Investigation of the Prognostic Value of Novel Laboratory Indices in Patients with Sepsis in an Intensive Care Unit: A Retrospective Observational Study
Abstract
1. Introduction
2. Materials and Methods
Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Global Sepsis Alliance. WHA Adopts Resolution on Sepsis. Available online: https://globalsepsisalliance.org/news/2017/5/26/wha-adopts-resolution-on-sepsis (accessed on 6 December 2023).
- Oczkowski, S.; Alshamsi, F.; Belley-Cote, E.; Centofanti, J.E.; Hylander Møller, M.; Nunnaly, M.E.; Alhazzani, W. Surviving Sepsis Campaign Guidelines 2021: Highlights for the practicing clinician. Pol. Arch. Intern. Med. 2022, 132, 16290. [Google Scholar] [CrossRef]
- Reinhart, K.; Daniels, R.; Kissoon, N.; Machado, F.R.; Schachter, R.D.; Finfer, S. Recognizing sepsis as a global health priority—A WHO Resolution. N. Engl. J. Med. 2017, 377, 414–417. [Google Scholar] [CrossRef]
- World Health Organization. Sepsis. Available online: https://www.who.int/news-room/fact-sheets/detail/sepsis (accessed on 6 December 2023).
- Rudd, K.E.; Johnson, S.C.; Agesa, K.M.; Shackelford, K.A.; Tsoi, D.; Kievlan, D.R.; Colombara, D.V.; Ikuta, K.S.; Kissoon, N.; Finfer, S.; et al. Global, regional, and national sepsis incidence and mortality, 1990–2017: Analysis for the Global Burden of Disease Study. Lancet 2020, 395, 200–211. [Google Scholar] [CrossRef] [PubMed]
- Barichello, T.; Generoso, J.S.; Singer, M.; Dal-Pizzol, F. Biomarkers for sepsis: More than just fever and leukocytosis-a narrative review. Crit. Care 2022, 26, 14. [Google Scholar] [CrossRef]
- Gupta, G.S. The lactate and the lactate dehydrogenase in inflammatory diseases and major risk factors in COVID-19 patients. Inflammation 2022, 45, 2091–2123. [Google Scholar] [CrossRef]
- Montegut, C.; Correard, F.; Nouguerède, E.; Rey, D.; Chevalier, T.; Meurer, M.; Deville, J.L.; Baciuchka, M.; Pradel, V.; Greillier, L.; et al. Prognostic value of the B12/CRP index in older systemically treatable cancer patients. Cancers 2021, 14, 169. [Google Scholar] [CrossRef]
- Hassan, J.; Khan, S.; Zahra, R.; Razaq, A.; Zain, A.; Razaq, L.; Razaq, M. Role of procalcitonin and C-reactive protein as predictors of sepsis and in managing sepsis in postoperative patients: A systematic review. Cureus 2022, 14, e31067. [Google Scholar] [CrossRef]
- Ru, S.; Luo, Y. The association and prognostic value of systemic inflammatory response index with short and long-term mortality in patients with sepsis. Medicine 2023, 102, e33967. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Xu, R.; Zeng, Y.; Zhao, Y.; Hu, X. A comparison of qSOFA, SIRS and NEWS in predicting the accuracy of mortality in patients with suspected sepsis: A meta-analysis. PLoS ONE 2022, 17, e0266755. [Google Scholar] [CrossRef]
