The Dynamic Field of Perioperative Treatment for Localized Muscle-Invasive Bladder Cancer: A Review of the Current Research Landscape
Abstract
1. Introduction
2. Materials and Methods
3. Synthesis of the Evidence
3.1. Neoadjuvant Treatment
3.1.1. Neoadjuvant Single-Agent Immunotherapy and Antibody Drug Conjugates
3.1.2. Neoadjuvant Immunotherapy Combination
3.1.3. Neoadjuvant Combination of Immunotherapy and Chemotherapy
3.2. Adyuvant Treatment
3.2.1. Adjuvant Platinum-Based Chemotherapy
3.2.2. Adjuvant Single-Agent Immunotherapy
3.3. Perioperative Treatment
3.3.1. Perioperative Trials for Cisplatin-Eligible Patients
3.3.2. Perioperative Trials for Cisplatin-Ineligible Patients
Combination of Chemotherapy and Immunotherapy
Combination of Immunotherapy and ADC
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Conflicts of Interest
Abbreviations
AC | Adjuvant Chemotherapy |
ADC | Antibody–Drug Conjugate |
AI | Artificial intelligence |
BCG | Bacillus Calmette–Guérin |
CISCA | Cisplatin + Cyclophosphamid + Adriamycin |
CM | Cisplatin + Methotrexate |
CMV | Cisplatin + Methotrexate + Vinblastine |
ctDNA | circulating tumor DNA |
CTLA-4 | Cytotoxic T-lymphocyte–associated protein 4 |
dd-MVAC | dose-dense Methotrexate, Vinblastine, Doxorubicin, and Cisplatin |
DFS | Disease-Free Survival |
DV | Disitamab Vedotin |
EFS | Event-Free Survival |
EMA | European Medicines Agency |
EV | Enfortumab Vedotin |
FDA | Food And Drug Administration |
HR | Hazard Ratio |
MIUC | Muscle-Invasive UC |
MVAC | Methotrexate + Vinblastine + Adriamycin + Cisplatin |
NAC | Neoadjuvant chemotherapy |
NMIBC | Non–Muscle-Invasive Bladder Cancer |
OS | Overall Survival |
PARP | Poly (ADP-ribose) polymerase |
pCR | Pathological Complete Response |
PD-1 | Programmed death-1 |
PD-L1 | Programmed Death-Ligand 1 |
PFS | Progression-Free Survival |
RCT | Randomized Controlled Trials |
RFS | Recurrence-Free Survival |
TGF-β | Transforming Growth Factor beta |
TMB | Tumor mutational burden |
TURBT | Transurethral Resection of Bladder Tumor |
TROP2 | Trophoblast cell-surface antigen 2 |
UC | Urothelial Carcinoma |
References
- Rey-Cárdenas, M.; Guerrero-Ramos, F.; Lista, A.G.d.L.; Carretero-González, A.; Bote, H.; Herrera-Juárez, M.; Carril-Ajuria, L.; Martín-Soberón, M.; Sepulveda, J.M.; Billalabeitia, E.G.; et al. Recent advances in neoadjuvant immunotherapy for urothelial bladder cancer: What to expect in the near future. Cancer Treat. Rev. 2021, 2, 102142. [Google Scholar] [CrossRef]
- Guerrero-Ramos, F.; González-Padilla, D.A.; Pérez-Cadavid, S.; García-Rojo, E.; Tejido-Sánchez, Á.; Hernández-Arroyo, M.; Gómez-Cañizo, C.; Rodríguez-Antolín, A. Muscle-Invasive Bladder Cancer in Non-Curative Patients: A Study on Survival and Palliative Care Needs. Cancers 2024, 16, 3330. [Google Scholar] [CrossRef] [PubMed]
- Powles, T.; Valderrama, B.P.; Gupta, S.; Bedke, J.; Kikuchi, E.; Hoffman-Censits, J.; Iyer, G.; Vulsteke, C.; Park, S.H.; Shin, S.J.; et al. Enfortumab Vedotin and Pembrolizumab in Untreated Advanced Urothelial Cancer. N. Engl. J. Med. 2024, 390, 875–888. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Wu, J.; Zhang, Y.; Shang, H. Recent Advances of Neoadjuvant Immunotherapy for Urothelial Bladder Cancer. Ann. Surg. Oncol. 2024, 31, 5851–5859. [Google Scholar] [CrossRef] [PubMed]
