Relapse Rates and Predictors Following Azathioprine Withdrawal in Inflammatory Bowel Disease: A Systematic Review, Meta-Analysis, and Meta-Regression
Abstract
1. Introduction
2. Materials and Methods
2.1. Protocol and Registration
2.2. Search Strategy and Information Sources
2.3. Eligibility Criteria
2.4. Study Selection Process
2.5. Data Extraction and Management
2.6. Risk of Bias Assessment
2.7. Statistical Analysis and Data Synthesis
2.8. Assessment of Publication Bias and Certainty of Evidence
2.9. Handling of Missing Data and Multiple Comparisons
3. Results
3.1. Study Selection and Characteristics
3.2. Disease Activity and Relapse Outcomes
3.3. Time-to-Event and Disease Predictors
3.4. Predictor Analysis
3.5. Disease Subgrouping and Post-Relapse Management
3.6. Pooled Estimates of Analyses Results
3.7. Multiple Testing Correction
3.8. Sensitivity Analysis
3.9. Publication Bias Assessment
3.10. Meta-Regression
3.11. Risk of Bias and Study Quality Assessment
3.12. Evidence Quality and Certainty Assessment
4. Discussion
- Strengths and Limitations
- Future Directions
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CD | Crohn’s disease |
UC | Ulcerative colitis |
L1/L2/L3/L4 | Montreal Location Classification |
B1/B2/B3 | Montreal Behavior Classification |
E1/E2/E3 | Montreal Extent Classification |
AZA | Azathioprine |
Anti-TNF | Anti-tumor necrosis factor |
CS | Corticosteroids |
CsA | Cyclosporine |
IFX | Infliximab |
IS | Immunosuppressant |
CDAI | Crohn’s Disease Activity Index |
CDEIS | Crohn’s Disease Endoscopic Index of Severity (Endoscopic score for Crohn’s disease severity) |
Mayo | Mayo score |
HBI | Harvey–Bradshaw Index |
PGA | Physician global assessment |
CRP | C-reactive protein |
hsCRP | High-sensitivity C-reactive protein |
FC | Fecal calprotectin |
WCC | White cell count |
Hb | Hemoglobin |
MCV | Mean corpuscular volume |
RBC | Red blood cells |
6-TGN | 6-thioguanine nucleotide (active metabolite of thiopurines used to monitor therapy) |
RCT | Randomized control trial |
HR | Hazard ratio |
OR | Odds ratio |
CI | Confidence interval |
AEs | Adverse events |
NR | Not reported |
NS | Not significant |
N/A | Not applicable |
Yr | Years |
mo | Months |
Mono | Monotherapy |
Combo | Combination therapy |
References
- McDowell, C.; Farooq, U.; Haseeb, M. Inflammatory Bowel Disease. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK470312/ (accessed on 25 July 2025).
- Ungaro, R.; Mehandru, S.; Allen, P.B.; Peyrin-Biroulet, L.; Colombel, J.F. Ulcerative Colitis. Lancet 2017, 389, 1756–1770. [Google Scholar] [CrossRef]
- Feuerstein, J.D.; Cheifetz, A.S. Crohn’s Disease: Epidemiology, Diagnosis, and Management. Mayo Clin. Proc. 2017, 92, 1088–1103. [Google Scholar] [CrossRef] [PubMed]
- Meštrović, A.; Kumric, M.; Bozic, J. Discontinuation of Therapy in Inflammatory Bowel Disease: Current Views. World J. Clin. Cases 2024, 12, 1718–1727. [Google Scholar] [CrossRef] [PubMed]
- Torres, J.; Mehandru, S.; Colombel, J.F.; Peyrin-Biroulet, L. Crohn’s disease. Lancet 2017, 389, 1741–1755. [Google Scholar] [CrossRef] [PubMed]
- Feuerstein, J.D.; Ho, E.Y.; Shmidt, E.; Singh, H.; Falck-Ytter, Y.; Sultan, S. AGA clinical practice guidelines on the management of moderate to severe ulcerative colitis. Gastroenterology 2020, 158, 1450–1461. [Google Scholar] [CrossRef]
- Triantafillidis, J.K. Surgical treatment of inflammatory bowel disease: From the gastroenterologist’s stand-point. World J. Gastrointest. Surg. 2024, 16, 1235–1254. [Google Scholar] [CrossRef]
- Gisbert, J.P.; Bermejo, F.; Pérez-Calle, J.L.; Taxonera, C.; Vera, I.; McNicholl, A.G.; Domènech, E. Fecal Calprotectin and Lactoferrin for the Prediction of Inflammatory Bowel Disease Relapse. Inflamm. Bowel Dis. 2009, 15, 1190–1198. [Google Scholar] [CrossRef]
- Chande, N.; Patton, P.H.; Tsoulis, D.J.; Thomas, B.S.; MacDonald, J.K. Azathioprine or 6-mercaptopurine for maintenance of remission in Crohn’s disease. Cochrane Database Syst. Rev. 2015, 10, CD000067. [Google Scholar] [CrossRef]
- Mohammadi, O.; Kassim, T.A. Azathioprine. In StatPearls; StatPearls Publishing: Treasure Island, FL, USA, 2025. Available online: https://www.ncbi.nlm.nih.gov/books/NBK542190/ (accessed on 25 July 2025).
- Tiede, I.; Fritz, G.; Strand, S.; Poppe, D.; Dvorsky, R.; Strand, D.; Neurath, M.F. CD28-Dependent Rac1 Activation Is the Molecular Target of Azathioprine in Primary Human CD4+ T Lymphocytes. J. Clin. Investig. 2003, 111, 1133–1145. [Google Scholar] [CrossRef]
- Yewale, R.V.; Ramakrishna, B.S.; Doraisamy, B.V.; Basumani, P.; Venkataraman, J.; Jayaraman, K.; Murali, A.; Premkumar, K.; Kumar, A.S. Long-Term Safety and Effectiveness of Azathioprine in the Management of Inflammatory Bowel Disease: A Real-World Experience. JGH Open 2023, 7, 599–609. [Google Scholar] [CrossRef]
- Teich, N.; Mohl, W.; Bokemeyer, B.; Bündgens, B.; Büning, J.; Miehlke, S.; Hüppe, D.; Maaser, C.; Klugmann, T.; Kruis, W.; et al. Azathioprine-Induced Acute Pancreatitis in Patients with Inflammatory Bowel Diseases—A Prospective Study on Incidence and Severity. J. Crohns Colitis 2016, 10, 61–68. [Google Scholar] [CrossRef]
- Beaugerie, L.; Brousse, N.; Bouvier, A.M.; Colombel, J.F.; Lémann, M.; Cosnes, J.; Hebuterne, X. Lymphoproliferative Disorders in Patients Receiving Thiopurines for Inflammatory Bowel Disease: A Prospective Observational Cohort Study. Lancet 2009, 374, 1617–1625. [Google Scholar] [CrossRef]
- French, H.; Dalzell, A.M.; Srinivasan, R.; El-Matary, W. Relapse Rate Following Azathioprine Withdrawal in Maintaining Remission for Crohn’s Disease: A Systematic Review and Meta-Analysis. Arch. Dis. Child. 2011, 96, A19. [Google Scholar] [CrossRef]
- Lémann, M.; Mary, J.Y.; Duclos, B.; Veyrac, M.; Dupas, J.L.; Delchier, J.C.; Modigliani, R.; Soulé, J.C.; Messing, B.; Colombel, J.F.; et al. A Randomized, Double-Blind, Controlled Withdrawal Trial in Crohn’s Disease Patients in Long-Term Remission on Azathioprine. Gastroenterology 2005, 128, 1812–1818. [Google Scholar] [CrossRef]
- Page, M.J.; McKenzie, J.E.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. The PRISMA 2020 Statement: An Updated Guideline for Reporting Systematic Reviews. Br. Med. J. 2021, 372, 71. [Google Scholar] [CrossRef]
- Alnajjar, J.; Al Abdulqader, A.; Almaqhawi, A.; Mohamed, F.; Alzimami, L.; AlQarni, R.; AlQarni, R.; Alnasser, J.; Alabdulkarim, D. Relapse Rate and Predictors After Withdrawal of Azathioprine in Patients with Inflammatory Bowel Disease: A Systematic Review and Meta Analysis. PROSPERO 2025 CRD420251016594. Available online: https://www.crd.york.ac.uk/PROSPERO/view/CRD420251016594 (accessed on 20 August 2025).