- Wang, G.; Mivefroshan, A.; Yaghoobpoor, S.; Khanzadeh, S.; Siri, G.; Rahmani, F.; Aleseidi, S. Prognostic value of platelet to lymphocyte ratio in sepsis: A systematic review and meta-analysis. Biomed. Res. Int. 2022, 2022, 9056363. [Google Scholar] [CrossRef]
- Pierrakos, C.; Velissaris, D.; Bisdorff, M.; Marshall, J.C.; Vincent, J.L. Biomarkers of sepsis: Time for a reappraisal. Crit. Care 2020, 24, 287. [Google Scholar] [CrossRef]
- Bahtouee, M.; Eghbali, S.S.; Maleki, N.; Rastgou, V.; Motamed, N. Use of the APACHE II score for the assessment of outcome and mortality prediction in an Iranian medical-surgical intensive care unit. Arch. Anesthesiol. Crit. Care 2018, 4, 521–526. [Google Scholar]
- Seymour, C.W.; Liu, V.X.; Iwashyna, T.J.; Brunkhorst, F.M.; Rea, T.D.; Scherag, A.; Rubenfeld, G.; Kahn, J.M.; Shankar-Hari, M.; Singer, M.; et al. Assessment of clinical criteria for sepsis: For the third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016, 315, 762–774. [Google Scholar] [CrossRef]
- Singer, M.; Deutschman, C.S.; Seymour, C.W.; Shankar-Hari, M.; Annane, D.; Bauer, M.; Bellomo, R.; Bernard, G.R.; Chiche, J.D.; Coopersmith, C.M.; et al. The third international consensus definitions for sepsis and septic shock (Sepsis-3). JAMA 2016, 315, 801–810. [Google Scholar] [CrossRef]
- Zhou, X.; Fu, S.; Wu, Y.; Guo, Z.; Dian, W.; Sun, H.; Liao, Y. C-reactive protein-to-albumin ratio as a biomarker in patients with sepsis: A novel LASSO-COX based prognostic nomogram. Sci. Rep. 2023, 13, 15309. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Gao, Y.; Liang, B.; Liang, Z. The prognostic value of C-reactive protein to albumin ratio in patients with sepsis: A systematic review and meta-analysis. Aging Male 2023, 26, 2261540. [Google Scholar] [CrossRef]
- Kumar, S.; Tripathy, S.; Jyoti, A.; Singh, S.G. Recent advances in biosensors for diagnosis and detection of sepsis: A comprehensive review. Biosens. Bioelectron. 2019, 124–125, 205–215. [Google Scholar] [CrossRef] [PubMed]
- Di Rosa, M.; Sabbatinelli, J.; Soraci, L.; Corsonello, A.; Bonfigli, A.R.; Cherubini, A.; Sarzani, R.; Antonicelli, R.; Pelliccioni, G.; Galeazzi, R.; et al. Neutrophil-to-lymphocyte ratio (NLR) predicts mortality in hospitalized geriatric patients independent of the admission diagnosis: A multicenter prospective cohort study. J. Transl. Med. 2023, 21, 835. [Google Scholar] [CrossRef]
- Gao, X.; Lin, B.; Lin, Q.; Ye, T.; Zhou, T.; Hu, M.; Zhu, H.; Lu, F.; Chen, W.; Xia, P.; et al. A HALP score-based prediction model for survival of patients with the upper tract urothelial carcinoma undergoing radical nephroureterectomy. Bosn. J Basic Med. Sci. 2022, 22, 280–290. [Google Scholar] [PubMed]
