CrossRef]
- Hadaya, J.; Ardell, J.L. Autonomic modulation for cardiovascular disease. Front. Physiol. 2020, 11, 617459. [Google Scholar] [CrossRef]
- Yiu, K.H.; Zhao, C.T.; Chen, Y.; Siu, C.-W.; Chan, Y.-H.; Lau, K.-K.; Liu, S.; Lau, C.-P.; Tse, H.-F. Association of subclinical myocardial injury with arterial stiffness in patients with type 2 diabetes mellitus. Cardiovasc. Diabetol. 2013, 12, 94. [Google Scholar] [CrossRef] [PubMed]
- Zhang, H. Effects of RAAS Inhibitors in Patients with Kidney Disease. Curr. Hypertens. Rep. 2017, 19, 72. [Google Scholar] [CrossRef] [PubMed]
- Obialo, C.I.; Ofili, E.O.; Norris, K.C. Statins and Cardiovascular Disease Outcomes in Chronic Kidney Disease: Reaffirmation vs. Repudiation. Int. J. Environ. Res. Public Health 2018, 15, 2733. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.R.; Zhang, J.J.; Xu, X.X.; Wu, Y.G. Prevalence of coronary artery calcification and its association with mortality, cardiovascular events in patients with chronic kidney disease: A systematic review and meta-analysis. Ren. Fail. 2019, 41, 244–256. [Google Scholar] [CrossRef] [PubMed] [PubMed Central]
Characteristics | SCMI Absent (n = 4760) | SCMI Present (n = 1297) | p-Value |
---|---|---|---|
Age in years (IQR) | 56.0 (46.0–67.0) | 56.0 (46.0–67.0) | <0.001 |
Women (%) | 2636 (55.4%) | 660 (50.9%) | 0.004 |
Race Ethnicity: | |||
Non-Hispanic White (%) | 2320 (48.7%) | 709 (54.7%) | <0.001 |
Non-Hispanic Black (%) | 1009 (21.2%) | 289 (22.3%) | |
Mexican American (%) | 1200 (25.2%) | 271 (20.9%) | |
Other (%) | 231 (4.9%) | 28 (2.2%) | |
Ever Smoked (%) | 2257 (47.4%) | 523 (40.3%) | <0.001 |
Body Mass Index (kg/m2) | 26.8 (23.9–30.3) | 26.8 (23.9–30.3) | 0.1160 |
Systolic Blood Pressure (mm Hg) | 127.0 (117.0–141.0) | 127.0 (117.0–141.0) | <0.001 |
Diastolic Blood Pressure (mm Hg) | 76.0 (70.0–82.0) | 76.0 (70.0–82.0) | 0.8129 |
Total Cholesterol (mg/dL) | 220.0 (192.0–247.0) | 220.0 (192.0–247.0) | 0.0341 |
Diabetes Mellitus (%) | 609 (12.8%) | 232 (17.9%) | <0.001 |
Use of BP Medications (%) | 3892 (81.8%) | 956 (73.7%) | <0.001 |
Use of lipid lowering (%) | 194 (4.1%) | 46 (3.6%) | 0.387 |
eGFR < 45 mL/min/1.73 m2 (%) | 197 (4.1%) | 93 (7.2%) | <0.001 |
eGFR Level | SCMI N (%) | Model 1 | Model 2 | |||
---|---|---|---|---|---|---|
Present | Absent | OR (95% CI) | p-Value | OR (95% CI) | p-Value | |
eGFR ≥ 45 mL/min/1.73 m2 | 1204 (20.9%) | 4563 (79.1%) | Ref. | -- | Ref. | -- |
eGFR < 45 mL/min/1.73 m2 | 93 (7.2%) | 197 (4.1%) | 1.17 (0.89–1.53) | 0.267 | 1.10 (0.84–1.45) | 0.482 |
eGFR per 1-SD decrease * | -- | 1.03 (0.95–1.11) | 0.447 | 1.02 (0.94–1.10) | 0.664 |
Outcome | Events N (%) | Model 1 | Model 2 | ||
---|---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | ||
SCMI-Absent | 472 (9.9) | Reference | -- | Reference | -- |
SCMI-Present | 218 (16.8) | 1.43 (1.23–1.68) | <0.001 | 1.36 (1.16–1.60) | <0.001 |
eGFR Level | Events N (%) | Model 1 | Model 2 | ||
---|---|---|---|---|---|
OR (95% CI) | p-Value | OR (95% CI) | p-Value | ||
eGFR ≥ 45 mL/min/1.73 m2 | 596 (10.3%) | Reference | -- | Reference | -- |
eGFR < 45 mL/min/1.73 m2 | 94 (32.4%) | 1.61 (1.27–2.03) | <0.001 | 1.56 (1.24–1.99) | <0.001 |
eGFR per 1-SD decrease * | 1.14 (1.03–1.55) | 0.013 | 1.14 (1.03–1.25) | 0.010 |
eGFR and SCMI Status | Participants (n)/Events (%) | Model 1 | Model 2 | ||
---|---|---|---|---|---|
HR (95% CI) | p-Value | HR (95% CI) | p-Value | ||
SCMI Absent + eGFR ≥ 45 | 4563/414 (9.1%) | Reference | -- | Reference | -- |
SCMI Present + eGFR ≥ 45 | 1204/182 (15.1%) | 1.40 (1.18–1.66) | <0.001 | 1.33 (1.11–1.58) | 0.002 |
SCMI Absent + eGFR < 45 | 197/58 (29.4%) | 1.55 (1.16–2.07) | 0.0031 | 1.47 (1.09–1.96) | 0.011 |
SCMI Present + eGFR < 45 | 93/36 (38.7%) | 2.40 (1.69–3.41) | <0.001 | 2.36 (1.65–3.36) | <0.001 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shatta, A.E.; Mostafa, M.A.; Attia, M.A.; Zaho, T.A.; Kazibwe, R.; Soliman, E.Z. Impaired Kidney Function, Subclinical Myocardial Injury, and Their Joint Associations with Cardiovascular Mortality in the General Population. J. Clin. Med. 2025, 14, 7123. https://doi.org/10.3390/jcm14197123
Shatta AE, Mostafa MA, Attia MA, Zaho TA, Kazibwe R, Soliman EZ. Impaired Kidney Function, Subclinical Myocardial Injury, and Their Joint Associations with Cardiovascular Mortality in the General Population. Journal of Clinical Medicine. 2025; 14(19):7123. https://doi.org/10.3390/jcm14197123
Chicago/Turabian StyleShatta, Ahmed E., Mohamed A. Mostafa, Mohamed A. Attia, Tarek Ahmad Zaho, Richard Kazibwe, and Elsayed Z. Soliman. 2025. "Impaired Kidney Function, Subclinical Myocardial Injury, and Their Joint Associations with Cardiovascular Mortality in the General Population" Journal of Clinical Medicine 14, no. 19: 7123. https://doi.org/10.3390/jcm14197123
APA StyleShatta, A. E., Mostafa, M. A., Attia, M. A., Zaho, T. A., Kazibwe, R., & Soliman, E. Z. (2025). Impaired Kidney Function, Subclinical Myocardial Injury, and Their Joint Associations with Cardiovascular Mortality in the General Population. Journal of Clinical Medicine, 14(19), 7123. https://doi.org/10.3390/jcm14197123