Native Collagen for Surgical Wound and Scar Prevention—A Six-Case Clinical Series
Abstract
1. Introduction
2. Clinical Cases
2.1. Case Presentation 1: Wound Healing
2.2. Case Presentation 2: Wound Healing After Upper Eyelid Blepharoplasty
2.3. Case Presentation 3: Treatment of a Hypertrophic Scar Following Upper Eyelid Blepharoplasty
2.4. Case Presentation 4: Treatment of a Hypertrophic Scar and Postoperative Hyperpigmentation Following Upper Eyelid Blepharoplasty
2.5. Case Presentation 5: Treatment of a Hypertrophic Scar After Abdominoplasty
2.6. Case Presentation 6: Prevention of Hypertrophic Scarring After Revision Mammaplasty
3. Discussion
4. Conclusions
- -
- No atrophy or telangiectasia (common side effects of corticosteroids);
- -
- Influence on both the wound and surrounding tissue for better healing;
- -
- Physiological mechanism balancing ECM synthesis and degradation;
- -
- Additional skin rejuvenation effects—valuable in aesthetic medicine;
- -
- Physician supervision allows for early detection of abnormal scarring.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
Antera 3D | 3D Skin Analysis Imaging System |
Col α(I) | α chain of collagen I |
ECM | Extracellular Matrix |
EGF | Epidermal Growth Factor |
FGF | Fibroblast Growth Factor |
HIF-1α | Hypoxia-Inducible Factor 1-alpha |
IL | Interleukin |
MMP | Matrix Metalloproteinase |
PDGF | Platelet-Derived Growth Factor |
SPF | Sun Protection Factor |
TGF-β | Transforming Growth Factor Beta |
VEGF | Vascular Endothelial Growth Factor |
VIM | Vimentin |
References
- Gauglitz, G.G. Management of keloids and hypertrophic scars: Current and emerging options. Clin. Cosmet. Investig. Dermatol. 2013, 6, 103–114. [Google Scholar] [CrossRef]
- Leszczynski, R.; da Silva, C.A.; Pinto, A.C.P.N.; Kuczynski, U.; da Silva, E.M. Laser therapy for treating hypertrophic and keloid scars. Cochrane Database Syst. Rev. 2022, 9, CD011642. [Google Scholar] [CrossRef]
- Gauglitz, G.G.; Korting, H.C.; Pavicic, T.; Ruzicka, T.; Jeschke, M.G. Hypertrophic scarring and keloids: Pathomechanisms and current and emerging treatment strategies. Mol. Med. 2011, 17, 113–125. [Google Scholar] [CrossRef]
- Shirakami, E.; Yamakawa, S.; Hayashida, K. Strategies to prevent hypertrophic scar formation: A review of therapeutic interventions based on molecular evidence. Burns Trauma 2020, 8, tkz003. [Google Scholar] [CrossRef]
- Jourdan, M.; Madfes, D.C.; Lima, E.; Tian, Y.; Seité, S. Skin care management for medical and aesthetic procedures to prevent scarring. Clin. Cosmet. Investig. Dermatol. 2019, 12, 799–804. [Google Scholar] [CrossRef]
- Bi, M.; Sun, P.; Li, D.; Dong, Z.; Chen, Z. Intralesional injection of botulinum toxin type A compared with intralesional injection of corticosteroid for the treatment of hypertrophic scar and keloid: A systematic review and meta-analysis. Med. Sci. Monit. 2019, 25, 2950–2958. [Google Scholar] [CrossRef]
- Murdock, J.; Sayed, M.S.; Tavakoli, M.; Portaliou, D.M.; Lee, W.W. Safety and efficacy of a growth factor and cytokine-containing topical product in wound healing and incision scar management after upper eyelid blepharoplasty: A prospective split-face study. Clin. Ophthalmol. 2016, 10, 1223–1228. [Google Scholar] [CrossRef]
