Correlation Between Volumetric Soft Tissue Asymmetry and Postero-Anterior Cephalometric Measurements in Patients with Skeletal Facial Asymmetry: A Cross-Sectional Pilot Study
Abstract
1. Introduction
2. Materials and Methods
2.1. Subjects, Eligibility Criteria and Ethics
- (1)
- Japanese adults and adolescents with permanent dentition.
- (2)
- Diagnosis of facial asymmetry by both clinical assessment and radiographic evaluation.
- (3)
- Planned orthognathic surgery as part of treatment at our institution.
- (4)
- No history of orthodontic or orthognathic treatment prior to enrollment.
- (1)
- Presence of craniofacial syndromes (e.g., hemifacial microsomia), congenital anomalies such as cleft lip and/or palate.
- (2)
- History of facial trauma or maxillofacial surgery that could alter craniofacial morphology.
- (3)
- Systemic diseases or conditions that could affect craniofacial growth and development.
2.2. Three-Dimensional Facial Image Acquisition and Asymmetry Assessment
2.3. Cephalometric Analysis
2.4. Reliability
2.5. Sample Size Calculation
2.6. Statistical Analysis
3. Results
3.1. Volumetric Soft Tissue Asymmetry
3.2. Correlation Between Skeletal Asymmetry and Soft Tissue Asymmetry
3.2.1. Lower Face
3.2.2. Whole Face
3.2.3. Midface
3.3. Summary of Effect Sizes
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Thiesen, G.; Gribel, B.F.; Freitas, M.P.M. Facial asymmetry: A current review. Dental Press J. Orthod. 2015, 20, 110–125. [Google Scholar] [CrossRef]
- Cheong, Y.-W.; Lo, L.-J. Facial asymmetry: Etiology, evaluation, and management. Chang Gung Med. J. 2011, 34, 341–351. [Google Scholar]
- Severt, T.R.; Proffit, W.R. The prevalence of facial asymmetry in the dentofacial deformities population at the University of North Carolina. Int. J. Adult Orthodon. Orthognath. Surg. 1997, 12, 171–176. [Google Scholar]
- Suzuki, Y.; Saitoh, K.; Imamura, R.; Ishii, K.; Negishi, S.; Imamura, R.; Yamaguchi, M.; Kasai, K. Relationship between molar occlusion and masticatory movement in lateral deviation of the mandible. Am. J. Orthod. Dentofac. Orthop. 2017, 151, 1139–1147. [Google Scholar] [CrossRef]
- Choi, H.-J.; Kim, T.-W.; Ahn, S.-J.; Lee, S.-J.; Donatelli, R.E. The relationship between temporomandibular joint disk displacement and mandibular asymmetry in skeletal Class III patients. Angle Orthod. 2011, 81, 624–631. [Google Scholar] [CrossRef] [PubMed]
- Mi, Y.L.; Xi, W.Q.; Deng, Y.W.; Zhang, F. Orthodontic-surgical treatment of facial asymmetry associated with skeletal Class III malocclusion. Zhonghua Kou Qiang Yi Xue Za Zhi 2019, 54, 391–395. [Google Scholar] [CrossRef]
- Lyu, L.; Zhang, M.-J.; Wen, A.-N.; Wang, S.; Zhao, Y.-J.; Wang, Y.; Yu, T.-T.; Liu, D. 3D facial mask for facial asymmetry diagnosis. Heliyon 2024, 10, e26734. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.-S.; Youn, I.-S.; Lee, K.-H.; Lim, H.-J. Classification of facial asymmetry by cluster analysis. Am. J. Orthod. Dentofac. Orthop. 2007, 132, 279.e1–279.e6. [Google Scholar] [CrossRef] [PubMed]