- Amir-Behghadami, M.; Janati, A. Population, Intervention, Comparison, Outcomes and Study (PICOS) Design as a Framework to Formulate Eligibility Criteria in Systematic Reviews. Emerg. Med. J. 2020, 37, 387. [Google Scholar] [CrossRef] [PubMed]
- Cochrane RoB 2: A Revised Cochrane Risk-of-Bias Tool for Randomized Trials. Available online: https://methods.cochrane.org/bias/resources/rob-2-revised-cochrane-risk-bias-tool-randomized-trials (accessed on 20 August 2025).
- Wells, G.; Shea, B.; O’Connell, D.; Peterson, J.; Welch, V.; Losos, M.; Tugwell, P. The Newcastle-Ottawa Scale (NOS) for Assessing the Quality of Nonrandomised Studies in Meta-Analyses. Available online: https://www.ohri.ca/programs/clinical_epidemiology/oxford.asp (accessed on 20 August 2025).
- R Core Team R: A Language and Environment for Statistical Computing. Available online: https://www.r-project.org/ (accessed on 20 August 2025).
- GRADE | Cochrane. Available online: https://www.cochrane.org/learn/courses-and-resources/cochrane-methodology/grade (accessed on 20 August 2025).
- Angelucci, E.; Cesarini, M.; Gentile, P.; Frieri, G.; Caprilli, R.; Latella, G. Azathioprine withdrawal in Crohn’s disease: Never-ending story? Dig. Liver Dis. 2010, 42S, S129–S130. [Google Scholar] [CrossRef]
- Cassinotti, A.; Actis, G.C.; Duca, P.; Massari, A.; Colombo, E.; Gai, E.; Annese, V.; D’ALbasio, G.; Manes, G.; Travis, S.; et al. Maintenance treatment with azathioprine in ulcerative colitis: Outcome and predictive factors after drug withdrawal. Am. J. Gastroenterol. 2009, 104, 2760–2767. [Google Scholar] [CrossRef] [PubMed]
- Cassinotti, A.; Corona, A.; Duca, P.; Nebuloni, M.; Maconi, G.; Fociani, P.; Ardizzone, S. Noninvasive Monitoring After Azathioprine Withdrawal in Patients with Inflammatory Bowel Disease in Deep Remission. Clin. Gastroenterol. Hepatol. 2021, 19, 2293–2301.e1. [Google Scholar] [CrossRef]
- Crepaldi, M.; Maniero, D.; Massano, A.; Pavanato, M.; Barberio, B.; Savarino, E.V.; Zingone, F. Azathioprine monotherapy withdrawal in inflammatory bowel diseases: A retrospective mono-centric study. World J. Gastroenterol. 2023, 29, 4334–4343. [Google Scholar] [CrossRef]
- Fraser, A.G.; Orchard, T.R.; Jewell, D.P. The efficacy of azathioprine for the treatment of inflammatory bowel disease: A 30 year review. Gut 2002, 50, 485–489. [Google Scholar] [CrossRef]
- Hawthorne, A.B.; Logan, R.F.; Hawkey, C.J.; Foster, P.N.; Axon, A.T.; Swarbrick, E.T.; Scott, B.B.; Lennard-Jones, J.E. Randomised controlled trial of azathioprine withdrawal in ulcerative colitis. BMJ 1992, 305, 20–22. [Google Scholar] [CrossRef] [PubMed]
- Holtmann, M.H.; Krummenauer, F.; Claas, C.; Kremeyer, K.; Lorenz, D.; Rainer, O.; Vogel, I.; Böcker, U.; Böhm, S.; Büning, C.; et al. Long-term effectiveness of azathioprine in IBD beyond 4 years: A European multicenter study in 1176 patients. Dig. Dis. Sci. 2006, 51, 1516–1524. [Google Scholar] [CrossRef]
- Iborra, M.; Herreras, J.; Bosca-Watts, M.M.; Cortés, X.; Trejo, G.; Cerrillo, E.; Hervás, D.; Mínguez, M.; Beltrán, B.; Nos, P. Withdrawal of Azathioprine in Inflammatory Bowel Disease Patients Who Sustain Remission: New Risk Factors for Relapse. Dig. Dis. Sci. 2019, 64, 1612–1621. [Google Scholar] [CrossRef]
- Jorissen, C.; Verstockt, B.; Schils, N.; Sabino, J.; Ferrante, M.; Vermeire, S. Long-term clinical outcome after thiopurine discontinuation in elderly IBD patients. Scand. J. Gastroenterol. 2021, 56, 1323–1327. [Google Scholar] [CrossRef]
- Kennedy, N.A.; Kalla, R.; Warner, B.; Gambles, C.J.; Musy, R.; Reynolds, S.; Dattani, R.; Nayee, H.; Felwick, R.; Harris, R.; et al. Thiopurine withdrawal during sustained clinical remission in inflammatory bowel disease: Relapse and recapture rates, with predictive factors in 237 patients. Aliment Pharmacol Ther. 2014, 40, 1313–1323. [Google Scholar] [CrossRef]
- Louis, E.; Resche-Rigon, M.; Laharie, D.; Satsangi, J.; Ding, N.; Siegmund, B.; D’HAens, G.; Picon, L.; Bossuyt, P.; Vuitton, L.; et al. Withdrawal of infliximab or concomitant immunosuppressant therapy in patients with Crohn’s disease on combination therapy (SPARE): A multicentre, open-label, randomised controlled trial. Lancet Gastroenterol. Hepatol. 2023, 8, 215–227. [Google Scholar] [CrossRef] [PubMed]
- Moreno-Rincón, E.; Benítez, J.M.; Serrano-Ruiz, F.J.; Vázquez-Morón, J.M.; Pallarés-Manrique, H.; Herrera-Justiniano, J.M.; Leo-Carnerero, E.; Gómez-García, M.R.; Cabello-Tapia, M.J.; Castro-Fernández, M.; et al. Prognosis of Patients with Ulcerative Colitis in Sustained Remission After Thiopurines Withdrawal. Inflamm. Bowel Dis. 2015, 21, 1564–1571. [Google Scholar] [CrossRef] [PubMed]
- Nyman, M.; Hansson, I.; Eriksson, S. Long-term immunosuppressive treatment in Crohn’s disease. Scand. J. Gastroenterol. 1985, 20, 1197–1203. [Google Scholar] [CrossRef]
- O’Donoghue, D.P.; Dawson, A.M.; Powell-Tuck, J.; Bown, R.L.; Lennard-Jones, J.E. Double-blind withdrawal trial of azathioprine as maintenance treatment for Crohn’s disease. Lancet 1978, 2, 955–957. [Google Scholar] [CrossRef]