- Wang, J.; Liao, Y.; Xia, J.; Wang, Z.; Mo, X.; Feng, J.; He, Y.; Chen, X.; Li, Y.; Lu, F.; et al. Mechanical micronization of lipoaspirates for the treatment of hypertrophic scars. Stem Cell Res. Ther. 2019, 10, 42. [Google Scholar] [CrossRef]
- Mofikoya, B.O.; Adeyemo, W.L.; Abdus-Salam, A.A. Keloid and hypertrophic scars: A review of recent developments in pathogenesis and management. Niger. Q. J. Hosp. Med. 2007, 17, 134–139. [Google Scholar] [CrossRef]
- Chen, Q.; Zhao, T.; Xie, X.; Yu, D.; Wu, L.; Yu, W.; Sun, W. MicroRNA-663 regulates the proliferation of fibroblasts in hypertrophic scars via transforming growth factor-β1. Exp. Ther. Med. 2018, 16, 1311–1317. [Google Scholar] [CrossRef]
- Ogawa, R.; Dohi, T.; Tosa, M.; Aoki, M.; Akaishi, S. The latest strategy for keloid and hypertrophic scar prevention and treatment: The Nippon Medical School (NMS) protocol. J. Nippon Med. Sch. 2021, 88, 2–9. [Google Scholar] [CrossRef]
- Ogawa, R. The most current algorithms for the treatment and prevention of hypertrophic scars and keloids. Plast. Reconstr. Surg. 2022, 149, 79e–94e. [Google Scholar] [CrossRef]
- Ren, Y.; Zhou, X.; Wei, Z.; Lin, W.; Fan, B.; Feng, S. Efficacy and safety of triamcinolone acetonide alone and in combination with 5-fluorouracil for treating hypertrophic scars and keloids: A systematic review and meta-analysis. Int. Wound J. 2017, 14, 480–487. [Google Scholar] [CrossRef]
- Nischwitz, S.P.; Rauch, K.; Luze, H.; Hofmann, E.; Draschl, A.; Kotzbeck, P.; Kamolz, L.P. Evidence-based therapy in hypertrophic scars: An update of a systematic review. Wound Repair Regen. 2020, 28, 656–665. [Google Scholar] [CrossRef]
- Wang, Z.C.; Zhao, W.Y.; Cao, Y.; Liu, Y.Q.; Sun, Q.; Shi, P.; Cai, J.Q.; Shen, X.Z.; Tan, W.Q. The roles of inflammation in keloid and hypertrophic scars. Front. Immunol. 2020, 11, 603187. [Google Scholar] [CrossRef]
- Wu, W.; Zhao, Y.; Chen, Y.; Zhong, A. Comparing the efficacy of multiple drugs injection for the treatment of hypertrophic scars and keloid: A network meta-analysis. Aesthetic Plast. Surg. 2023, 47, 465–472. [Google Scholar] [CrossRef]
- Wang, P.H.; Huang, B.S.; Horng, H.C.; Yeh, C.C.; Chen, Y.J. Wound healing. J. Chin. Med. Assoc. 2018, 81, 94–101. [Google Scholar] [CrossRef]
- Murakami, T.; Shigeki, S. Pharmacotherapy for keloids and hypertrophic scars. Int. J. Mol. Sci. 2024, 25, 4674. [Google Scholar] [CrossRef]
- Zhang, T.; Wang, X.F.; Wang, Z.C.; Lou, D.; Fang, Q.Q.; Hu, Y.Y.; Zhao, W.Y.; Zhang, L.Y.; Wu, L.H.; Tan, W.Q. Current potential therapeutic strategies targeting the TGF-β/Smad signaling pathway to attenuate keloid and hypertrophic scar formation. Biomed. Pharmacother. 2020, 129, 110287. [Google Scholar] [CrossRef]
- Meetam, T.; Angspatt, A.; Aramwit, P. Evidence of potential natural products for the management of hypertrophic scars. J. Evid. Based Integr. Med. 2024, 29, 2515690X241271948. [Google Scholar] [CrossRef]