- Farag, C.M.; Antar, R.; Akosman, S.; Ng, M.; Whalen, M.J. What is hemoglobin, albumin, lymphocyte, platelet (HALP) score? A comprehensive literature review of HALP’s prognostic ability in different cancer types. Oncotarget 2023, 14, 153–172. [Google Scholar] [CrossRef]
- Xu, H.; Zheng, X.; Ai, J.; Yang, L. Hemoglobin, albumin, lymphocyte, and platelet (HALP) score and cancer prognosis: A systematic review and meta-analysis of 13,110 patients. Int. Immunopharmacol. 2023, 114, 109496. [Google Scholar] [CrossRef]
- Li, S.; Gao, Y.; Liu, K.; Zhao, J.; Fang, H.; Tao, Y.; Pei, L.; Tian, M.; Liu, H.; Wang, X.; et al. The novel biomarkers-based HALP (Hemoglobin, Albumin, Lymphocyte and Platelet)-prognostic model for acute and subacute patients with cerebral venous sinus thrombosis: A retrospective cohort study. J. Atheroscler. Thromb. 2023, 30, 1742–1749. [Google Scholar] [CrossRef]
- Tian, M.; Li, Y.; Wang, X.; Tian, X.; Pei, L.L.; Wang, X.; Zhang, L.; Sun, W.; Wu, J.; Sun, S.; et al. The Hemoglobin, Albumin, Lymphocyte, and Platelet (HALP) Score is associated with poor outcome of acute ischemic stroke. Front. Neurol. 2021, 11, 610318. [Google Scholar] [CrossRef]
- Park, P.G.; Yoo, B.W.; Song, J.J.; Park, Y.B.; Lee, S.W. Will the HALP score help to assess the activity and predict the prognosis of antineutrophil cytoplasmic antibody-associated vasculitis? Clin. Exp. Rheumatol. 2020, 38 (Suppl. 124), 236–237. [Google Scholar] [PubMed]
- Antar, R.; Farag, C.; Xu, V.; Drouaud, A.; Gordon, O.; Whalen, M.J. Evaluating the baseline hemoglobin, albumin, lymphocyte, and platelet (HALP) score in the United States adult population and comorbidities: An analysis of the NHANES. Front. Nutr. 2023, 10, 1206958. [Google Scholar] [CrossRef]
- Zhang, Y.; Xing, Z.; Zhou, K.; Jiang, S. The predictive role of systemic inflammation response index (SIRI) in the prognosis of stroke patients. Clin. Interv. Aging 2021, 16, 1997–2007. [Google Scholar] [CrossRef]
- Urbanowicz, T.; Michalak, M.; Olasińska-Wiśniewska, A.; Rodzki, M.; Witkowska, A.; Gąsecka, A.; Buczkowski, P.; Perek, B.; Jemielity, M. Neutrophil counts, neutrophil-to-lymphocyte ratio, and systemic inflammatory response index (SIRI) predict mortality after off-pump coronary artery bypass surgery. Cells 2022, 11, 1124. [Google Scholar] [CrossRef]
- Jin, Z.; Wu, Q.; Chen, S.; Gao, J.; Li, X.; Zhang, X.; Zhou, Y.; He, D.; Cheng, Z.; Zhu, Y.; et al. The associations of two novel inflammation indexes, SII and SIRI with the risks for cardiovascular diseases and all-cause mortality: A ten-year follow-up study in 85,154 individuals. J. Inflamm. Res. 2021, 14, 131–140. [Google Scholar] [CrossRef]
