Early Detection of Palliative Care Needs in Critically Ill Patients Using the NECPAL Tool
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Design
2.2. Participants
2.3. Study Outcomes
2.4. Variables and Tools
2.5. Ethics Approval and Consent to Participate
2.6. Statistical Analysis
2.7. Sample Size
3. Results
3.1. Baseline Characteristics
3.2. Need for PC Assessed by NECPAL
3.3. NECPAL Items and Discrimination Capabilities
3.4. Outcome and NECPAL Status
3.5. Multivariable Models for ICU Mortality
3.6. Multivariable Models for ICU Length of Stay
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Traue, D.C.; Ross, J.R. Palliative Care in Non-Malignant Diseases. J. R. Soc. Med. 2005, 98, 503–506. [Google Scholar] [CrossRef] [PubMed]
- Flores, Y.N.; Roberton, T.; Toledano, M.T.; Machado, C.J.; Hernández, A.L.; García Mora, C.A.; Maceira, D.; Noonan, C.M.; Prado, A.M.; Samuels, T.A.; et al. The Role of Demographic and Epidemiologic Transitions on Growing Health Expenditures in Latin America and the Caribbean: A Descriptive Study. Lancet Reg. Health—Am. 2025, 44, 101070. [Google Scholar] [CrossRef]
- Shi, Z.; Du, M.; Zhu, S.; Lei, Y.; Xu, Q.; Li, W.; Gu, W.; Zhao, N.; Chen, Y.; Liu, W.; et al. Factors Influencing Accessibility of Palliative Care: A Systematic Review and Meta-Analysis. BMC Palliat. Care 2025, 24, 80. [Google Scholar] [CrossRef]
- Llobera, J.; Sansó, N.; Ruiz, A.; Llagostera, M.; Serratusell, E.; Serrano, C.; Roselló, M.L.M.; Benito, E.; Castaño, E.J.; Leiva, A. Strengthening Primary Health Care Teams with Palliative Care Leaders: Protocol for a Cluster Randomized Clinical Trial. BMC Palliat. Care 2018, 17, 4. [Google Scholar] [CrossRef]
- Kesecioglu, J.; Rusinova, K.; Alampi, D.; Arabi, Y.M.; Benbenishty, J.; Benoit, D.; Boulanger, C.; Cecconi, M.; Cox, C.; Van Dam, M.; et al. European Society of Intensive Care Medicine Guidelines on End of Life and Palliative Care in the Intensive Care Unit. Intensive Care Med. 2024, 50, 1740–1766. [Google Scholar] [CrossRef]
- Truog, R.D.; Campbell, M.L.; Curtis, J.R.; Haas, C.E.; Luce, J.M.; Rubenfeld, G.D.; Rushton, C.H.; Kaufman, D.C. Recommendations for End-of-Life Care in the Intensive Care Unit: A Consensus Statement by the American College of Critical Care Medicine. Crit. Care Med. 2008, 36, 953–963. [Google Scholar] [CrossRef]
- Metaxa, V.; Anagnostou, D.; Vlachos, S.; Arulkumaran, N.; Bensemmane, S.; Van Dusseldorp, I.; Aslakson, R.A.; Davidson, J.E.; Gerritsen, R.T.; Hartog, C.; et al. Palliative Care Interventions in Intensive Care Unit Patients. Intensive Care Med. 2021, 47, 1415–1425. [Google Scholar] [CrossRef] [PubMed]
- Martins, B.D.C.P.C.C.; Oliveira, R.A.; Cataneo, A.J.M. Palliative Care for Terminally Ill Patients in the Intensive Care Unit: Systematic Review and Metaanalysis. Palliat. Support. Care 2017, 15, 376–383. [Google Scholar] [CrossRef]
- Neukirchen, M.; Metaxa, V.; Schaefer, M.S. Palliative Care in Intensive Care. Intensive Care Med. 2023, 49, 1538–1540. [Google Scholar] [CrossRef] [PubMed]
- The DISPROPRICUS study group of the Ethics Section of the ESICM; Van Den Bulcke, B.; Metaxa, V.; Reyners, A.K.; Rusinova, K.; Jensen, H.I.; Malmgren, J.; Darmon, M.; Talmor, D.; Meert, A.-P.; et al. Ethical Climate and Intention to Leave among Critical Care Clinicians: An Observational Study in 68 Intensive Care Units across Europe and the United States. Intensive Care Med. 2020, 46, 46–56. [Google Scholar] [CrossRef]