- Trpkova, B.; Prasad, N.G.; Lam, E.W.N.; Raboud, D.; Glover, K.E.; Major, P.W. Assessment of facial asymmetries from posteroanterior cephalograms: Validity of reference lines. Am. J. Orthod. Dentofac. Orthop. 2003, 123, 512–520. [Google Scholar] [CrossRef]
- Susarla, S.M.; Dodson, T.B.; Kaban, L.B. Measurement and interpretation of a maxillary occlusal cant in the frontal plane. J. Oral Maxillofac. Surg. 2008, 66, 2498–2502. [Google Scholar] [CrossRef]
- Graber, T.M. A critical review of clinical cephalometric radiography. Am. J. Orthod. 1954, 40, 1–26. [Google Scholar] [CrossRef]
- Kecik, D.; Kocadereli, I.; Saatci, I. Evaluation of the treatment changes of functional posterior crossbite in the mixed dentition. Am. J. Orthod. Dentofac. Orthop. 2007, 131, 202–215. [Google Scholar] [CrossRef]
- Pawar, A.L.; Shivasubramanya, J.B.; Parambil, S.K.; Raju, A.S.; Debata, A. Cephalometric analysis of hard and soft tissue changes following anterior maxillary osteotomy distraction in cleft maxillary hypoplasia. J. Maxillofac. Oral Surg. 2021, 20, 680–688. [Google Scholar] [CrossRef]
- Sassouni, V. Diagnosis and treatment planning via roentgenographic cephalometry. Am. J. Orthod. 1958, 44, 433–463. [Google Scholar] [CrossRef]
- Brown, T.; Abbott, A.H. Computer-assisted location of reference points in three dimensions for radiographic cephalometry. Am. J. Orthod. Dentofac. Orthop. 1989, 95, 490–498. [Google Scholar] [CrossRef]
- Katsumata, A.; Fujishita, M.; Maeda, M.; Ariji, Y.; Ariji, E.; Langlais, R.P. 3D-CT evaluation of facial asymmetry. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endod. 2005, 99, 212–220. [Google Scholar] [CrossRef]
- Levy, C.; Alt, S.; Gajny, L.; Schouman, T.; Dot, G. Comparison of facial asymmetry assessment by frontal teleradiography and 3D imaging. Orthod. Fr. 2025, 95, 335–345. [Google Scholar] [CrossRef]
- Shimizu, M.; Nakajima, Y.; Ogasawara, T.; Uezono, M.; Moriyama, K. Assessment of mandibular landmark specification: Correspondence between 2-dimensional radiography and 3-dimensional computed tomography. Dentomaxillofac. Radiol. 2025, 54, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Aljawad, H.; Lim, H.-J.; Lee, K.C. Anthropometric comparison of 3-dimensional facial scan taken with a low-cost facial scanner with cone-beam computed tomography scan. J. Craniofac. Surg. 2023, 34, 1456–1458. [Google Scholar] [CrossRef]
- Kau, C.H.; Richmond, S. Three-Dimensional Imaging for Orthodontics and Maxillofacial Surgery; John Wiley & Sons; Wiley-Blackwell: Hoboken, NJ, USA, 2010. [Google Scholar] [CrossRef]
- Gwilliam, J.R.; Cunningham, S.J.; Hutton, T. Reproducibility of soft tissue landmarks on three-dimensional facial scans. Eur. J. Orthod. 2006, 28, 408–415. [Google Scholar] [CrossRef] [PubMed]
- Evangelista, K.; Ferrari-Piloni, C.; Barros, L.A.N.; Avelino, M.A.G.; Cevidanes, L.H.S.; Ruellas, A.C.O.; Valladares-Neto, J.; Silva, M.A.G. Three-dimensional assessment of craniofacial asymmetry in children with transverse maxillary deficiency after rapid maxillary expansion: A prospective study. Orthod. Craniofac. Res. 2020, 23, 300–312. [Google Scholar] [CrossRef] [PubMed]