- Li, J.; Li, Y.; Zou, Y.; Chen, Y.; He, L.; Wang, Y.; Zhou, J.; Xiao, F.; Niu, H.; Lu, L. Use of the systemic inflammation response index (SIRI) as a novel prognostic marker for patients on peritoneal dialysis. Ren. Fail. 2022, 44, 1228–1236. [Google Scholar] [CrossRef]
- Hu, B.; Yang, X.R.; Xu, Y.; Sun, Y.F.; Sun, C.; Guo, W.; Zhang, X.; Wang, W.M.; Qiu, S.J.; Zhou, J.; et al. Systemic immune-inflammation index predicts prognosis of patients after curative resection for hepatocellular carcinoma. Clin. Cancer Res. 2014, 20, 6212–6222. [Google Scholar] [CrossRef]
- Aziz, M.H.; Sideras, K.; Aziz, N.A.; Mauff, K.; Haen, R.; Roos, D.; Saida, L.; Suker, M.; van der Harst, E.; Mieog, J.S.; et al. The systemic-immune-inflammation index independently predicts survival and recurrence in resectable pancreatic cancer and its prognostic value depends on bilirubin levels: A retrospective multicenter cohort study. Ann. Surg. 2019, 270, 139–146. [Google Scholar] [CrossRef]
- Ye, Z.; Hu, T.; Wang, J.; Xiao, R.; Liao, X.; Liu, M.; Sun, Z. Systemic immune-inflammation index as a potential biomarker of cardiovascular diseases: A systematic review and meta-analysis. Front. Cardiovasc. Med. 2022, 9, 933913. [Google Scholar] [CrossRef]
- Trifan, G.; Testai, F.D. Systemic Immune-Inflammation (SII) index predicts poor outcome after spontaneous supratentorial intracerebral hemorrhage. J. Stroke Cerebrovasc. Dis. 2020, 29, 105057. [Google Scholar] [CrossRef]
- Ning, Y.; Pan, D.; Guo, J.; Su, Z.; Wang, J.; Wu, S.; Gu, Y. Association of prognostic nutritional index with the risk of all-cause mortality and cardiovascular mortality in patients with type 2 diabetes: NHANES 1999–2018. BMJ Open Diabetes Res. Care 2023, 11, e003564. [Google Scholar] [CrossRef]
- Liu, C.C.; Liu, P.H.; Chen, H.T.; Chen, J.Y.; Lee, C.W.; Cheng, W.J.; Chen, J.-Y.; Hung, K.C. Association of preoperative prognostic nutritional index with risk of postoperative acute kidney injury: A meta-analysis of observational studies. Nutrients 2023, 15, 2929. [Google Scholar] [CrossRef]
- Pan, M.; Li, Z.; Sheng, S.; Teng, X.; Li, Y. Prognostic nutritional index as a potential predictor of prognosis in patients with sepsis: A retrospective cohort study. Front. Nutr. 2025, 12, 1600943. [Google Scholar] [CrossRef]
- Kriplani, A.; Pandit, S.; Chawla, A.; de la Rosette, J.J.M.C.H.; Laguna, P.; Jayadeva Reddy, S.; Somani, B.K. Neutrophil-lymphocyte ratio (NLR), platelet-lymphocyte ratio (PLR) and lymphocyte-monocyte ratio (LMR) in predicting systemic inflammatory response syndrome (SIRS) and sepsis after percutaneous nephrolithotomy (PNL). Urolithiasis 2022, 50, 341–348. [Google Scholar] [CrossRef]