- Schallenburger, M.; Schwartz, J.; Icks, A.; In Der Schmitten, J.; Batzler, Y.-N.; Meier, S.; Mendez-Delgado, M.; Tenge, T.; Neukirchen, M. Triggers of Intensive Care Patients with Palliative Care Needs from Nurses’ Perspective: A Mixed Methods Study. Crit. Care 2024, 28, 181. [Google Scholar] [CrossRef]
- Meadow, W.; Pohlman, A.; Frain, L.; Ren, Y.; Kress, J.P.; Teuteberg, W.; Hall, J. Power and Limitations of Daily Prognostications of Death in the Medical Intensive Care Unit. Crit. Care Med. 2011, 39, 474–479. [Google Scholar] [CrossRef]
- Carson, S.S.; Kahn, J.M.; Hough, C.L.; Seeley, E.J.; White, D.B.; Douglas, I.S.; Cox, C.E.; Caldwell, E.; Bangdiwala, S.I.; Garrett, J.M.; et al. A Multicenter Mortality Prediction Model for Patients Receiving Prolonged Mechanical Ventilation. Crit. Care Med. 2012, 40, 1171–1176. [Google Scholar] [CrossRef]
- Meddick-Dyson, S.A.; Boland, J.W.; Pearson, M.; Greenley, S.; Gambe, R.; Budding, J.R.; Murtagh, F.E.M. Implementing Palliative Care in the Intensive Care Unit: A Systematic Review and Mapping of Knowledge to the Implementation Research Logic Model. Intensive Care Med. 2024, 50, 1778–1790. [Google Scholar] [CrossRef]
- Valenti, V.; Rossi, R.; Scarpi, E.; Dall’Agata, M.; Bassi, I.; Cravero, P.; La Manna, G.; Magnoni, G.; Marchello, M.; Mosconi, G.; et al. Identification of Palliative Care Needs and Prognostic Factors of Survival in Tailoring Appropriate Interventions in Advanced Oncological, Renal and Pulmonary Diseases: A Prospective Observational Protocol. BMJ Open 2023, 13, e065971. [Google Scholar] [CrossRef]
- Bustamante-Fermosel, A.; Díaz-Sánchez, E.; Pavón-Muñoz, N.; Hennekinne, L.; Gil-Gil, F.; Notario-Leo, H.; Sánchez-Pizarro, A.; Bustamante-Vega, M.; Torres-Macho, J.; Franco-Moreno, A.; et al. External Validation of the NECPAL CCOMS-ICO Prognostic Tool for Early Palliative Care and Mortality Prediction in Patients with Advanced Chronic Conditions: A Prospective Observational Study Protocol. Methods Protoc. 2025, 8, 45. [Google Scholar] [CrossRef]
- Kentish-Barnes, N.; Nelson, J.E. Palliative Care in the ICU: From Oxymoron to Standard of Care. Intensive Care Med. 2025, 51, 1511–1513. [Google Scholar] [CrossRef] [PubMed]
- Gómez-Batiste, X.; Martínez-Muñoz, M.; Blay, C.; Amblàs, J.; Vila, L.; Costa, X.; Espaulella, J.; Villanueva, A.; Oller, R.; Martori, J.C.; et al. Utility of the NECPAL CCOMS-ICO© Tool and the Surprise Question as Screening Tools for Early Palliative Care and to Predict Mortality in Patients with Advanced Chronic Conditions: A Cohort Study. Palliat. Med. 2017, 31, 754–763. [Google Scholar] [CrossRef] [PubMed]
- Spannella, F.; Falzetti, S.; Giulietti, F.; Sarnari, S.; Morichi, V.; Tamburrini, P.; Gattafoni, P.; Mannello, L.; Crippa, M.; Ferrara, L.; et al. Prognostic Role of NECPAL CCOMS-ICO Tool on One-Year Mortality in a Hospitalized Older Population. J. Palliat. Med. 2024, 27, 367–375. [Google Scholar] [CrossRef] [PubMed]
- Yarnell, C.J.; Jewell, L.M.; Astell, A.; Pinto, R.; Devine, L.A.; Detsky, M.E.; Downar, J.; Ilan, R.; Rawal, S.; Wong, N.; et al. Observational Study of Agreement between Attending and Trainee Physicians on the Surprise Question: “Would You Be Surprised If This Patient Died in the next 12 Months?”. PLoS ONE 2021, 16, e0247571. [Google Scholar] [CrossRef]