- Oussalah, A.; Chevaux, J.B.; Fay, R.; Sandborn, W.J.; Bigard, M.A.; Peyrin-Biroulet, L. Predictors of infliximab failure after azathioprine withdrawal in Crohn’s disease treated with combination therapy. Am. J. Gastroenterol. 2010, 105, 1142–1149. [Google Scholar] [CrossRef]
- Ranjan, M.K.; Vuyyuru, S.K.; Kante, B.; Kumar, P.; Mundhra, S.K.; Golla, R.; Sharma, R.; Sahni, P.; Das, P.; Makharia, G.; et al. Relapse rates after withdrawal of thiopurines in patients with inflammatory bowel disease. Int. J. Colorectal Dis. 2022, 37, 1817–1826. [Google Scholar] [CrossRef]
- Sokol, H.; Seksik, P.; Nion-Larmurier, I.; Vienne, A.; Beaugerie, L.; Cosnes, J. Current Smoking, Not Duration of Remission, Delays Crohn’s Disease Relapse Following Azathioprine Withdrawal. Inflamm. Bowel Dis. 2010, 16, 362–363. [Google Scholar] [CrossRef] [PubMed]
- Treton, X.; Bouhnik, Y.; Mary, J.Y.; Colombel, J.; Duclos, B.; Soule, J.; Lerebours, E.; Cosnes, J.; Lemann, M. Azathioprine withdrawal in patients with Crohn’s disease maintained on prolonged remission: A high risk of relapse. Clin. Gastroenterol. Hepatol. 2009, 7, 80–85. [Google Scholar] [CrossRef] [PubMed]
- Van Assche, G.; Magdelaine-Beuzelin, C.; D’Haens, G.; Baert, F.; Noman, M.; Vermeire, S.; Ternant, D.; Watier, H.; Paintaud, G.; Rutgeerts, P. Withdrawal of immunosuppression in Crohn’s disease treated with scheduled infliximab maintenance: A randomized trial. Gastroenterology 2008, 134, 1861–1868. [Google Scholar] [CrossRef]
- Vilien, M.; Dahlerup, J.F.; Munck, L.K.; Nørregaard, P.; Grønbaek, K.; Fallingborg, J. Randomized controlled azathioprine withdrawal after more than two years treatment in Crohn’s disease: Increased relapse rate the following year. Aliment. Pharmacol. Ther. 2004, 19, 1147–1152. [Google Scholar] [CrossRef]
- Wenzl, H.H.; Primas, C.; Novacek, G.; Teml, A.; Öfferlbauer-Ernst, A.; Högenauer, C.; Vogelsang, H.; Petritsch, W.; Reinisch, W. Withdrawal of long-term maintenance treatment with azathioprine tends to increase relapse risk in patients with Crohn’s disease. Dig. Dis. Sci. 2015, 60, 1414–1423. [Google Scholar] [CrossRef] [PubMed]
- Ordas, I.; Feagan, B.G.; Sandborn, W.J. Early use of immunosuppressives or TNF antagonists for the treatment of Crohn’s disease: Time for a change. Gut 2011, 60, 1754–1763. [Google Scholar] [CrossRef]
- Torres, J.; Boyapati, R.K.; Kennedy, N.A.; Louis, E.; Colombel, J.F.; Satsangi, J. Systematic review of effects of withdrawal of immunomodulators or biologic agents from patients with inflammatory bowel disease. Gastroenterology 2015, 149, 1716–1730. [Google Scholar] [CrossRef]
- Turner, D.; Ricciuto, A.; Lewis, A.; D’amico, A.; Dhaliwal, J.; Griffiths, A.M.; Bettenworth, D.; Sandborn, W.J.; Reinisch, W.W.; Bemelman, W.; et al. STRIDE-II: An Update on the Selecting Therapeutic Targets in Inflammatory Bowel Disease (STRIDE) Initiative of the International Organization for the Study of IBD (IOIBD): Determining Therapeutic Goals for Treat-to-Target strategies in IBD. Gastroenterology 2021, 160, 1570–1583. [Google Scholar] [CrossRef]
- Roblin, X.; Boschetti, G.; Williet, N.; Nancey, S.; Marotte, H.; Berger, A.; Phelip, J.M.; Peyrin--Biroulet, L.; Colombel, J.F.; Del Tedesco, E.; et al. Azathioprine dose reduction in inflammatory bowel disease patients on combination therapy: An open-label, prospective and randomised clinical trial. Aliment. Pharmacol. Ther. 2017, 46, 142–149. [Google Scholar] [CrossRef] [PubMed]
- Dohos, D.; Hanák, L.; Szakács, Z.; Kiss, S.; Párniczky, A.; Erőss, B.; Pázmány, P.; Hegyi, P.; Sarlós, P. Systematic review with meta-analysis: The effects of immunomodulator or biological withdrawal from mono- or combination therapy in inflammatory bowel disease. Aliment. Pharmacol. Ther. 2021, 53, 220–233. [Google Scholar] [CrossRef]
- Boyapati, R.K.; Torres, J.; Palmela, C.; Parker, C.E.; Silverberg, M.; Upadhyaya, S.D.; Nguyen, T.M.; Colombel, J.-F. Withdrawal of immunosuppressant or biologic therapy for patients with quiescent Crohn’s disease. Cochrane Database Syst. Rev. 2018, 5, CD012540. [Google Scholar] [CrossRef] [PubMed]
- Lucas Ramos, J.; Suárez Ferrer, C.; Poza Cordón, J.; Sánchez Azofra, M.; Rueda García, J.L.; Martin Arranz, E.; Yebra Carmona, J.; Andaluz García, I.; Martín Arranz, M.D. Optimization of azathioprine dose in combined treatment with anti-TNF-alpha in inflammatory bowel disease. Gastroenterol. Hepatol. 2021, 44, 337–345. [Google Scholar] [CrossRef]
- Lin, R.; Lin, W.; Wang, C.; Dong, J.; Zheng, W.; Zeng, D.; Liu, Y.; Lin, C.; Jiao, Z.; Huang, P. Population pharmacokinetics of azathioprine active metabolite in patients with inflammatory bowel disease and dosage regimens optimisation. Basic. Clin. Pharmacol. Toxicol. 2021, 128, 482–492. [Google Scholar] [CrossRef] [PubMed]
- Lamb, C.A.; Kennedy, N.A.; Raine, T.; Hendy, P.A.; Smith, P.J.; Limdi, J.K.; Hayee, B.; Lomer, M.C.E.; Parkes, G.C.; Selinger, C.; et al. British Society of Gastroenterology consensus guidelines on the management of inflammatory bowel disease in adults. Gut 2019, 68 (Suppl. S3), s1–s106. [Google Scholar] [CrossRef]