- Agnello, L.; Giglio, R.V.; Bivona, G.; Scazzone, C.; Gambino, C.M.; Iacona, A.; Ciaccio, A.M.; Lo Sasso, B.; Ciaccio, M. The value of a complete blood count (CBC) for sepsis diagnosis and prognosis. Diagnostics 2021, 11, 1881. [Google Scholar] [CrossRef] [PubMed]
- Kyo, D.; Tokuoka, S.; Katano, S.; Hisamune, R.; Yoshimoto, H.; Murao, S.; Umemura, Y.; Takasu, A.; Yamakawa, K. Comparison of nutrition indices for prognostic utility in patients with sepsis: A real-world observational study. Diagnostics 2023, 13, 1302. [Google Scholar] [CrossRef] [PubMed]
- Póvoa, P.; Coelho, L.; Dal-Pizzol, F.; Ferrer, R.; Huttner, A.; Conway Morris, A.; Nobre, V.; Ramirez, P.; Rouze, A.; Salluh, J.; et al. How to use biomarkers of infection or sepsis at the bedside: Guide to clinicians. Intensive Care Med. 2023, 49, 142–153. [Google Scholar] [CrossRef] [PubMed]
- Ding, X.; Tong, R.; Song, H.; Sun, G.; Wang, D.; Liang, H.; Sun, J.; Cui, Y.; Zhang, X.; Liu, S.; et al. Identification of metabolomics-based prognostic prediction models for ICU septic patients. Int. Immunopharmacol. 2022, 108, 108841. [Google Scholar] [CrossRef]
- Çelikkol, A.; Güzel, E.Ç.; Doğan, M.; Erdal, B.; Yilmaz, A. C-Reactive Protein-to-Albumin Ratio as a prognostic inflammatory marker in COVID-19. J. Lab. Physicians 2022, 14, 74–83. [Google Scholar] [PubMed]
- Zavalaga-Zegarra, H.J.; Palomino-Gutierrez, J.J.; Ulloque-Badaracco, J.R.; Mosquera-Rojas, M.D.; Hernandez-Bustamante, E.A.; Alarcon-Braga, E.A.; Benites-Zapata, V.A.; Herrera-Añazco, P.; Hernandez, A.V. C-reactive protein-to-albumin ratio and clinical outcomes in COVID-19 patients: A systematic review and meta-analysis. Trop. Med. Infect. Dis. 2022, 7, 186. [Google Scholar] [CrossRef]
- Çakır, E.; Özkoçak Turan, I. Which parameter is the most effective in predictor of poor outcomes in sepsis: C-reactive protein, albumin, or C-reactive protein/albumin ratio? Erciyes Med. J. 2022, 44, 334–348. [Google Scholar]
- Buchholz, T.; Barzola, M.; Tayban, Y.; Halpern, N.A. A rapid response team (RRT) system at a cancer center: Innovative approaches to system organization and clinical RRT pathways. Crit. Care Nurs. Q. 2023, 46, 116–125. [Google Scholar] [CrossRef] [PubMed]
- Gatti, M.; Pea, F. Antimicrobial dose reduction in continuous renal replacement therapy: Myth or real need? A practical approach for guiding dose optimization of novel antibiotics. Clin. Pharmacokinet. 2021, 60, 1271–1289. [Google Scholar] [CrossRef]
- Li, X.; Liu, C.; Mao, Z.; Li, Q.; Zhou, F. Timing of renal replacement therapy initiation for acute kidney injury in critically ill patients: A systematic review of randomized clinical trials with meta-analysis and trial sequential analysis. Crit. Care 2021, 25, 15. [Google Scholar] [CrossRef]