- Mehta, A.; Chai, E.; Berglund, K.; Rizzo, E.; Moreno, J.; Gelfman, L.P. Using Admission Karnofsky Performance Status as a Guide for Palliative Care Discharge Needs. J. Palliat. Med. 2021, 24, 910–913. [Google Scholar] [CrossRef]
- Rottler, M.; Ocskay, K.; Sipos, Z.; Görbe, A.; Virág, M.; Hegyi, P.; Molnár, T.; Erőss, B.; Leiner, T.; Molnár, Z. Clinical Frailty Scale (CFS) Indicated Frailty Is Associated with Increased in-Hospital and 30-Day Mortality in COVID-19 Patients: A Systematic Review and Meta-Analysis. Ann. Intensive Care 2022, 12, 17. [Google Scholar] [CrossRef]
- Remelli, F.; Scaramuzzo, G.; Capuzzo, M.; Maietti, E.; Berselli, A.; Denti, M.; Zani, G.; Squadrani, E.; La Rosa, R.; Volta, C.A.; et al. Frailty Trajectories in ICU Survivors: A Comparison between the Clinical Frailty Scale and the Tilburg Frailty Indicator and Association with 1 Year Mortality. J. Crit. Care 2023, 78, 154398. [Google Scholar] [CrossRef]
- Firth, D. Bias Reduction of Maximum Likelihood Estimates. Biometrika 1993, 80, 27–38. [Google Scholar] [CrossRef]
- Norton, E.C.; Dowd, B.E.; Maciejewski, M.L. Marginal Effects—Quantifying the Effect of Changes in Risk Factors in Logistic Regression Models. JAMA 2019, 321, 1304–1305. [Google Scholar] [CrossRef]
- R Development Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2015. [Google Scholar]
- Hanley, J.A.; McNeil, B.J. The Meaning and Use of the Area under a Receiver Operating Characteristic (ROC) Curve. Radiology 1982, 143, 29–36. [Google Scholar] [CrossRef] [PubMed]
- Hochberg, C.H.; Gersten, R.A.; Aziz, K.B.; Krasne, M.D.; Yan, L.; Turnbull, A.E.; Brodie, D.; Churchill, M.; Doberman, D.J.; Iwashyna, T.J.; et al. The Real-World Effect of Early Screening for Palliative Care Criteria in a Medical Intensive Care Unit: An Instrumental Variable Analysis. Ann. Am. Thorac. Soc. 2025, 22, 247–254. [Google Scholar] [CrossRef]
- Wallerstedt, B.; Benzein, E.; Schildmeijer, K.; Sandgren, A. What Is Palliative Care? Perceptions of Healthcare Professionals. Scand. J. Caring Sci. 2019, 33, 77–84. [Google Scholar] [CrossRef]
- Spadaro, S.; Capuzzo, M.; Valpiani, G.; Bertacchini, S.; Ragazzi, R.; Dalla Corte, F.; Terranova, S.; Marangoni, E.; Volta, C.A. Fatigue in Intensive Care Survivors One Year after Discharge. Health Qual. Life Outcomes 2016, 14, 148. [Google Scholar] [CrossRef]
- Remelli, F.; Castellucci, F.; Vitali, A.; Mattioli, I.; Zurlo, A.; Spadaro, S.; Volpato, S. Predictive Value of Geriatric-quickSOFA in Hospitalized Older People with Sepsis. BMC Geriatr. 2021, 21, 241. [Google Scholar] [CrossRef] [PubMed]
- Turrillas, P.; Peñafiel, J.; Tebé, C.; Amblàs-Novellas, J.; Gómez-Batiste, X. NECPAL Prognostic Tool: A Palliative Medicine Retrospective Cohort Study. BMJ Support. Palliat. Care 2024, 14, e1909–e1918. [Google Scholar] [CrossRef] [PubMed]
- Ito, K.; George, N.; Wilson, J.; Bowman, J.; Aaronson, E.; Ouchi, K. Primary Palliative Care Recommendations for Critical Care Clinicians. J. Intensive Care 2022, 10, 20. [Google Scholar] [CrossRef] [PubMed]
NECPAL | Overall | Positive | Negative | p-Value | |
---|---|---|---|---|---|
Total, n (%) | 85 | 28 (32.9) | 57 (67.1) | ||
Males, n (%) | 52 (61.2) | 15 (53.6) | 37 (64.9) | 0.350 | |
Age (years), Median (IQR) | 73.0 (58.0 to 78.0) | 77.0 (73.0 to 80.2) | 66.0 (58.0 to 76.0) | 0.001 | |