- Evangelista, K.; Valladares-Neto, J.; Silva, M.A.G.; Cevidanes, L.H.S.; Ruellas, A.C.O. Three-dimensional assessment of mandibular asymmetry in skeletal Class I and unilateral crossbite malocclusion in 3 different age groups. Am. J. Orthod. Dentofac. Orthop. 2020, 158, 209–220. [Google Scholar] [CrossRef]
- Kwon, S.M.; Hwang, J.J.; Jung, Y.-H.; Cho, B.-H.; Lee, K.-J.; Hwang, C.-J.; Choi, S.-H. Similarity index for intuitive assessment of three-dimensional facial asymmetry. Sci. Rep. 2019, 9, 10959. [Google Scholar] [CrossRef]
- Plooij, J.M.; Maal, T.J.J.; Haers, P.; Borstlap, W.A.; Kuijpers-Jagtman, A.M.; Bergé, S.J. Digital three-dimensional image fusion processes for planning and evaluating orthodontics and orthognathic surgery: A systematic review. Int. J. Oral Maxillofac. Surg. 2011, 40, 341–352. [Google Scholar] [CrossRef] [PubMed]
- Primozic, J.; Antolic, V.; Ovsenik, M.; Primozic, J. Three-dimensional evaluation of the association between face and back asymmetry among pre-pubertal subjects. Eur. J. Paediatr. Dent. 2023, 24, 124–128. [Google Scholar] [CrossRef]
- Othman, S.A.; Ahmad, R.; Asi, S.M.; Ismail, N.H.; Rahman, Z.A.A. Three-dimensional quantitative evaluation of facial morphology in adults with unilateral cleft lip and palate, and patients without clefts. Br. J. Oral Maxillofac. Surg. 2014, 52, 208–213. [Google Scholar] [CrossRef] [PubMed]
- Uesugi, S.; Yonemitsu, I.; Kokai, S.; Takei, M.; Omura, S.; Ono, T. Features in subjects with the frontal occlusal plane inclined toward the contralateral side of the mandibular deviation. Am. J. Orthod. Dentofac. Orthop. 2016, 149, 46–54. [Google Scholar] [CrossRef]
- Masuoka, N.; Momoi, Y.; Ariji, Y.; Nawa, H.; Muramatsu, A.; Goto, S.; Ariji, E. Can cephalometric indices and subjective evaluation be consistent for facial asymmetry? Angle Orthod. 2005, 75, 651–655. [Google Scholar] [CrossRef]
- Maeda, M.; Katsumata, A.; Ariji, Y.; Muramatsu, A.; Yoshida, K.; Goto, S.; Kurita, K.; Ariji, E. 3D-CT evaluation of facial asymmetry in patients with maxillofacial deformities. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. Endodontol. 2006, 102, 382–390. [Google Scholar] [CrossRef]
- Damstra, J.; Fourie, Z.; Ren, Y. Evaluation and comparison of postero-anterior cephalograms and cone-beam computed tomography images for the detection of mandibular asymmetry. Eur. J. Orthod. 2013, 35, 45–50. [Google Scholar] [CrossRef]
- Choi, K.Y. Analysis of facial asymmetry. Arch. Craniofac. Surg. 2015, 16, 1–10. [Google Scholar] [CrossRef]
- Savoldelli, C.; Benat, G.; Castillo, L.; Chamorey, E.; Lutz, J.-C. Accuracy, repeatability and reproducibility of a handheld three-dimensional facial imaging device: The Vectra H1. J. Stomatol. Oral Maxillofac. Surg. 2019, 120, 289–296. [Google Scholar] [CrossRef]
- Jodeh, D.S.; Rottgers, S.A. High-fidelity anthropometric facial measurements can be obtained from a single stereophotograph from the Vectra H1 3-dimensional camera. Cleft Palate Craniofac. J. 2019, 56, 1164–1170. [Google Scholar] [CrossRef]