- Freedman, B.R.; Hwang, C.; Talbot, S.; Hibler, B.; Matoori, S.; Mooney, D.J. Breakthrough treatments for accelerated wound healing. Sci. Adv. 2023, 9, eade7007. [Google Scholar] [CrossRef] [PubMed]
- Takeo, M.; Lee, W.; Ito, M. Wound healing and skin regeneration. Cold Spring Harb. Perspect. Med. 2015, 5, a023267. [Google Scholar] [CrossRef] [PubMed]
- Stoica, A.E.; Grumezescu, A.M.; Hermenean, A.O.; Andronescu, E.; Vasile, B.S. Scar-Free Healing: Current Concepts and Future Perspectives. Nanomaterials 2020, 10, 2179. [Google Scholar] [CrossRef]
- Urciuolo, F.; Casale, C.; Imparato, G.; Netti, P.A. Bioengineered Skin Substitutes: The Role of Extracellular Matrix and Vascularization in the Healing of Deep Wounds. J. Clin. Med. 2019, 8, 2083. [Google Scholar] [CrossRef]
- Tottoli, E.M.; Dorati, R.; Genta, I.; Chiesa, E.; Pisani, S.; Conti, B. Skin Wound Healing Process and New Emerging Technologies for Skin Wound Care and Regeneration. Pharmaceutics 2020, 12, 735. [Google Scholar] [CrossRef]
- Liu, T.; Hao, J.; Lei, H.; Chen, Y.; Liu, L.; Jia, L.; Gu, J.; Kang, H.; Shi, J.; He, J.; et al. Recombinant collagen for the repair of skin wounds and photo-aging damage. Regen. Biomater. 2024, 11, rbae108. [Google Scholar] [CrossRef]
- Andreev-Andrievsky, A.A.; Bolgarina, A.A.; Manskih, V.N.; Gabitov, R.B.; Lagereva, E.A.; Fadeeva, O.V.; Telyatnikova, E.V.; Shcherbakova, V.S. Mechanisms of the wound-healing action of native collagen type I in ischemic model full-thickness skin wounds on the example—Medical devices Collost (part I). Khirurgiia 2020, 3, 79–87. [Google Scholar] [CrossRef]
- Thompson, C.M.; Sood, R.F.; Honari, S.; Carrougher, G.J.; Gibran, N.S. What score on the Vancouver Scar Scale constitutes a hypertrophic scar? Results from a survey of North American burn-care providers. Burns 2015, 41, 1442–1448. [Google Scholar] [CrossRef]
- Davison-Kotler, E.; Marshall, W.S.; García-Gareta, E. Sources of Collagen for Biomaterials in Skin Wound Healing. Bioengineering 2019, 6, 56. [Google Scholar] [CrossRef]
- El Ayadi, A.; Jay, J.W.; Prasai, A. Current Approaches Targeting the Wound Healing Phases to Attenuate Fibrosis and Scarring. Int. J. Mol. Sci. 2020, 21, 1105. [Google Scholar] [CrossRef]
- Wang, W.; Lu, K.J.; Yu, C.H.; Huang, Q.L.; Du, Y.Z. Nano-drug delivery systems in wound treatment and skin regeneration. J. Nanobiotechnology 2019, 17, 82. [Google Scholar] [CrossRef] [PubMed]
- Xue, M.; Jackson, C.J. Extracellular matrix reorganization during wound healing and its impact on abnormal scarring. Adv. Wound Care 2015, 4, 119–136. [Google Scholar] [CrossRef] [PubMed]
- Veith, A.P.; Henderson, K.; Spencer, A.; Sligar, A.D.; Baker, A.B. Therapeutic strategies for enhancing angiogenesis in wound healing. Adv. Drug Deliv. Rev. 2019, 146, 97–125. [Google Scholar] [CrossRef] [PubMed]
- Oliveira, G.V.; Hawkins, H.K.; Chinkes, D.; Burke, A.; Tavares, A.L.; Ramos-E-Silva, M.; Albrecht, T.B.; Kitten, G.T.; Herndon, D.N. Hypertrophic versus non-hypertrophic scars compared by immunohistochemistry and laser confocal microscopy: Type I and III collagens. Int. Wound J. 2009, 6, 445–452. [Google Scholar] [CrossRef]