- Crupi, E.; de Padua, T.C.; Marandino, L.; Raggi, D.; Dyrskjøt, L.; Spiess, P.E.; Sonpavde, G.P.; Kamat, A.M.; Necchi, A. Circulating tumor DNA as a Predictive and Prognostic Biomarker in the Perioperative Treatment of Muscle-invasive Bladder Cancer: A Systematic Review. Eur. Urol. Oncol. 2024, 7, 44–52. [Google Scholar] [CrossRef]
- Gómez del Cañizo, C. Descripción del Microambiente Tumoral y Estudio de Biomarcadores de Respuesta a Atezolizumab y BCG en Pacientes con Cáncer de Vejiga no Músculo-Invasivo de Alto Riesgo; Universidad complutense de Madrid: Madrid, Spain, 2024. [Google Scholar]
- Pfister, C.; Gravis, G.; Fléchon, A.; Chevreau, C.; Mahammedi, H.; Laguerre, B.; Guillot, A.; Joly, F.; Soulié, M.; Allory, Y.; et al. Dose-Dense Methotrexate, Vinblastine, Doxorubicin, and Cisplatin or Gemcitabine and Cisplatin as Perioperative Chemotherapy for Patients with Nonmetastatic Muscle-Invasive Bladder Cancer: Results of the GETUG-AFU V05 VESPER Trial. J. Clin. Oncol. 2022, 40, 2013–2022. [Google Scholar] [CrossRef]
- Necchi, A.; Raggi, D.; Gallina, A.; Madison, R.; Colecchia, M.; Lucianò, R.; Montironi, R.; Giannatempo, P.; Farè, E.; Pederzoli, F.; et al. Updated Results of PURE-01 with Preliminary Activity of Neoadjuvant Pembrolizumab in Patients with Muscle-invasive Bladder Carcinoma with Variant Histologies. Eur. Urol. 2020, 77, 439–446. [Google Scholar] [CrossRef]
- Powles, T.; Kockx, M.; Rodriguez-Vida, A.; Duran, I.; Crabb, S.J.; Van Der Heijden, M.S.; Szabados, B.; Pous, A.F.; Gravis, G.; Herranz, U.A.; et al. Clinical efficacy and biomarker analysis of neoadjuvant atezolizumab in operable urothelial carcinoma in the ABACUS trial. Nat. Med. 2019, 25, 1706–1714. [Google Scholar] [CrossRef]
- Szabados, B.; Martinez, E.N.; Marquez, F.A.; Gauna, D.C.; Rodriguez-Vida, A.; de Espana, M.G.; Hussain, S.; Fernandez, C.A.; Linch, M.; Abella, T.B.; et al. 2363MO A phase II study investigating the safety and efficacy of neoadjuvant atezolizumab in non-urothelial, muscle invasive bladder cancer (ABACUS-2). Ann. Oncol. 2023, 2, S1201–S1202. [Google Scholar] [CrossRef]
- Tagawa, S.T.; Balar, A.V.; Petrylak, D.P.; Kalebasty, A.R.; Loriot, Y.; Fléchon, A.; Jain, R.K.; Agarwal, N.; Bupathi, M.; Barthelemy, P.; et al. TROPHY-U-01: A Phase II Open-Label Study of Sacituzumab Govitecan in Patients with Metastatic Urothelial Carcinoma Progressing After Platinum-Based Chemotherapy and Checkpoint Inhibitors. J. Clin. Oncol. 2021, 39, 2474–2485. [Google Scholar] [CrossRef]
- Loriot, Y.; Petrylak, D.; Kalebasty, A.R.; Fléchon, A.; Jain, R.; Gupta, S.; Bupathi, M.; Beuzeboc, P.; Palmbos, P.; Balar, A.; et al. TROPHY-U-01, a phase II open-label study of sacituzumab govitecan in patients with metastatic urothelial carcinoma progressing after platinum-based chemotherapy and checkpoint inhibitors: Updated safety and efficacy outcomes. Ann. Oncol. 2024, 35, 392–401. [Google Scholar] [CrossRef] [PubMed]
- Cigliola, A.; Moschini, M.; Tateo, V.; Mercinelli, C.; Patanè, D.; Crupi, E.; Colombo, R.; Scattoni, V.; Brembilla, G.; Colecchia, M.; et al. Perioperative sacituzumab govitecan alone or in combination with pembrolizumab for patients with muscle-invasive urothelial bladder cancer (SURE-01/02): Interim results. In Proceedings of the ASCO Genitourinary Cancers Symposium 2024, San Francisco, CA, USA, 25–27 January 2024. [Google Scholar]