- Ueda, N.; Imai, Y.; Yamakawa, N.; Yagyuu, T.; Tamaki, S.; Nakashima, C.; Nakagawa, M.; Kirita, T. Assessment of facial symmetry by three-dimensional stereophotogrammetry after mandibular reconstruction: A comparison with subjective assessment. J. Stomatol. Oral Maxillofac. Surg. 2021, 122, 56–61. [Google Scholar] [CrossRef]
- Meng, T.; Guo, X.; Lian, W.; Deng, K.; Gao, L.; Wang, Z.; Huang, J.; Wang, X.; Long, X.; Xing, B. Identifying facial features and predicting patients of acromegaly using three-dimensional imaging techniques and machine learning. Front. Endocrinol. 2020, 11, 492. [Google Scholar] [CrossRef]
- Kundi, I.U.; Kumar, H.; Baig, M.N.; Alam, M.K.; Alashraray, Y.A.M.; Al Sharari, E.M.S. Posterior anterior (PA) cephalometric assessment for Saudi adult male population. Pak. Oral Dent. J. 2018, 38, 457–462. [Google Scholar]
- Bajaj, K.; Rathee, P.; Jain, P.; Panwar, V.R. Comparison of the reliability of anatomic landmarks based on PA cephalometric radiographs and 3D CT scans in patients with facial asymmetry. Int. J. Clin. Pediatr. Dent. 2011, 4, 213–223. [Google Scholar] [CrossRef] [PubMed]
- Kim, J.-Y.; Jung, H.-D.; Jung, Y.-S.; Hwang, C.-J.; Park, H.-S. A simple classification of facial asymmetry by TML system. J. Craniomaxillofac. Surg. 2014, 42, 313–320. [Google Scholar] [CrossRef] [PubMed]
- Landis, J.R.; Koch, G.G. The measurement of observer agreement for categorical data. Biometrics 1977, 33, 159–174. [Google Scholar] [CrossRef]
- Cohen, J. Statistical Power Analysis for the Behavioral Sciences, 2nd ed.; Lawrence Erlbaum Associates: Hillsdale, NJ, USA, 1988. [Google Scholar]
- Cohen, J. A power primer. Psychol. Bull. 1992, 112, 155–159. [Google Scholar] [CrossRef]
- Eskes, M.; van Alphen, M.J.A.; Smeele, L.E.; Brandsma, D.; Balm, A.J.M.; van der Heijden, F. Predicting 3D lip movement using facial sEMG: A first step towards estimating functional and aesthetic outcome of oral cancer surgery. Med. Biol. Eng. Comput. 2017, 55, 573–583. [Google Scholar] [CrossRef] [PubMed]
No. | Landmark/Measurement | Definition |
---|---|---|
Landmarks | ||
CG | Crista galli | Most superior point of the crista galli in the midline |
ANS | Anterior nasal spine | Most anterior point of the anterior nasal spine |
Lo | Orbitale lateral point | Intersection of the lateral orbital rim and oblique line |
J | Jugale | Intersection of the maxillary tuberosity and zygomatic arch |
Mo | Maxillary first molar | Center of the maxillary first molar |
U1 | Upper central incisor | Midpoint of the maxillary central incisor |
Go | Gonion | Most lateral point on the mandibular angle |
Ag | Antegonial notch | Most concave point of the antegonial notch |
Me | Menton | Most inferior point on the mandibular symphysis |
Reference lines | ||
Midline | CG–ANS | Line connecting CG and ANS |
Lo line | Lo(a)–Lo(b) | Line connecting bilateral Lo points |
FP | Lo(a)–Ag(a) | Line from Lo on deviated side to Ag on same side |
FP′ | Lo(b)–Ag(b) | Line from Lo on contralateral side to Ag on same side |
Linear measurements | ||
① | Lo line | Distance between Lo(a) and Lo(b) |
② | FP(a) | Distance Lo(a)–Ag(a) |