- Oishi, Y.; Manabe, I. Macrophages in inflammation, repair and regeneration. Int. Immunol. 2018, 30, 511–528. [Google Scholar] [CrossRef]
- Pradhan, M.; Pethe, P. The molecular mechanisms involved in the hypertrophic scars post-burn injury. Yale J. Biol. Med. 2023, 96, 549–563. [Google Scholar] [CrossRef]
- Callender, V.D.; Baldwin, H.; Cook-Bolden, F.E.; Alexis, A.F.; Stein Gold, L.; Guenin, E. Effects of topical retinoids on acne and post-inflammatory hyperpigmentation in patients with skin of color: A clinical review and implications for practice. Am. J. Clin. Dermatol. 2022, 23, 69–81. [Google Scholar] [CrossRef]
- Lévesque, M.; Feng, Y.; Jones, R.A.; Martin, P. Inflammation drives wound hyperpigmentation in zebrafish by recruiting pigment cells to sites of tissue damage. Dis. Models Mech. 2013, 6, 508–515. [Google Scholar] [CrossRef]
- Mar, K.; Khalid, B.; Maazi, M.; Ahmed, R.; Wang, O.J.E.; Khosravi-Hafshejani, T. Treatment of post-inflammatory hyperpigmentation in skin of colour: A systematic review. J. Cutan. Med. Surg. 2024, 28, 473–480. [Google Scholar] [CrossRef]
- Sklenářová, R.; Akla, N.; Latorre, M.J.; Ulrichová, J.; Franková, J. Collagen as a biomaterial for skin and corneal wound healing. J. Funct. Biomater. 2022, 13, 249. [Google Scholar] [CrossRef]
- Metzmacher, I.; Ruth, P.; Abel, M.; Friess, W. In vitro binding of matrix metalloproteinase-2 (MMP-2), MMP-9, and bacterial collagenase on collagenous wound dressings. Wound Repair. Regen. 2017, 15, 549–555. [Google Scholar] [CrossRef]
- Zhong, C.; Liang, G.; Li, P.; Shi, K.; Li, F.; Zhou, J.; Xu, D. Inflammatory response: The target for treating hyperpigmentation during the repair of a burn wound. Front. Immunol. 2023, 14, 1009137. [Google Scholar] [CrossRef]
- Negut, I.; Dorcioman, G.; Grumezescu, V. Scaffolds for wound healing applications. Polymers 2020, 12, 2010. [Google Scholar] [CrossRef] [PubMed]
- Su, X.; Chen, D.; Zhuang, J.; Hu, J.; Cai, N.; Ou, Y.; Jiang, H.; Ding, B. A 7-year analysis of complaints related to Asian blepharoplasty. J. Cosmet. Dermatol. 2025, 24, e16271. [Google Scholar] [CrossRef] [PubMed]
- Feinendegen, D.L.; Grubnik, A.; Feinendegen, S.Y. An algorithm for prevention of unsightly facial scars considering the newest research insights. Plast. Reconstr. Surg. Glob. Open 2022, 10, e4635. [Google Scholar] [CrossRef] [PubMed]
- Basson, R.; Bayat, A. Skin scarring: Latest update on objective assessment and optimal management. Front. Med. 2022, 9, 942756. [Google Scholar] [CrossRef]
- Hoshi, M.; Sawada, T.; Hatakeyama, W.; Taira, M.; Hachinohe, Y.; Takafuji, K.; Kihara, H.; Takemoto, S.; Kondo, H. Characterization of five collagenous biomaterials by SEM observations, TG-DTA, collagenase dissolution tests and subcutaneous implantation tests. Materials 2022, 15, 1155. [Google Scholar] [CrossRef]
- Moore, A.L.; Marshall, C.D.; Longaker, M.T. Minimizing skin scarring through biomaterial design. J. Funct. Biomater. 2017, 8, 3. [Google Scholar] [CrossRef]