- van Dijk, N.; Gil-Jimenez, A.; Silina, K.; Hendricksen, K.; Smit, L.A.; de Feijter, J.M.; van Montfoort, M.L.; van Rooijen, C.; Peters, D.; Broeks, A.; et al. Preoperative ipilimumab plus nivolumab in locoregionally advanced urothelial cancer: The NABUCCO trial. Nat. Med. 2020, 26, 1839–1844. [Google Scholar] [CrossRef] [PubMed]
- Rodriguez-Moreno, J.F.; Ruiz-Llorente, S.; De Velasco, G.; Alvarez-Fernandez, C.; Collado Martín, R.; Fernandez, R.; Vazquez-Estevez, S.; Virizuela, J.A.; Gajate, P.; Font, A.; et al. Comprehensive molecular characterization of MIBC treated with durvalumab plus olaparib in the neoadjuvant setting: NeoDURVARIB trial. In Proceedings of the ASCO Genitourinary Cancers Symposium 2022, San Francisco, CA, USA, 17–19 February 2022. [Google Scholar]
- Li, R.; Villa, N.Y.; Yu, X.; Johnson, J.O.; Borjas, G.; Dhillon, J.; Moran-Segura, C.M.; Kim, Y.; Francis, N.; Dorman, D.; et al. Oncolytic immunotherapy with nivolumab in muscle-invasive bladder cancer: A phase 1b trial. Nat. Med. 2025, 31, 176–188. [Google Scholar] [CrossRef] [PubMed]
- Blanc, J.; Carnot, A.; Barthélémy, P.; Casert, V.; Staudacher, L.; Van den Brande, J.; Sautois, B.; Vanhaudenarde, V.; Seront, E.; Debien, V.; et al. Avelumab as neoadjuvant therapy in patients with muscle-invasive urothelial carcinoma (MIUC): Survival data of AURA trial, Oncodistinct 004. In Proceedings of the ASCO Genitourinary Cancers Symposium 2024, San Francisco, CA, USA, 25–27 January 2024. [Google Scholar]
- Daneshmand, S.; Kamat, A.M.; Shore, N.D.; Meeks, J.J.; Galsky, M.D.; Jacob, J.M.; van der Heijden, M.S.; Williams, S.B.; Powles, T.; Chang, S.S.; et al. Development of TAR-200: A novel targeted releasing system designed to provide sustained delivery of gemcitabine for patients with bladder cancer. Urol. Oncol. 2025, 43, 286–296. [Google Scholar] [CrossRef]
- Guerrero-Ramos, F.; Boormans, J.L.; Daneshmand, S.; Gontero, P.; Kamat, A.M.; Rouprêt, M.; Vilaseca, A.; Shariat, S.F. Novel Delivery Systems and Pharmacotherapeutic Approaches for the Treatment of Non-muscle-invasive Bladder Cancer. Eur. Urol. Oncol. 2024, 7, 1267–1279. [Google Scholar] [CrossRef]
- Daneshmand, S.; Van der Heijden, M.S.; Guerrero-Ramos, F.; Bögemann, M.; Simone, G.; Pieczonka, C.M.; Canales Casco, N.; Zainfeld, D.; Spiegelhalder, P.; Xylinas, E.; et al. TAR-200 for Bacillus Calmette-Guérin–Unresponsive High-Risk Non–Muscle-Invasive Bladder Cancer: Results From the Phase IIb SunRISe-1 Study. J Clin. Oncol. 2025, IN PRESS. [Google Scholar] [CrossRef]
- Necchi, A.; Guerrero-Ramos, F.; Crispen, P.L. TAR 200 plus cetrelimab or cetrelimab alone as neoadjuvant therapy in patients with muscle invasive bladder cancer ineligible for or refusing neoadjuvant platinum based chemotherapy: Interim analysis of SunRISe 4 (IBCN 2024). In Proceedings of the International Bladder Cancer Network (IBCN) 2024, Bern, Switzerland, 19–21 September 2024. [Google Scholar]
- Tyson, M.D.; Morris, D.; Palou, J.; Rodriguez, O.; Mir, M.C.; Dickstein, R.J.; Guerrero-Ramos, F.; Scarpato, K.R.; Hafron, J.M.; Messing, E.M.; et al. Safety, Tolerability, and Preliminary Efficacy of TAR-200 in Patients with Muscle-invasive Bladder Cancer Who Refused or Were Unfit for Curative-intent Therapy: A Phase 1 Study. J. Urol. 2023, 209, 890–900. [Google Scholar] [CrossRef]