Clinical Frailty Scale, n (%) | Frail (CFS ≥ 5) | 35 (41.2) | 18 (64.2) | 17 (29.8) | 0.001 |
Non-frail (CFS < 5) | 50 (58.8) | 10 (35.8) | 40 (70.2) | ||
Karnofsky Performance Status, Median (IQR) | 70 (60.0 to 90.0) | 55 (50.0 to 70.0) | 80 (70.0 to 90.0) | <0.001 | |
Number of hospital admissions in the 12 preceding months, n (%) | ≤1 | 70 (82.4) | 22 (78.6) | 48 (84.2) | 0.351 |
≥2 | 15 (17.6) | 6 (21.4) | 9 (15.8) | ||
Comorbidities ≥ 2, n (%) | 73 (85.9) | 27 (96.4) | 46 (80.7) | 0.050 | |
Wards before ICU admission, n (%) | Other ICU | 3 (3.5) | 0 (0.0) | 3 (5.3) | 0.028 |
Floor | 17 (20.0) | 8 (28.6) | 9 (15.8) | ||
Operating room | 58 (68.2) | 15 (53.6) | 43 (75.4) | ||
Emergency department | 7 (8.2) | 5 (17.9) | 2 (3.5) | ||
Pre-ICU admission LOS (days), Median (IQR) | 1.0 (0.0 to 3.0) | 0.0 (0.0 to 4.5) | 1.0 (0.0 to 3.0) | 0.415 | |
ICU admission diagnosis, n (%) | Cardiovascular | 15 (17.6) | 6 (21.4) | 9 (15.8) | 0.027 |
Infectious | 25 (29.4) | 11 (39.3) | 14 (24.6) | ||
Respiratory | 37 (43.5) | 7 (25.0) | 30 (52.6) | ||
Renal | 1 (1.2) | 0 (0.0) | 1 (1.8) | ||
Neurological | 3 (3.5) | 3 (10.7) | 0 (0.0) | ||
Others | 4 (4.7) | 1 (3.6) | 3 (5.3) | ||
Ventilatory support, n (%) | Invasive | 58 (68.2) | 18 (64.3) | 40 (70.2) | 0.829 |
Non-invasive | 14 (16.5) | 5 (17.9) | 9 (15.8) | ||
No support | 13 (15.3) | 5 (17.9) | 8 (14.0) |
Panel A NECPAL | ||||
NECPAL+ | NECPAL− | p-Value | ||
Total, n (%) | 28 (32.9) | 57 (67.1) | ||
ICU outcome, n (%) | Transferred | 19 (67.9) | 56 (98.2) | <0.001 |
Dead | 9 (32.1) | 1 (1.8) | ||
ICU-LOS (days), Median (IQR) | 11.0 (8.0 to 16.2) | 10.0 (5.0 to 14.0) | 0.364 | |
Panel B SQ | ||||
---|---|---|---|---|
SQ+ | SQ− | p-Value | ||
Total, n (%) | 53 (62.4) | 32 (37.6) | ||
ICU outcome, n (%) | Transferred | 43 (81.1) | 32 (100.0) | 0.011 |
Dead | 10 (18.9) | 0 (0.0) | ||
ICU-LOS (days), Median (IQR) | 11.0 (8.0 to 17.0) | 8.5 (4.0 to 13.2) | 0.098 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Spadaro, S.; Azzolina, D.; Vuan, A.; Colasanto, L.; Manzetto, C.; Busnardo, A.; Filieri, G.; Fagogeni, P.; Ganzaroli, F.; Gamanji, V.; et al. Early Detection of Palliative Care Needs in Critically Ill Patients Using the NECPAL Tool. J. Clin. Med. 2025, 14, 6244. https://doi.org/10.3390/jcm14176244
Spadaro S, Azzolina D, Vuan A, Colasanto L, Manzetto C, Busnardo A, Filieri G, Fagogeni P, Ganzaroli F, Gamanji V, et al. Early Detection of Palliative Care Needs in Critically Ill Patients Using the NECPAL Tool. Journal of Clinical Medicine. 2025; 14(17):6244. https://doi.org/10.3390/jcm14176244
Chicago/Turabian StyleSpadaro, Savino, Danila Azzolina, Adelaide Vuan, Luigi Colasanto, Cristiana Manzetto, Alessandra Busnardo, Grazia Filieri, Persefoni Fagogeni, Francesco Ganzaroli, Viorel Gamanji, and et al. 2025. "Early Detection of Palliative Care Needs in Critically Ill Patients Using the NECPAL Tool" Journal of Clinical Medicine 14, no. 17: 6244. https://doi.org/10.3390/jcm14176244
APA StyleSpadaro, S., Azzolina, D., Vuan, A., Colasanto, L., Manzetto, C., Busnardo, A., Filieri, G., Fagogeni, P., Ganzaroli, F., Gamanji, V., Poles, G., Spinazzola, G., Volta, C. A., Scaramuzzo, G., & Gulmini, L. (2025). Early Detection of Palliative Care Needs in Critically Ill Patients Using the NECPAL Tool. Journal of Clinical Medicine, 14(17), 6244. https://doi.org/10.3390/jcm14176244