- Li, D.; Wei, Y.; Zhang, C.; Yang, Y.; Wang, Z.; Lu, Y.; Liu, L. Value of SOFA score, APACHE II score, and WBC count for mortality risk assessment in septic patients: A retrospective study. Medicine 2025, 104, e42464. [Google Scholar] [CrossRef]
- Geerse, D.A.; Bindels, A.J.; Kuiper, M.A.; Roos, A.N.; Spronk, P.E.; Schultz, M.J. Treatment of hypophosphatemia in the intensive care unit: A review. Crit. Care 2010, 14, R147. [Google Scholar] [CrossRef]
Parameters | All n = 400 (%) | Deceased Patients n = 207 | Survivors n = 193 | p-Value |
---|---|---|---|---|
n (%) | n (%) | |||
Sex | ||||
Male | 206 (51.5) | 109 (52.7) | 97 (50.3) | 0.632 |
Female | 194 (48.5) | 98 (47.3) | 96 (49.7) | 0.632 |
Comorbidities | ||||
Diabetes mellitus | 156 (39.0) | 74 (35.7) | 82 (42.5) | 0.167 |
Hypertension | 192 (48.0) | 94 (45.4) | 98 (50.8) | 0.283 |
Dementia | 53 (13.3) | 30 (14.5) | 23 (11.9) | 0.448 |
Chronic renal failure | 69 (17.3) | 36 (17.4) | 33 (17.1) | 0.938 |
Acute renal failure | 156 (39.0) | 87 (42.0) | 69 (35.8) | 0.198 |
Gastrointestinal bleeding | 12 (3.0) | 9 (4.3) | 3 (1.6) | 0.102 |
Acute pancreatitis | 11 (2.8) | 2 (1.0) | 9 (4.7) | 0.023 |
COPD | 62 (15.5) | 36 (17.4) | 26 (13.5) | 0.279 |
Asthma | 34 (8.5) | 17 (8.2) | 17 (8.8) | 0.831 |
CAD | 119 (29.8) | 61 (29.5) | 58 (30.1) | 0.899 |
CHF | 81 (20.3) | 37 (17.9) | 44 (22.8) | 0.221 |
Median (Min–Max) | Median (Min–Max) | Median (Min–Max) | p-value | |
Age, years | 73.0 (18.0–95.0) | 75.0 (21.0–95.0) | 69.0(18.0–94.0) | <0.001 |
APACHE II | 26.0 (5.0–55.0) | 30.0 (12.0–55.0) | 22.0 (5.0–53.0) | <0.001 |
SOFA score | 7.0(0.0–19.0) | 10.0 (2.0–19.0) | 5.0 (0.0–14.0) | <0.001 |
Complete blood count | ||||
WBC, 103/µL | 11,520.0 (50.0–172,240.0) | 12,020.0 (50.0–172,240.0) | 11,050.0 (110.0–90,460.0) | 0.289 |
Hemoglobin, g/dL | 10.5 (1.7–20.9) | 10.3 (5.6–2.9) | 10.8 (1.7–18.2) | 0.078 |
MCV, fL | 89.2 (63.2–140.8) | 89.3 (70.0–129.1) | 89.1 (63.2–140.8) | 0.330 |
Platelets, 103/µL | 191.0 (3.0–714.0) | 164.0 (3.0–1714.0) | 209.0 (6.0–613.0) | 0.006 |
MPV, fL | 10.8 (0.0–14.8) | 11.0 (0.0–14.8) | 17.0 (0.0–14.4) | 0.133 |
Neutrophil, 103/µL | 9300 (0.0–73,200.0) | 9890.0 (0.0–44,110.0) | 8910.0 (1.8–73,200.0) | 0.316 |
Lymphocyte, 103/µL | 880.0 (0.0–15,090.0) | 810.0 (0.0–15,090.0) | 990.0 (2.4–4990.0) | 0.007 |
Monocyte, 103/µL | 600.0 (0.0–123,810.0) | 570.0 (0.0–123,810.0) | 650.0 (0.6–3190.0) | 0.172 |
Blood chemistry and serology | ||||
Plasma glucose, mg/dL | 141.5(36.0–996.0) | 138.5 (36.0–755.0) | 143.0 (49.0–996.0) | 0.186 |
Creatinine, mg/dL | 1.4 (0.20–8.05) | 1.5 (0.2–8.1) | 1.3 (0.2–7.4) | 0.118 |