- Gupta, S.; Sonpavde, G.; Weight, C.J.; McGregor, B.A.; Gupta, S.; Maughan, B.L.; Wei, X.X.; Gibb, E.; Thyagarajan, B.; Einstein, D.J.; et al. Application of artificial intelligence features of nuclear morphology from BLASST 1 bladder cancer signal seeking trial of nivolumab, gemcitabine, and cisplatin in patients with muscle invasive bladder cancer undergoing cystectomy. In Proceedings of the ASCO Genitourinary Cancers Symposium 2024, San Francisco, CA, USA, 6 February 2024. [Google Scholar]
- van der Heijden, A.G.; Bruins, H.M.; Carrion, A.; Cathomas, R.; Compérat, E.; Dimitropoulos, K.; Efstathiou, J.A.; Fietkau, R.; Kailavasan, M.; Lorch, A.; et al. European Association of Urology guidelines on muscle invasive and metastatic bladder cancer. 2025 update. Eur. Urol. 2025, 87, 582–600. [Google Scholar] [CrossRef]
- Kronstedt, S.; Saffati, G.; Hinojosa-Gonzalez, D.E.; Doppalapudi, S.K.; Boyle, J.; Chua, K.; Jang, T.L.; Cacciamani, G.E.; Ghodoussipour, S. Early Adjuvant Chemotherapy Improves Survival in Muscle Invasive Bladder Cancer: A Systematic Review and Meta-analysis. Urology 2024, 2, 289–294. [Google Scholar] [CrossRef]
- Milowsky, M.I.; Galsky, M.D.; Witjes, J.A.; Gschwend, J.E.; Schenker, M.; Valderrama, B.P.; Tomita, Y.; Bamias, A.; Lebret, T.; Shariat, S.F.; et al. Adjuvant nivolumab (NIVO) vs placebo (PBO) for high-risk muscle-invasive urothelial carcinoma (MIUC): Additional efficacy outcomes including overall survival (OS) in patients (pts) with muscle-invasive bladder cancer (MIBC) from CheckMate 274. J. Clin. Oncol. 2025, 43 (Suppl. S2), 658. [Google Scholar] [CrossRef]
- Apolo, A.B.; Ballman, K.V.; Sonpavde, G.; Berg, S.; Kim, W.Y.; Parikh, R.; Teo, M.Y.; Sweis, R.F.; Geynisman, D.M.; Grivas, P.; et al. Adjuvant Pembrolizumab versus Observation in Muscle-Invasive Urothelial Carcinoma. N. Engl. J. Med. 2025, 392, 45–55. [Google Scholar] [CrossRef] [PubMed]
- Bajorin, D.F.; Witjes, J.A.; Gschwend, J.E.; Schenker, M.; Valderrama, B.P.; Tomita, Y.; Bamias, A.; Lebret, T.; Shariat, S.F.; Park, S.H.; et al. Adjuvant Nivolumab versus Placebo in Muscle-Invasive Urothelial Carcinoma. N. Engl. J. Med. 2021, 384, 2102–2114. [Google Scholar] [CrossRef]
- Bellmunt, J.; Hussain, M.; Gschwend, J.E.; Albers, P.; Oudard, S.; Castellano, D.; Daneshmand, S.; Nishiyama, H.; Majchrowicz, M.; Degaonkar, V.; et al. Adjuvant atezolizumab versus observation in muscle-invasive urothelial carcinoma (IMvigor010): A multicentre, open-label, randomised, phase 3 trial. Lancet Oncol. 2021, 22, 525–537. [Google Scholar] [CrossRef]
- Powles, T.; Assaf, Z.J.; Davarpanah, N.; Banchereau, R.; Szabados, B.E.; Yuen, K.C.; Grivas, P.; Hussain, M.; Oudard, S.; Gschwend, J.E.; et al. ctDNA guiding adjuvant immunotherapy in urothelial carcinoma. Nature 2021, 595, 432–437. [Google Scholar] [CrossRef]
- Scilipoti, P.; Moschini, M.; Briganti, A. Reflections on the AMBASSADOR trial: The role of adjuvant pembrolizumab in muscle-invasive urothelial carcinoma. Cell Rep. Med. 2024, 5, 101873. [Google Scholar] [CrossRef]
- Lindskrog, S.V.; Dyrskjøt, L. Towards circulating tumor DNA-guided treatment of muscle-invasive bladder cancer. Transl. Androl. Urol. 2024, 13, 1056–1060. [Google Scholar] [CrossRef]