③ | FP(b) | Distance Lo(b)–Ag(b) |
④ | Lo line–J(a) | Perpendicular distance from Lo line to J(a) |
⑤ | Lo line–J(b) | Perpendicular distance from Lo line to J(b) |
⑥ | Lo line–J diff | Difference between ④ and ⑤ |
⑦ | Lo line–Mo(a) | Perpendicular distance from Lo line to Mo(a) |
⑧ | Lo line–Mo(b) | Perpendicular distance from Lo line to Mo(b) |
⑨ | Lo line–Mo diff | Difference between ⑦ and ⑧ |
⑩ | Midline–J(a) | Distance from midline to J(a) |
⑪ | Midline–J(b) | Distance from midline to J(b) |
⑫ | Midline–J diff | Difference between ⑩ and ⑪ |
⑬ | Midline–Mo(a) | Distance from midline to Mo(a) |
⑭ | Midline–Mo(b) | Distance from midline to Mo(b) |
⑮ | Midline–Mo diff | Difference between ⑬ and ⑭ |
⑯ | Midline–U1 | Distance from midline to U1 |
⑰ | Go(a)–Me | Distance between Go(a) and Me |
⑱ | Go(b)–Me | Distance between Go(b) and Me |
⑲ | Go–Me diff | Difference between ⑰ and ⑱ |
⑳ | Midline–Me | Distance from midline to Me |
㉑ | L6(a)–FP | Distance from upper first molar on deviated side to FP |
㉒ | L6(b)–FP′ | Distance from upper first molar on contralateral side to FP′ |
㉓ | L6(a)–Midline | Distance from upper first molar on deviated side to midline |
㉔ | L6(b)–Midline | Distance from upper first molar on contralateral side to midline |
Angular measurements | ||
㉕ | ∠Fmp | Angle between Go(a)–Go(b) and perpendicular to midline |
㉖ | ∠J | Angle between J(a)–J(b) and perpendicular to midline |
㉗ | ∠Ocl | Angle between Mo(a)–Mo(b) and perpendicular to midline |
㉘ | ∠Mea | Angle between ANS–Me and midline |
No | Variable | Mean | 95% CI Lower | 95% CI Upper | SD | Min | Max |
---|---|---|---|---|---|---|---|
① | Lo line | 93.35 | 92.05 | 94.65 | 3.67 | 87.40 | 101.90 |
② | FP(a) | 97.62 | 95.35 | 99.88 | 6.39 | 85.30 | 109.30 |
③ | FP(b) | 98.85 | 96.71 | 101.00 | 6.04 | 87.40 | 112.40 |
④ | Lo line–J(a) | 61.15 | 59.28 | 63.01 | 5.25 | 50.40 | 70.40 |
⑤ | Lo line–J(b) | 61.92 | 59.93 | 63.92 | 5.63 | 49.60 | 72.30 |
⑥ | Lo line–J diff | −0.78 | −1.61 | 0.06 | 2.36 | −6.50 | 5.80 |
⑦ | Lo line–Mo(a) | 81.64 | 79.72 | 83.57 | 5.43 | 70.40 | 93.80 |
⑧ | Lo line–Mo(b) | 83.39 | 81.44 | 85.34 | 5.50 | 70.90 | 95.40 |
⑨ | Lo line–Mo diff | −1.75 | −2.39 | −1.10 | 1.82 | −5.00 | 1.50 |
⑩ | Midline–J(a) | 33.74 | 32.44 | 35.04 | 3.66 | 24.60 | 46.00 |
⑪ | Midline–J(b) | 33.30 | 32.13 | 34.46 | 3.28 | 26.70 | 42.70 |
⑫ | Midline–J diff | 0.45 | −0.43 | 1.32 | 2.47 | −4.60 | 6.00 |
⑬ | Midline–Mo(a) | 24.66 | 23.65 | 25.67 | 2.84 | 18.60 | 30.00 |
⑭ | Midline–Mo(b) | 21.98 | 21.06 | 22.91 | 2.61 | 17.00 | 28.40 |
⑮ | Midline–Mo diff | 2.68 | 1.23 | 4.12 | 4.07 | −5.80 | 12.00 |
⑯ | Midline–U1 | 0.93 | 0.56 | 1.30 | 1.03 | −1.00 | 3.20 |
⑰ | Go(a)–Me | 61.18 | 58.86 | 63.49 | 6.53 | 49.20 | 71.70 |
⑱ | Go(b)–Me | 65.37 | 63.37 | 67.36 | 5.63 | 55.40 | 74.90 |
⑲ | Go–Me diff | −4.19 | −5.65 | −2.73 | 4.12 | −14.70 | 2.40 |
⑳ | Midline–Me | 4.26 | 3.05 | 5.48 | 3.43 | 0.30 | 11.80 |
㉑ | L6(a)–FP | 24.67 | 23.33 | 26.01 | 3.77 | 17.40 | 31.40 |
㉒ | L6(b)–FP’ | 24.46 | 23.58 | 25.35 | 2.50 | 19.40 | 29.10 |
㉓ | L6(a)–Midline | 23.82 | 22.70 | 24.95 | 3.17 | 16.80 | 30.60 |