- Rubin, D.T.; Ananthakrishnan, A.N.; Siegel, C.A.; Sauer, B.G.; Long, M.D. ACG clinical guideline: Ulcerative colitis in adults. Am. J. Gastroenterol. 2019, 114, 384–413. [Google Scholar] [CrossRef]
- Kirchgesner, J.; Beaugerie, L.; Carrat, F.; Sokol, H.; Cosnes, J.; Schwarzinger, M.; BERENICE Study Group. Impact on life expectancy of withdrawing thiopurines in Crohn’s disease in sustained remission: A lifetime risk–benefit analysis. Clin. Gastroenterol. Hepatol. 2017, 15, 1940–1949.e3. [Google Scholar] [CrossRef]
- Walker, G.J.; Harrison, J.W.; Heap, G.A.; Voskuil, M.D.; Andersen, V.; Anderson, C.A.; Ananthakrishnan, A.N.; Barrett, J.C.; Beaugerie, L.; Bewshea, C.M.; et al. Association of Genetic Variants in NUDT15 with Thiopurine-Induced Myelosuppression in Patients with Inflammatory Bowel Disease. JAMA 2019, 321, 773–785. [Google Scholar] [CrossRef]
- Bouhnik, Y.; Lémann, M.; Mary, J.Y.; Scemama, G.; Taï, R.; Matuchansky, C.; Modigliani, R.; Rambaud, J.C. Long-term follow-up of patients with Crohn’s disease treated with azathioprine or 6-mercaptopurine. Lancet 1996, 347, 215–219. [Google Scholar] [CrossRef]
Study | Design | Country | Setting | Follow-Up | Number | CD/UC | Mean Age | Male (%) | Disease Duration | AZA Duration | Withdrawal Method | Withdrawal Reason | Mono/Combo (Number) |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Angelucci et al., 2010 [24] | Retrospective cohort | Italy | NR | ≥1 yr | 41 | 41/0 | NR | NR | NR | NR | Abrupt | NR | 41/0 |
Cassinotti et al., 2009 [25] | Retrospective cohort | Italy | Multicenter | Median 55 mo | 127 | 0/127 | 38 yrs | 60% | Median 5 yrs | Median 47 mo | Abrupt | Elective choice/toxicity | 127/0 |
Cassinotti et al., 2021 [26] | Prospective cohort | Italy | Single center | Median 50 mo | 57 | 26/31 | 49 yrs (UC), 45 yrs (CD) | 65% (UC), 50% (CD) | Mean 16 yrs | Median 7 yrs | Abrupt | Extended deep remission | 57/0 |
Crepaldi et al., 2023 [27] | Retrospective cohort | Italy | Single center | Median 3.5 yrs | 274 | 141/133 | 29–33 yrs | 57% | NR | NR | Abrupt | Remission/inefficacy/side effects | 69/0 |
Fraser et al., 2002 [28] | Retrospective cohort | UK | Single center | Mean 6.9 yrs | 222 | 79/143 | NR | NR | NR | Mean 1.7 yrs | Abrupt | Remission | 222/0 |
Hawthorne et al., 1992 [29] | RCT | UK | 5 hospitals | 12 mo | 67 | 2/65 | 44 yrs | 50.7% | Mean 8 yrs | Median 20 mo | Abrupt (randomized) | Randomized withdrawal | 67/0 |
Holtmann et al., 2006 [30] | Retrospective cohort | Europe | 16 centers | NR | 1176 | 818/358 | 23–28 yrs | 48.5% | Median 3.8–5.9 yrs | NR | Abrupt | Physician/patient decision | 1176/0 |
Iborra et al., 2019 [31] | Multicenter observational | Spain | 3 hospitals | Median 36.7 mo | 95 | 60/35 | 48.6 yrs (CD), 51.9 yrs (UC) | 43.3% (CD), 60% (UC) | NR | Median 77–87 mo | Abrupt | Physician discretion | 95/0 |
Jorissen et al., 2021 [32] | Retrospective cohort | Belgium | Single center | Median 66 mo | 91 | 55/36 | >60 yrs | 60% | NR | Median 82.5 mo | Abrupt | Physician decision due to age | 76/15 |
Kennedy et al., 2014 [33] | Retrospective cohort | UK | Multicenter | Median 34 mo | 237 | 129/108 | 38 yrs (CD), 42 yrs (UC) | 48.5% | NR | Median 6.0 yrs | Tapered in 37% | Physician decision | 237/0 |
Lémann et al., 2005 [16] | RCT | France and Belgium | 12 centers | 18 mo | 83 | 83/0 | ~38 yrs | 44.6% | Median 11 yrs | Median 65.5 mo | Abrupt (randomized) | Randomized withdrawal | 83/0 |
Louis et al., 2023 [34] | RCT | Europe and Australia | 64 hospitals | 104 weeks | 207 | 207/0 | 31–36 yrs | 57% | Median 6.4–6.8 yrs | Median 2.3–2.6 yrs | Abrupt (randomized) | Randomized withdrawal | 71/136 |
Moreno-Rincón et al., 2015 [35] | Retrospective cohort | Spain | Multicenter | Median 27 mo | 102 | 0/102 | 32 yrs | 46.1% | Median 12 yrs | Median 51 mo | Abrupt | Physician/patient decision | 102/0 |
Nyman et al., 1985 [36] | Retrospective cohort | Sweden | Single center | Mean 5.75 yrs | 42 | 42/0 | 26 yrs | 47.6% | Mean 5.1 yrs | Mean 4.1 yrs | Abrupt | Pancreatitis | 38/4 |
O’Donoghue et al., 1978 [37] | RCT | UK | Multicenter | 12 mo | 51 | 51/0 | ~40 yrs | 43.1% | Mean 7.6 yrs | NR | Abrupt (randomized) | Randomized withdrawal | 36/15 |
Oussalah et al., 2010 [38] | Retrospective cohort | France | Single center | Mean 14 mo | 48 | 48/0 | 27 yrs | 52% | Median 6.7 yrs | Median 30.2 mo | Abrupt | Physician decision | 0/48 |
Ranjan et al., 2022 [39] | Retrospective cohort | India | Single center | Median 25 mo | 218 | 39/179 | 30.2 yrs | 64.7% | Median 9.6 yrs | Median 30 mo | Abrupt | NR | 218/0 |
Sokol et al., 2010 [40] | Retrospective cohort | France | Single center | >24 mo | 47 | 47/0 | NR | 57% | NR | Median 58.7 mo | Abrupt | Personal convenience | 47/0 |
Treton et al., 2009 [41] | Prospective cohort | France and Belgium | Multicenter | Median 54.5 mo | 66 | 66/0 | 37 yrs | 44% | Median 10.2 yrs | Median 68.4 mo | Abrupt | Medical/personal decision | 66/0 |
Van Assche et al., 2008 [42] | RCT | Belgium | Multicenter | 104 weeks | 80 | 80/0 | ~35 yrs | 45% | Median 9 yrs | Median 30 mo | Abrupt (randomized) | Randomized withdrawal | 0/80 |