- Jackson-Spence, F.; Toms, C.; O’mAhony, L.F.; Choy, J.; Flanders, L.; Szabados, B.; Powles, T. IMvigor011: A study of adjuvant atezolizumab in patients with high-risk MIBC who are ctDNA+ post-surgery. Future Oncol. 2023, 19, 509–515. [Google Scholar] [CrossRef] [PubMed]
- Powles, T. Clinical outcomes in patients with high-risk, post-cystectomy muscle-invasive bladder cancer with persistent ctDNA- status on serial testing: Surveillance analysis from the IMvigor011 study. In Proceedings of the European Association of Urology Congress (EAU) 2024, Paris, France, 5–8 April 2024. [Google Scholar]
- Jensen, J.B.; Birkenkamp-Demtröder, K.; Nordentoft, I.; Milling, R.; Körner, S.; Brandt, S.; Knudsen, M.; Lam, G.; Dohn, L.; Fabrin, K.; et al. Identification of bladder cancer patients that could benefit from early post-cystectomy immunotherapy based on serial circulating tumour DNA (ctDNA) testing: Preliminary results from the TOMBOLA trial. Ann. Oncol. 2024, 35 (Suppl. S2), S1133. [Google Scholar] [CrossRef]
- Galsky, M.D.; Van Der Heijden, M.S.; Catto, J.W.; Al-Ahmadie, H.; Meeks, J.J.; Nishiyama, H.; Drakaki, A.; Vu, T.Q.; Antonuzzo, L.; Atduev, V.; et al. Additional efficacy and safety outcomes and an exploratory analysis of the impact of pathological complete response (pCR) on long-term outcomes from NIAGARA. J. Clin. Oncol. 2025, 43 (Suppl. S5), 659. [Google Scholar] [CrossRef]
- MODERN Study: Testing the Role of DNA Released from Tumor Cells into the Blood in Guiding the Use of Immunotherapy After Surgical Removal of the Bladder for Bladder Cancer Treatment. ClinicalTrials.gov. Updated 29 March 2024. Available online: https://classic.clinicaltrials.gov/ct2/show/NCT05987241 (accessed on 1 April 2024).
- Powles, T. Circulating tumor DNA (ctDNA) in patients with muscle-invasive bladder cancer (MIBC) who received perioperative durvalumab (D) in NIAGARA. In Proceedings of the ASCO Genitourinary Cancers Symposium 2025, Chicago, IL, USA, 30 May–3 June 2025. [Google Scholar]
- Powles, T. Perioperative durvalumab plus neoadjuvant chemotherapy followed by cystectomy and adjuvant durvalumab in muscle-invasive bladder cancer (NIAGARA trial): Late-breaking abstract LBA5. In Proceedings of the 2024 European Society for Medical Oncology Annual Congress, Barcelona, Spain, 13–17 September 2024. [Google Scholar]
- Sonpavde, G.; Necchi, A.; Gupta, S.; Steinberg, G.D.; E Gschwend, J.; Van Der Heijden, M.S.; Garzon, N.; Ibrahim, M.; Raybold, B.; Liaw, D.; et al. ENERGIZE: A Phase III study of neoadjuvant chemotherapy alone or with nivolumab with/without linrodostat mesylate for muscle-invasive bladder cancer. Future Oncol. 2020, 16, 4359–4368. [Google Scholar] [CrossRef]
- Sonpavde, G.P.; Alemany, C.A.; Mchayleh, W.; Pepe, J.W.; Coakley, S.; Young, A.; Jain, R.K. Phase II trial of lurbinectedin combined with avelumab as maintenance therapy for metastatic urothelial carcinoma with stable or responding disease following platinum-based chemotherapy. J. Clin. Oncol. 2023, 41 (Suppl. S6), TPS590. [Google Scholar] [CrossRef]
- Powles, T.; Drakaki, A.; Teoh, J.Y.C.; Grande, E.; Fontes-Sousa, M.; Porta, C.; Wu, E.; Goluboff, E.T.; Ho, S.; Hois, S.; et al. A Phase 3, Randomized, Open-Label, Multicenter, Global Study of the Efficacy and Safety of Durvalumab ± Tremelimumab + Enfortumab Vedotin for Neoadjuvant Treatment in Cisplatin-Ineligible MIBC (VOLGA). In Proceedings of the 2022 ASCO Genitourinary Cancers Symposium, San Francisco, CA, USA, 17–19 February 2022. [Google Scholar]