㉔ | L6(b)–Midline | 21.01 | 20.03 | 21.98 | 2.75 | 13.30 | 26.20 |
㉕ | ∠Fmp | 1.88 | 1.13 | 2.63 | 2.12 | 0.00 | 9.00 |
㉖ | ∠J | 1.64 | 1.07 | 2.20 | 1.59 | 0.00 | 7.00 |
㉗ | ∠Ocl | 1.94 | 1.10 | 2.78 | 2.36 | 0.00 | 9.00 |
㉘ | ∠Mea | 3.68 | 2.92 | 4.44 | 2.14 | 0.00 | 8.00 |
No | Variable | R2 Whole Face | R2 Lower Face | R2 Midface |
---|---|---|---|---|
① | Lo line | 0.004 | <0.001 | 0.005 |
② | FP(a) | <0.001 | 0.003 | 0.000 |
③ | FP(b) | 0.005 | <0.001 | 0.006 |
④ | Lo line–J(a) | 0.011 | 0.007 | 0.001 |
⑤ | Lo line–J(b) | 0.004 | 0.003 | 0.000 |
⑥ | Lo line–J diff | 0.007 | 0.003 | 0.002 |
⑦ | Lo line–Mo(a) | 0.009 | 0.004 | 0.008 |
⑧ | Lo line–Mo(b) | <0.001 | 0.002 | 0.004 |
⑨ | Lo line–Mo diff | 0.095 | 0.106 | 0.008 |
⑩ | Midline–J(a) | 0.171 * | 0.125 | 0.186 * |
⑪ | Midline–J(b) | 0.006 | 0.001 | 0.052 |
⑫ | Midline–J diff | 0.260 ** | 0.226 * | 0.112 |
⑬ | Midline–Mo(a) | 0.180 * | 0.168 * | 0.015 |
⑭ | Midline–Mo(b) | 0.216 * | 0.159 * | 0.041 |
⑮ | Midline–Mo diff | 0.353 ** | 0.295 ** | 0.046 |
⑯ | Midline–U1 | 0.077 | 0.115 | 0.001 |
⑰ | Go(a)–Me | 0.021 | 0.041 | 0.012 |
⑱ | Go(b)–Me | 0.012 | 0.007 | 0.028 |
⑲ | Go–Me diff | 0.145 * | 0.187 * | 0.003 |
⑳ | Midline–Me | 0.630 ** | 0.629 ** | 0.129 |
㉑ | L6(a)–FP | 0.003 | 0.001 | 0.011 |
㉒ | L6(b)–FP’ | 0.010 | 0.013 | 0.000 |
㉓ | L6(a)–Midline | 0.246 * | 0.237 * | 0.029 |
㉔ | L6(b)–Midline | 0.262 ** | 0.203 * | 0.061 |
㉕ | ∠Fmp | 0.035 | 0.034 | 0.002 |
㉖ | ∠J | 0.015 | 0.019 | 0.014 |
㉗ | ∠Ocl | 0.003 | <0.001 | 0.000 |
㉘ | ∠Mea | 0.342 ** | 0.292 ** | 0.036 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tanaka, S.; Shimpo, Y.; Sato, H.; Sekiya, T.; Ueda, S.; Kariya, C.; Oikawa, T.; Tomonari, H. Correlation Between Volumetric Soft Tissue Asymmetry and Postero-Anterior Cephalometric Measurements in Patients with Skeletal Facial Asymmetry: A Cross-Sectional Pilot Study. J. Clin. Med. 2025, 14, 6721. https://doi.org/10.3390/jcm14196721
Tanaka S, Shimpo Y, Sato H, Sekiya T, Ueda S, Kariya C, Oikawa T, Tomonari H. Correlation Between Volumetric Soft Tissue Asymmetry and Postero-Anterior Cephalometric Measurements in Patients with Skeletal Facial Asymmetry: A Cross-Sectional Pilot Study. Journal of Clinical Medicine. 2025; 14(19):6721. https://doi.org/10.3390/jcm14196721
Chicago/Turabian StyleTanaka, Saki, Yudai Shimpo, Hiromi Sato, Toshiko Sekiya, Shotaro Ueda, Chihiro Kariya, Takashi Oikawa, and Hiroshi Tomonari. 2025. "Correlation Between Volumetric Soft Tissue Asymmetry and Postero-Anterior Cephalometric Measurements in Patients with Skeletal Facial Asymmetry: A Cross-Sectional Pilot Study" Journal of Clinical Medicine 14, no. 19: 6721. https://doi.org/10.3390/jcm14196721
APA StyleTanaka, S., Shimpo, Y., Sato, H., Sekiya, T., Ueda, S., Kariya, C., Oikawa, T., & Tomonari, H. (2025). Correlation Between Volumetric Soft Tissue Asymmetry and Postero-Anterior Cephalometric Measurements in Patients with Skeletal Facial Asymmetry: A Cross-Sectional Pilot Study. Journal of Clinical Medicine, 14(19), 6721. https://doi.org/10.3390/jcm14196721