Vilien et al., 2004 [43] | RCT | Denmark | Multicenter | 12 mo | 29 | 29/0 | ~40 yrs | NR | NR | Median 37 mo | Abrupt (randomized) | Randomized withdrawal | 29/0 |
Wenzl et al., 2015 [44] | RCT | Austria | Two-center | 24 mo | 52 | 52/0 | 39 yrs | 44.2% | Median 9 yrs | Median 5.2 yrs | Abrupt (randomized) | Randomized withdrawal | 52/0 |
Study | Number | Disease Activity at Withdrawal | Steroid-Free (Number) | Mucosal Healing (Number) | Total Relapses (Number) | Overall Relapse Rate (%) | UC Relapse Rate | CD Relapse Rate | 12-Month Relapse Rate | 24-Month Relapse Rate | Median Time to Relapse |
---|---|---|---|---|---|---|---|---|---|---|---|
Angelucci et al., 2010 [24] | 41 | CDAI < 150 | NR | NR | 27 | 65.9% | N/A | 65.9% | NR | NR | NR |
Cassinotti et al., 2009 [25] | 127 | Steroid-free remission | 127 | NR | 85 | 67% | 67% | N/A | 35% | 49% | 12 mo |
Cassinotti et al., 2021 [26] | 57 | CDAI < 150 (CD), Mayo < 2 (UC), CRP ≤ 10 mg/L, FC ≤ 50 µg/g | 57 | 57 (100%) | 26 | 46% | 58% | 31% | NR | NR | 15 mo |
Crepaldi et al., 2023 [27] | 274 | NR | 274 | NR | 21 | 30.4% (remission group) | NR | NR | 11% | 21% | NR |
Fraser et al., 2002 [28] | 222 | NR | 222 | NR | NR | ~63% | NR | NR | 37% | NR | NR |
Hawthorne et al., 1992 [29] | 67 | Grade 0–1 sigmoidoscopy | 67 | 67 (100%) | 32 | 47.8% | 47.8% | NR | 59% (placebo), 36% (AZA) | NR | NR |
Holtmann et al., 2006 [30] | 1176 | NR | NR | NR | NR | NR | NR | NR | NR | NR | NR |
Iborra et al., 2019 [31] | 95 | CDAI < 150 (CD), Mayo ≤ 2 (UC), normal CRP/FC | 95 | 58/95 (61%) | 26 | 27.4% | 26% | 28% | UC: 23.4%, CD: 12.9% | NR | UC: 36.3 mo, CD: 38.5 mo |
Jorissen et al., 2021 [32] | 91 | CRP < 5.0 mg/L | 91 | 37/91 (40.7%) | 28 | 30.8% | 36% | 27% | ~10% | ~20% | 21 mo |
Kennedy et al., 2014 [33] | 237 | CDAI < 150 (CD), By PGA (UC) | 237 | NR | NR | UC: 12%, CD: 23% at 12 mo | 12% | 23% | UC: 12%, CD: 23% | UC: 26%, CD: 39% | NR |
Lémann et al. 2005 [16] | 83 | CDAI < 150 | 78/83 | 19/45 with ulcers | 12 | 14.5% | N/A | 14.5% | NR | 21% (placebo), 8% (AZA) at 18 mo | NR |
Louis et al., 2023 [34] | 207 | CDAI < 150 | 207 | 22/207 with ulcers | 39 | 18.8% | N/A | 18.8% | NR | 14% (combo), 36% (IFX withdrawal) | NR |
Moreno-Rincón et al., 2015 [35] | 102 | Normal stools, no blood/pus, normal CRP | 102 | 22/102 (21.6%) | 33 | 32.4% | 32.4% | N/A | 18.9% | NR | 12 mo |
Nyman et al., 1985 [36] | 42 | NR | 42 | NR | 1 | 2.6% (AZA group) | N/A | 2.6% | NR | NR | NR |
O’Donoghue et al., 1978 [37] | 51 | Remission or stable good health | 51 | NR | 10 | 19.6% | N/A | 19.6% | 41% (placebo), 5% (AZA) | NR | NR |
Oussalah et al., 2010 [38] | 48 | CDAI < 150, normal CRP | 48 | NR | 13 | 27% | N/A | 27% | 15% | 59% | NR |
Ranjan et al., 2022 [39] | 218 | CDAI < 150 (CD), Mayo ≤ 2 (UC) | 218 | NR | 80 | 36.7% | 39.7% | 23% | 17% | NR | 20 mo |
Sokol et al., 2010 [40] | 47 | CDAI < 150 | NR | NR | NR | NR | N/A | NR | NR | 57.3% | NR |
Treton et al., 2009 [41] | 66 | CDAI < 150, HBI < 4, Normal CRP (62/66) | 61/66 | NR | 32 | 48.5% | N/A | 48.5% | 14% | NR | NR |
Van Assche et al., 2008 [42] | 80 | CDAI < 150 | 80 | 30/49 (61%) | 22 | 55% | N/A | 55% | NR | NR | NR |
Vilien et al., 2004 [43] | 29 | Inactive disease | 29 | NR | 10 | 34.5% | N/A | 34.5% | 53% (withdrawal), 15% (AZA) | NR | NR |
Wenzl et al., 2015 [44] | 52 | CDAI < 150 | 52 | 10/28 with ulcers | 12 | 23.1% | N/A | 23.1% | 24% (placebo), 4% (AZA) | 32% (placebo), 14% (AZA) | NR |
Study | Median Time to Relapse | Cumulative Relapse Rates | Age Predictor | Gender Predictor | Disease Type Predictor | Smoking Predictor | Prior Surgery Predictor | Other Predictors |
---|---|---|---|---|---|---|---|---|
Angelucci et al., 2010 [24] | NR | NR | No | No | NR | Yes (current smoking protective) | NR | NR |
Cassinotti et al., 2009 [25] | 12 mo (range 1–119) | 35% at 1 yr, 49% at 2 yrs, 65% at 5 yrs | No | Yes (male) | No | NR | NR | Extensive colitis, shorter AZA duration, withdrawal due to toxicity |
Cassinotti et al., 2021 [26] | 15 mo (UC and CD) | NR | Yes (≤45 yrs for UC) | Yes (female for UC) | No | NR | NR | Fecal calprotectin for both CD and UC |
Crepaldi et al., 2023 [27] | NR | 11% at 1 yr, 21% at 2 yrs | Yes (older >35 yrs had lower relapse risk) | No | No | NR | NR | Reason for stopping (remission vs. active) |
Fraser et al., 2002 [28] | NR | 37% at 1 yr, 66% at 3 yrs, 75% at 5 yrs | Yes (Older age protective) | No | No | NR | NR | Lower WBC or neutrophil count, higher MCV |
Hawthorne et al., 1992 [29] | NR | Placebo: 59% at 1 yr; AZA: 36% at 1 yr | Yes (older age protective) | No | NR | NR | NR | Mucosal healing |
Holtmann et al., 2006 [30] | NR | NR | No | No | No | NR | NR | NR |
Iborra et al., 2019 [31] | 36.3 mo (UC), 38.5 mo (CD) | CD: 12.9% at 1 yr, 46.7% at 5 yrs; UC: 23.4% at 1 yr, 46.2% at 5 yrs | No | No | No | NR | NR | Corticosteroid dependence, early AZA start (CD), late AZA start (UC) |
Jorissen et al., 2021 [32] | 21 mo | NR | No | No | No | NR | NR | Shorter duration of AZA therapy |