- Chaudhari, A.A.; Vig, K.; Baganizi, D.R.; Sahu, R.; Dixit, S.; Dennis, V.; Singh, S.R.; Pillai, S.R. Future prospects for scaffolding methods and biomaterials in skin tissue engineering: A review. Int. J. Mol. Sci. 2016, 17, 1974. [Google Scholar] [CrossRef]
- Potekaev, N.N.; Borzykh, O.B.; Medvedev, G.V.; Petrova, M.M.; Karpova, E.I.; Zatolokina, M.A.; Al-Zamil, M.; Demina, O.M.; Narodova, E.A.; Shnayder, N.A. Managing wound healing with a high-risk patient: A case report. Cosmetics 2022, 9, 28. [Google Scholar] [CrossRef]
Parameter | Day 17 | Day 34 | 2.5 Months | 3.5 Months | 4.5 Months |
---|---|---|---|---|---|
Average width (mm) | 2.06 | 1.73 | 1.62 | 1.6 | 0.792 |
Average depth (mm) | 0.115 | 0.1 | 0.0981 | 0.097 | 0.0762 |
Redness | |||||
Score | 87 | 97 | 75 | 62 | 38 |
Minimum | 18.7 | 24.4 | 27.8 | 24.4 | 22.2 |
Average | 31.4 | 37.5 | 37.4 | 33.4 | 28.3 |
Maximum | 53.6 | 58.1 | 57.8 | 53.4 | 41.2 |
Variation (%) | 0.235 | 15.3 | 32.2 | 32.9 | 49.7 |
Parameter | 4 Weeks | 6 Weeks | 9 Weeks | 12 Weeks | 16 Weeks |
---|---|---|---|---|---|
Score | 93 | 114 | 112 | 89 | 84 |
Minimum | 11.1 | 15.3 | 12.6 | 15.5 | 14.3 |
Average | 29.2 | 34.3 | 34.4 | 30.7 | 29.1 |
Maximum | 49.3 | 63.8 | 62.9 | 51.7 | 48.9 |
Variation (%) | 0 | 0 | 0 | 0 | 0 |
Parameter | 5 Weeks | 8 Weeks | 11 Weeks | 15 Weeks | 19 Weeks |
---|---|---|---|---|---|
Volume (mm3) | 12.1 | 11.9 | 11.5 | 11.4 | 10.1 |
Redness | |||||
Score | 121 | 106 | 105 | 93 | 87 |
Minimum | 17.2 | 18 | 12.5 | 12.6 | 12.6 |
Average | 38.4 | 32.9 | 32.4 | 31 | 29 |
Maximum | 62 | 51.3 | 50 | 49.3 | 47.7 |
Variation (%) | 0 | 0 | 0 | 0 | 0 |
Parameter | 6 Weeks | 9 Weeks | 12 Weeks | 16 Weeks | 20 Weeks |
---|---|---|---|---|---|
Pigmentation | |||||
Score | 169 | 142 | 134 | 131 | 129 |
Minimum | 23.3 | 25.1 | 23.7 | 22.3 | 23.5 |
Average | 42.2 | 41.2 | 38.5 | 38.7 | 40 |
Maximum | 76.6 | 72.5 | 72.5 | 76.5 | 70.4 |
Variation (%) | 0 | 0 | 0 | 0 | 0 |
Redness | |||||
Score | 111 | 110 | 114 | 109 | 103 |
Minimum | 6.39 | 3.21 | 8.24 | 9.71 | 8.48 |
Average | 25.3 | 27.5 | 30.9 | 28.4 | 28.4 |
Maximum | 64.9 | 66.5 | 73.7 | 69.7 | 67.3 |
Variation (%) | 0 | 0 | 0 | 0 | 0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Borzykh, O.B.; Karpova, E.I.; Petrova, M.M.; Shnayder, N.A.; Danilova, S.V. Native Collagen for Surgical Wound and Scar Prevention—A Six-Case Clinical Series. J. Clin. Med. 2025, 14, 6989. https://doi.org/10.3390/jcm14196989
Borzykh OB, Karpova EI, Petrova MM, Shnayder NA, Danilova SV. Native Collagen for Surgical Wound and Scar Prevention—A Six-Case Clinical Series. Journal of Clinical Medicine. 2025; 14(19):6989. https://doi.org/10.3390/jcm14196989
Chicago/Turabian StyleBorzykh, Olga B., Elena I. Karpova, Marina M. Petrova, Natalia A. Shnayder, and Svetlana V. Danilova. 2025. "Native Collagen for Surgical Wound and Scar Prevention—A Six-Case Clinical Series" Journal of Clinical Medicine 14, no. 19: 6989. https://doi.org/10.3390/jcm14196989
APA StyleBorzykh, O. B., Karpova, E. I., Petrova, M. M., Shnayder, N. A., & Danilova, S. V. (2025). Native Collagen for Surgical Wound and Scar Prevention—A Six-Case Clinical Series. Journal of Clinical Medicine, 14(19), 6989. https://doi.org/10.3390/jcm14196989