Uric acid, mg/dL | 6.7 (1.20–18.1) | 6.6 (1.2–17.8) | 6.7 (1.6–18.1) | 0.752 |
AST, U/L | 32.0 (5.0–13936.0) | 38.0 (6.0–13936.0) | 26.0 (5.0–4788.0) | <0.001 |
ALT, U/L | 20.5 (5.0–5787.0) | 22.0 (5.0–5787.0) | 18.0 (5.0–2166.0) | 0.027 |
LDH, U/L | 338.0 (33.5–13,393.0) | 410.0 (33.5–13,393.0) | 312.0 (113.0–5599.0) | <0.001 |
Total bilirubin, mg/dL | 0.8 (0.1–29.8) | 1.0 (0.2–29.8) | 0.7 (0.1–20.7) | <0.001 |
Direct bilirubin, mg/dL | 0.3 (0.1–21.3) | 0.4 (0.1–21.3) | 0.3 (0.1–16.6) | <0.001 |
LDL-cholesterol, mg/dL | 58.0 (3.9–218.0) | 49.0 (3.9–167.0) | 68.5 (3.9–218.0) | <0.001 |
HDL-cholesterol, mg/dL | 28.0 (3.0–86.0) | 25.0 (3.0–86.0) | 29.5 (7.0–81.0) | 0.002 |
Triglycerides, mg/dL | 139.0 (34.0–722.0) | 140.0 (46.0–718.0) | 135.0 (34.0–722.0) | 0.296 |
Albumin, g/dL | 2.8 (1.4–5.2) | 2.6 (1.4–4.2) | 3.1 (1.4–5.2) | <0.001 |
Calcium, mg/dL | 8.2 (4.7–13.9) | 8.0 (4.7–13.6) | 8.2 (5.2–13.9) | <0.001 |
Phosphorus, mg/dL | 4.0 (1.0–15.6) | 4.2 (1.0–15.6) | 3.6 (1.0–8.8) | <0.001 |
Magnesium, mg/dL | 2.0 (1.0–5.6) | 2.1 (1.0–3.8) | 1.9 (1.1–5.6) | 0.006 |
Sodium, mmol/L | 137.0 (110.0–185.0) | 138.0 (119.0–164.0) | 136.0 (110.0–185.0) | 0.118 |
Potassium, mmol/L | 4.4 (1.9–8.6) | 4.4 (2.2–8.6) | 4.3 (1.9–6.4) | 0.073 |
C-reactive protein, mg/L | 104.8 (0.6–458.0) | 114.4 (2.1–427.4) | 83.9 (0.6–458.0) | 0.004 |
PRC, µg/L | 1.0 (0.0–100.0) | 1.6 (0.0–100.0) | 0.4 (0.0–100.0) | <0.001 |
TSH, mU/L | 1.2 (0.0–57.0) | 1.2 (0.0–21.6) | 1.3 (0.0–57.0) | 0.855 |
T3, ng/L | 1.4 (0.4–10.3) | 1.3 (0.4–10.3) | 1.5 (0.4–6.4) | 0.007 |
T4, ng/L | 11.3 (0.6–22.8) | 11.1 (2.6–22.8) | 11.4 (0.6–22.6) | 0.202 |
Ferritin, µg/L | 582.0 (3.9–31,069.0) | 839.0 (35.0–31,069.0) | 430.0 (3.9–8601.0) | <0.001 |
Folate, µg/L | 6.0 (1.2–20.0) | 6.6 (1.2–20.0) | 5.7 (1.3–20.0) | 0.707 |
Vitamin B12, pmol/L | 610.0 (100.0–4000.0) | 744.0 (100.0–4000.0) | 490.0 (100.0–2000.0) | <0.001 |
HbA1c, % | 6.4 (4.4–18.8) | 6.0 (4.4–11.1) | 6.5 (4.7–18.8) | 0.035 |
Vitamin D, ng/L | 6.1 (3.0–47.3) | 7.1 (3.0–34.4) | 5.6 (3.0–47.3) | 0.731 |
INR | 1.4 (0.9–20.0) | 1.5 (1.0–20.0) | 1.3 (1.0–7.2) | <0.001 |
Fibrinogen, g/L | 3.9 (0.3–13.1) | 3.6 (0.3–11.6) | 4.0 (1.1–13.1) | 0.011 |
D-dimer, mg/L | 4.8 (0.2–74.8) | 5.9 (0.2–74.8) | 3.9 (0.4–35.2) | <0.001 |
Indices | ||||
CAR | 38.1 (0.2–267.2) | 44.7 (0.5–267.2) | 27.4 (0.2–158.3) | <0.001 |
HALP score | 146.3 (0.2–10353.4) | 125.4 (0.8–10,353.4) | 171.8 (0.2–2161.4) | 0.067 |
BCI | 55,745.6 (746.0–669,385.2) | 81,283.2 (866.8–624,041.8) | 40,089.0 (746.0–669,385.2) | <0.001 |
LMR | 1.6 (0.0–1674.4) | 1.6 (0.0–57.9) | 1.7 (1.1–1674.4) | 0.330 |
PLR | 0.2 (0.0–176.7) | 0.2 (0.0–73.4) | 0.2 (0.0–176.2) | 0.904 |