Kennedy et al., 2014 [33] | NR | CD: 23% at 12 mo, 39% at 24 mo; UC: 12% at 12 mo, 26% at 24 mo | No | No | Yes (CD > UC) | NR | NR | Elevated CRP in CD, elevated WCC in UC, tapering at withdrawal (CD) |
Lémann et al. 2005 [16] | NR | Placebo: 21% at 18 mo; AZA: 8% at 18 mo | No | No | NR | NR | NR | CRP > 20 mg/L, Hb < 12 g/dL, time without steroids < 50 mo |
Louis et al., 2023 [34] | NR | Combo: 14% at 2 yrs, AZA withdrawal: 10% at 2 yrs, IFX withdrawal: 36% at 2 yrs | Yes (<17 yrs at diagnosis) | No | NR | NR | NR | Higher CDEIS, 6-TGN > 300 protective in IFX withdrawal, hsCRP, FC > 300 |
Moreno-Rincón et al., 2015 [35] | 12 mo (IQR: 7–24) | 18.9% at 12 mo, 36.5% at 36 mo, 43% at 5 yrs | No | No | No | NR | NR | Longer remission duration protective, biological remission protective, pancolitis |
Nyman et al., 1985 [36] | NR | 26% in complete remission | No | No | NR | NR | NR | NR |
O’Donoghue et al., 1978 [37] | NR | Placebo: 25% at 6 mo, 41% at 1 yr; AZA: 0% at 6 mo, 5% at 1 yr | No | No | NR | NR | NR | NR |
Oussalah et al., 2010 [38] | NR | 15% at 12 mo, 59% at 24 mo | No | No | NR | NR | NR | CRP > 5 mg/L, platelets > 298, shorter combo therapy duration (≤27 mo) |
Ranjan et al., 2022 [39] | 20 mo (IQR: 9–49) | 17% at 1 yr, 34% at 3 yrs, 44% at 5 yrs | No | Yes (male, HR 1.6) | No | NR | NR | Shorter duration of AZA therapy (HR 1.02) |
Sokol et al., 2010 [40] | NR | 57.3% at 2 yrs, 73.3% at 5 yrs | No | Yes (male, OR 2.42) | NR | Yes (absence of smoking, OR 2.78) | NR | NR |
Treton et al., 2009 [41] | NR | 14% at 1 yr, 52.8% at 3 yrs, 62.7% at 5 yrs | No | No | NR | NR | NR | CRP ≥ 20 mg/L, Hb < 12 g/dL, neutrophils ≥ 4 × 109/L |
Van Assche et al., 2008 [42] | NR | NR | No | No | NR | No (smoking, disease location, type of IS not predictive) | NR | NR |
Vilien et al., 2004 [43] | NR | Withdrawal: 53% at 1 yr; AZA: 15% at 1 yr | No | No | NR | NR | NR | NR |
Wenzl et al., 2015 [44] | NR | Placebo: 24% at 1 yr, 32% at 2 yrs; AZA: 4% at 1 yr, 14% at 2 yrs | No | No | NR | NR | NR | Higher AZA dose at enrollment |
Study | Number | Disease | Biomarker Predictors (Cut-Off, Effect) | Clinical/Demographic Predictors (Effect) | Treatment/Disease-Specific Predictors (Effect) | Protective Factors | Risk Factors | Multivariate Analysis | p-Value |
---|---|---|---|---|---|---|---|---|---|
Cassinotti et al., 2009 [25] | 127 | UC | None evaluated systematically | Male gender (risk), extensive colitis vs. limited (risk) | Shorter AZA duration (risk), withdrawal due to toxicity (risk), 47 mo median duration | Female gender, limited colitis, longer AZA therapy | Male gender, extensive colitis, short AZA duration, Toxicity withdrawal | Yes | Not specified |
Cassinotti et al., 2021 [26] | 57 | CD + UC | CRP ≤ 10 mg/L baseline → elevated CRP (UC: HR 4.1, p = 0.02; CD: NS), FC ≤ 50 μg/g baseline → elevated FC (UC: HR 3.3, p = 0.03; CD: HR 4.5, p = 0.025) | Age ≤ 45 yrs (UC risk), female gender (UC risk), male gender (CD: NS) | 100% mucosal healing at baseline, deep remission criteria | Mucosal healing, older age > 45 (UC), male gender (UC) | Elevated CRP (UC), elevated FC (both), Young age ≤ 45 (UC), female (UC) | Yes | p = 0.02–0.03 |
Crepaldi et al., 2023 [27] | 274 | CD + UC | None systematically evaluated | Older age > 35 yrs (protective) | Withdrawal reason: remission vs. active disease/side effects | Age > 35 yrs, withdrawal in remission | Age ≤ 35 yrs, withdrawal for active disease/AEs | Yes | Not specified |
Fraser et al., 2002 [28] | 222 | CD + UC | Lower WBC (protective), lower neutrophils (protective), higher MCV (protective) | Older age (protective), gender (NS) | 1.7 years mean AZA duration, remission-based withdrawal | Older age, lower WBC/neutrophils, higher MCV | Younger age, higher WBC/neutrophils, lower MCV | Partial | Not specified |
Hawthorne et al., 1992 [29] | 67 | UC | None systematically evaluated | Older age (protective), gender (NS) | Mucosal healing grade 0–1 (protective), 20 mo median AZA, RCT design | Older age, mucosal healing grade 0–1 | Younger age, active endoscopy | Yes | Not specified |
Iborra et al., 2019 [31] | 95 | CD + UC | Normal CRP/FC at baseline → FC levels at 1 year (UC: p = 0.03, CD: NS) | Corticosteroid dependence (HR 3.18), age (NS), gender (NS) | Early AZA start protective (CD), late AZA start risk (UC), AZA duration 77–87 mo | Early AZA initiation (CD), steroid independence | Corticosteroid dependence, late AZA start (UC), FC elevation at 1 yr (UC) | Yes | p = 0.03 |
Jorissen et al., 2021 [32] | 91 | CD + UC | CRP < 5.0 mg/L baseline (inclusion), no predictive biomarkers identified | Elderly population > 60 yrs, gender (NS) | Shorter AZA duration 82.5 mo median (risk), age-related withdrawal | Longer AZA duration | Shorter AZA treatment duration | Partial | Not specified |
Kennedy et al., 2014 [33] | 237 | CD + UC | Elevated CRP (CD predictor), elevated WCC (UC predictor), normal values protective | Disease type (CD > UC, p = 0.035), age (NS), gender (NS) | Tapering withdrawal (CD), physician decision trigger, 6-year median AZA duration | Normal CRP/WCC, UC disease type, abrupt withdrawal | CD disease type, elevated CRP (CD), elevated WCC (UC), tapering (CD) | Yes | p = 0.035 |
Lémann et al. 2005 [16] | 83 | CD | CRP > 20 mg/L (risk), Hb < 12 g/dL (risk), normal values protective | Age ~38 yrs (NS), gender (NS) | Time without steroids < 50 mo (risk), 65.5 mo median AZA, RCT withdrawal | CRP ≤ 20, Hb ≥ 12, steroid-free > 50 mo | CRP > 20, anemia, short steroid-free period | Yes | Not specified |
Louis et al., 2023 [34] | 207 | CD | hsCRP (elevated), FC > 300 μg/g (risk), 6-TGN > 300 pmol/8 × 108 RBC (protective in IFX withdrawal) | Age < 17 yrs at diagnosis (risk), male gender (NS) | Higher CDEIS score (risk), IFX vs. AZA withdrawal strategy | 6-TGN > 300, continued combination therapy | Young age < 17 yrs, higher CDEIS, FC > 300 | Yes | Various |
Moreno-Rincón et al., 2015 [35] | 102 | UC | Biological remission status (protective): CRP normal + FC normal + endoscopic healing | Pancolitis E3 extent (risk), age 32 yrs (NS), gender (NS) | Longer remission duration > 33 mo (protective), 51 mo median AZA, physician/patient decision | Biological remission, longer remission > 33 mo, limited extent | Pancolitis extent, shorter remission duration | Yes | Not specified |
Oussalah et al., 2010 [38] | 48 | CD | CRP > 5 mg/L (risk), platelets > 298 × 109/L (risk), normal ranges protective | Age 27 yrs (NS), male 52% (NS) | Shorter combo therapy ≤ 27 mo (risk), IFX + AZA combination, physician decision | Longer combination therapy > 27 mo, normal CRP ≤ 5 | Short combination duration ≤ 27 mo, CRP > 5, platelets > 298 | Yes | Not specified |
Ranjan et al., 2022 [39] | 218 | CD + UC | CRP (NS), FC (NS) | Male gender (HR 1.6, 95% CI NR), age (NS), disease type (NS) | AZA duration (HR 1.02 per month shorter, 95% CI NR), monotherapy only | Longer AZA duration, female gender | Male gender, shorter AZA duration < 4 yrs | Yes | p < 0.05 |
Sokol et al., 2010 [40] | 47 | CD | None significant | Male gender (OR 2.42, 95% CI NR), Non-smoking status (OR 2.78, 95% CI NR) | AZA duration 58.7 mo (NS), personal convenience withdrawal | Current smoking, female gender | Male gender, non-smoking status | Yes | Not specified |
Treton et al., 2009 [41] | 66 | CD | CRP ≥ 20 mg/L (risk), Hb < 12 g/dL (risk), neutrophils ≥ 4 × 109/L (risk), normal values protective | Age 37 yrs (NS), male 44% (NS) | AZA duration 68.4 mo (NS), steroid-free status, medical/personal decision | Normal CRP < 20, Hb ≥ 12, neutrophils < 4 × 109 | CRP ≥ 20, Anemia Hb < 12, neutrophilia ≥ 4 × 109 | Yes | Not specified |
Study | Number | Disease Phenotype Subgroups | Age/Gender Subgroups | Relapse Severity | Hospitalization (Number) | Surgery (Number) | Rescue Therapy | AZA Reintroduction | Biologic Escalation | Response to Retreatment | Long-term Outcomes |
---|---|---|---|---|---|---|---|---|---|---|---|
Angelucci et al., 2010 [24] | 41 | CD only: Limited data | NR | NR | NR | NR | NR | NR | NR | NR | Abstract with limited data |
Cassinotti et al., 2009 [25] | 127 | UC only: Extensive colitis increased risk vs. limited | Male gender increased risk; age 38 yrs at AZA start | NR | NR | NR | Rescue therapy (CS, CsA, colectomy) | NR | NR | NR | 67% relapse rate—high risk population |
Cassinotti et al., 2021 [26] | 57 | CD (26): Ileal 46%, ileocolonic 39%, colonic 15%; B1 38%, B2 54%, B3 8%; UC (31): left-sided 29%, extensive 71% | UC: Female risk factor, age ≤ 45 yrs risk; CD: Gender NS | UC: 56% moderate severity; CD: All mild severity | 0 | 0 | UC: 2 steroids, 9 AZA, 5 anti-TNF; CD: 5 AZA, 4 anti-TNF | UC: 9/18; CD: 5/8 | UC: 5/18; CD: 4/8 | AZA: UC 7/9, CD 4/5; anti-TNF: UC 5/5, CD response NR | No hospitalizations or surgery |
Crepaldi et al., 2023 [27] | 274 | CD (141): L1 30%, L2 20%, L3 50%; B1 43.3%, B2 35%, B3 21%; UC (133): E1 12%, E2 28.6%, E3 57.1% | Age > 35 yrs protective; gender: Male 57% vs. female 43% | NR | NR | NR | NR | NR | NR | NR | Focus on withdrawal reasons |
Fraser et al., 2002 [28] | 222 | CD (79) vs. UC (143): Large cohort, limited phenotype analysis | Older age protective; gender NR | NR | NR | NR | NR | NR | NR | NR | Long-term follow-up, limited detail |
Hawthorne et al., 1992 [29] | 67 | UC only: Sigmoidoscopy grade 0–1 required | Older age protective, male 50.7% | Symptom and sigmoidoscopic deterioration | NR | NR | Change in treatment | NR | NR | NR | RCT design with endoscopic endpoint |
Holtmann et al., 2006 [30] | 1176 | CD (818) vs. UC (358): Large cohort but limited subgroup analysis | Age 23–28 yrs at AZA start, male 48.5% | NR | NR | NR | Oral steroid dosage increases | NR | NR | NR | Large cohort, limited outcome detail |
Iborra et al., 2019 [31] | 95 | CD (60): L1 30%, L2 20%, L3 50%; UC (35): E1 12%, E2 28.6%, E3 57.1% | No age/gender subgroup differences in relapse | NR | NR | NR | Various rescue therapies | UC: 9, CD: 10 | NR | UC: 4/9 (44%); CD: 10/10 (100%) | Superior re-treatment response in CD |
Jorissen et al., 2021 [32] | 91 | CD (55) vs. UC (36): No specific Montreal subgroup analysis | Elderly cohort > 60 yrs; male 60% | NR | NR | 10 total (2 UC colectomy, 8 CD resections) | 17 patients (steroids + biologics) | 1 | 17 | NR | Cancer: 26 patients, Mortality: 6 patients |