SII | 1839.1 (0.1–2,971,761.6) | 1828.0 (0.1–1,443,410.1) | 1868.2 (0.1–2,971,761.6) | 0.920 |
SIRI | 5729.5 (0.8–16,839,784.2) | 5949.9 (0.7–16,839,784.2) | 5594.8 (0.5–90,973.6) | 0.256 |
PNI | 33.2 (17.1–113.5) | 30.1 (17.1–113.5) | 35.6 (19.1–63.0) | <0.001 |
LOS, days | ||||
Hospital LOS | 15.0 (0.0–745.0) | 17.0 (0.0–745.0) | 13.0 (0.0–670.0) | 0.493 |
ICU LOS | 6.0 (0.0–126.0) | 8.0 (0.0–126.0) | 4.0 (0.0–108.0) | <0.001 |
Parameters | p-Value | Cut-Off Value | AUC | Sensitivity | Specificity | PPV | NPV |
---|---|---|---|---|---|---|---|
PNI | <0.001 | ≤29.7 | 0.675 | 49.3 | 82.3 | 74.6 | 60.5 |
CAR | <0.001 | >27.9 | 0.609 | 68.5 | 51.8 | 60.2 | 60.7 |
HALP score | 0.067 | ≤133.2 | 0.553 | 54.0 | 61.5 | 59.6 | 55.9 |
BCI | <0.001 | >23,282.4 | 0.648 | 87.2 | 40.0 | 56.7 | 77.6 |
APACHE II score | <0.001 | >24 | 0.769 | 80.2 | 65.4 | 70.4 | 76.3 |
SOFA score | <0.001 | >7 | 0.879 | 79.2 | 81.9 | 82.4 | 78.6 |
Mortality-Related Parameters for Models | HR | 95% CI | p-Value | |
---|---|---|---|---|
Lower Bound | Upper Bound | |||
Model 1 † | ||||
Age, years | 1.069 | 1.004 | 1.139 | 0.038 |
SOFA score | 2.145 | 1.568 | 2.935 | <0.001 |
Phosphorus | 0.608 | 0.381 | 0.969 | 0.037 |
Model 2 ‡ | ||||
Age, years | 1.053 | 1.021 | 1.085 | 0.001 |
SOFA score | 1.740 | 1.505 | 2.011 | <0.001 |
CAR | 1.012 | 1.002 | 1.022 | 0.023 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kollu, K.; Yortanli, B.C.; Cicek, A.N.; Susam, E.; Karakas, N.; Kizilarslanoglu, M.C. Investigation of the Prognostic Value of Novel Laboratory Indices in Patients with Sepsis in an Intensive Care Unit: A Retrospective Observational Study. J. Clin. Med. 2025, 14, 6765. https://doi.org/10.3390/jcm14196765
Kollu K, Yortanli BC, Cicek AN, Susam E, Karakas N, Kizilarslanoglu MC. Investigation of the Prognostic Value of Novel Laboratory Indices in Patients with Sepsis in an Intensive Care Unit: A Retrospective Observational Study. Journal of Clinical Medicine. 2025; 14(19):6765. https://doi.org/10.3390/jcm14196765
Chicago/Turabian StyleKollu, Korhan, Betul Cigdem Yortanli, Ayse Nur Cicek, Emre Susam, Nalan Karakas, and Muhammet Cemal Kizilarslanoglu. 2025. "Investigation of the Prognostic Value of Novel Laboratory Indices in Patients with Sepsis in an Intensive Care Unit: A Retrospective Observational Study" Journal of Clinical Medicine 14, no. 19: 6765. https://doi.org/10.3390/jcm14196765
APA StyleKollu, K., Yortanli, B. C., Cicek, A. N., Susam, E., Karakas, N., & Kizilarslanoglu, M. C. (2025). Investigation of the Prognostic Value of Novel Laboratory Indices in Patients with Sepsis in an Intensive Care Unit: A Retrospective Observational Study. Journal of Clinical Medicine, 14(19), 6765. https://doi.org/10.3390/jcm14196765