Kennedy et al., 2014 [33] | 237 | CD (129) vs. UC (108): Disease type main predictor (CD > UC relapse risk) | CD vs. UC: Age 38 vs. 42 yrs; overall Male 48.5% | Moderate-to-severe relapse definition | Hospital admission as outcome | Surgery as outcome | Oral steroids, thiopurine recommencement | Thiopurine recommencement | Anti-TNF as outcome | NR | Comprehensive outcome tracking |
Lémann et al., 2005 [16] | 83 | CD only: Phenotype not analyzed as subgroups | Age ~38 yrs, male 44.6%; no age/gender effects | Defined by CDAI criteria | NR | Surgery as endpoint | Re-treatment per protocol | NR | NR | NR | RCT with defined endpoints |
Louis et al., 2023 [34] | 207 | CD only: Disease location/behavior not specified as subgroup analysis | Age < 17 yrs at diagnosis (risk factor); male 57% | NR | NR | NR | Step-up approach based on relapse severity | 25 patients (35.2% of IFX withdrawal group) | NR | Response rates not specified | Primary endpoint: relapse-free survival |
Moreno-Rincón et al., 2015 [35] | 102 | UC only: E1 vs. E2 vs. E3—Pancolitis (E3) increased risk | Age 32 yrs, Male 46.1%; no age/gender effects | NR | NR | NR | Rescue therapy as per relapse | NR | NR | NR | Focus on remission duration effects |
Nyman et al., 1985 [36] | 42 | CD only: Small historical cohort | Age 26 yrs at AZA start, male 47.6% | Clinical deterioration | NR | NR | NR | NR | NR | NR | Historical study, limited data |
O’Donoghue et al., 1978 [37] | 51 | CD only: Historical RCT | Age ~40 yrs, male 43.1% | Significant deterioration requiring treatment change | NR | NR | Change in treatment | NR | NR | NR | Historical RCT |
Oussalah et al., 2010 [38] | 48 | CD only: L1 29%, L2 50%, L3 21%, L4 4%; B1 71%, B2 21%, B3 8% | Pediatric onset 33% (<16 yrs); Male 52% | NR | NR | 1 | Treatment escalation | 0 | 1 (Adalimumab) | NR | Low surgery rate in combination therapy |
Ranjan et al., 2022 [39] | 218 | CD (39): Ileal 33.3%, Colonic 10.3%, ileocolonic 30.8%; B1 61.5%, B2 30.8%, B3 7.7%; UC (179): E1 2.8%, E2 41.9%, E3 55.3% | Male gender HR 1.6; UC vs. CD relapse: 39.7% vs. 23% | NR | 13 | 6 | Medical therapy escalation | NR | NR | NR | Surgery required in 6 patients |
Sokol et al., 2010 [40] | 47 | CD only: Phenotype not analyzed as subgroups | Male OR 2.42 for relapse; non-smoking OR 2.78 | NR | NR | NR | NR | NR | NR | NR | Focus on lifestyle factors |
Treton et al., 2009 [41] | 66 | CD only: Phenotype not analyzed as subgroups | Age 37 yrs, male 44%; no age/gender effects | NR | NR | NR | Re-treatment as needed | NR | NR | NR | Focus on biomarker predictors |
Van Assche et al., 2008 [42] | 80 | CD only: Smoking, disease location, IS type not predictive | Age ~35 yrs, Male 45%; no predictive value | Disease flare definition | NR | NR | Shortening IFX interval or stopping IFX | NR | Management per protocol | NR | RCT design limits management flexibility |
Vilien et al., 2004 [43] | 29 | CD only: Small cohort | Age ~40 yrs; gender NR | Defined by CDAI and activity | NR | NR | Disease activity requiring intervention | NR | NR | NR | Small RCT |
Wenzl et al., 2015 [44] | 52 | CD only: Phenotype subgroups not analyzed | Age 39 yrs, male 44.2%; no age/gender effects | NR | NR | NR | Placebo group: various; AZA continued group: maintained | NR | NR | NR | RCT design limits real-world management |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Al Abdulqader, A.; Alnajjar, J.S.; Alzimami, L.; AlQarni, R.; Mohamed, F.R.R.; AlQarni, R.; Alnasser, J.; Alabdulkarim, D.; Almaqhawi, A.; Albesher, M.A.; et al. Relapse Rates and Predictors Following Azathioprine Withdrawal in Inflammatory Bowel Disease: A Systematic Review, Meta-Analysis, and Meta-Regression. J. Clin. Med. 2025, 14, 6868. https://doi.org/10.3390/jcm14196868
Al Abdulqader A, Alnajjar JS, Alzimami L, AlQarni R, Mohamed FRR, AlQarni R, Alnasser J, Alabdulkarim D, Almaqhawi A, Albesher MA, et al. Relapse Rates and Predictors Following Azathioprine Withdrawal in Inflammatory Bowel Disease: A Systematic Review, Meta-Analysis, and Meta-Regression. Journal of Clinical Medicine. 2025; 14(19):6868. https://doi.org/10.3390/jcm14196868
Chicago/Turabian StyleAl Abdulqader, Abdulrhman, Jawad S. Alnajjar, Lama Alzimami, Reem AlQarni, Fathima Raahima Riyas Mohamed, Rana AlQarni, Jomana Alnasser, Doaa Alabdulkarim, Abdullah Almaqhawi, Mohammed Abdullah Albesher, and et al. 2025. "Relapse Rates and Predictors Following Azathioprine Withdrawal in Inflammatory Bowel Disease: A Systematic Review, Meta-Analysis, and Meta-Regression" Journal of Clinical Medicine 14, no. 19: 6868. https://doi.org/10.3390/jcm14196868
APA StyleAl Abdulqader, A., Alnajjar, J. S., Alzimami, L., AlQarni, R., Mohamed, F. R. R., AlQarni, R., Alnasser, J., Alabdulkarim, D., Almaqhawi, A., Albesher, M. A., & Albadrani, A. (2025). Relapse Rates and Predictors Following Azathioprine Withdrawal in Inflammatory Bowel Disease: A Systematic Review, Meta-Analysis, and Meta-Regression. Journal of Clinical Medicine, 14(19), 6868. https://doi.org/10.3390/jcm14196868