- Sheng, X.; Zhang, C.; Ji, Y.; Zhou, L.; Zou, B.; Huang, H.; Wang, Y.; Yang, K.; Bai, X.; Feng, D.; et al. Neoadjuvant treatment with disitamab vedotin plus perioperative toripalimab in patients with muscle-invasive bladder cancer (MIBC) with HER2 expression: Updated efficacy and safety results from the phase II RC48-C017 trial. In Proceedings of the 2025 ASCO Genitourinary Cancers Symposium, San Francisco, CA, USA, 30 January–1 February 2025. [Google Scholar]
- Necchi, A.; Joep, J.; Proudfoot, J.A.; Maiorano, B.A.; Cigliola, A.; Tateo, V.; Mercinelli, C.; Ravasi, M.; Davicioni, E.; Moschini, M.; et al. First results of SURE-2: A phase 2 study of Neoadjuvant Sacituzumab govitecan plus pembrolizumab, followed by reponse-adapted bladder sparing and adjuvant pembrolizumab, in patients with muscle-invasive bladder cancer (MIBC). In Proceedings of the ASCO ASCO Genitourinary Cancers Symposium 2025, Chicago, IL, USA, 30 May–3 June 2025. [Google Scholar]
- Bentebibel, S.-E.; Hurwitz, M.E.; Bernatchez, C.; Haymaker, C.; Hudgens, C.W.; Kluger, H.M.; Tetzlaff, M.T.; Tagliaferri, M.A.; Zalevsky, J.; Hoch, U.; et al. A First-in-Human Study and Biomarker Analysis of NKTR-214, a Novel IL2Rβγ-Biased Cytokine, in Patients with Advanced or Metastatic Solid Tumors. Cancer Discov. 2019, 9, 711–721. [Google Scholar] [CrossRef] [PubMed]
- Grivas, P.; Van Der Heijden, M.S.; Necchi, A.; Siefker-Radtke, A.O.; Cutuli, H.; Qureshi, A.H.; Kreiser, S.; Hodari, M.; Ravimohan, S.; Zakharia, Y. PIVOT IO 009: A phase 3, randomized study of neoadjuvant and adjuvant nivolumab plus bempegaldesleukin versus nivolumab alone versus standard of care in patients with cisplatin-ineligible muscle-invasive bladder cancer (MIBC). In Proceedings of the 2022 ASCO Genitourinary Cancers Symposium, San Francisco, CA, USA, 17–19 February 2022. [Google Scholar]
- Young, M.N.; Szabados, B.; Assaf, Z.; Jackson-Spence, F.; Nally, E.; Wells, C.; Suárez, C.; Castellano, D.; Powles, T.; Banchereau, R. Predictive value of dynamic changes in ctDNA and baseline biomarkers with neoadjuvant atezolizumab in operable urothelial carcinoma in the ABACUS trial. In Proceedings of the ASCO Genitourinary Cancers Symposium 2024, San Francisco, CA, USA, 25–27 January 2024. [Google Scholar]
- Duan, J.; Cui, L.; Zhao, X.; Bai, H.; Cai, S.; Wang, G.; Zhao, Z.; Zhao, J.; Chen, S.; Song, J.; et al. Use of Immunotherapy with Programmed Cell Death 1 vs Programmed Cell Death Ligand 1 Inhibitors in Patients with Cancer: A Systematic Review and Meta-analysis. JAMA Oncol. 2020, 6, 375. [Google Scholar] [CrossRef] [PubMed]
- Prasad, V.; Kim, C.; Burotto, M.; Vandross, A. The Strength of Association Between Surrogate End Points and Survival in Oncology: A Systematic Review of Trial-Level Meta-analyses. JAMA Intern. Med. 2015, 175, 1389. [Google Scholar] [CrossRef]
- Alimohamed, N.S. Potential impact of ctDNA on perioperative management of muscle-invasive bladder cancer. In Proceedings of the ASCO Genitourinary Cancers Symposium, San Francisco, CA, USA, 25–27 January 2025. [Google Scholar]
Trial (NCT) | Clinical Setting | Sample Size | Phase | Status | Experimental Arm | Primary Endpoint |
---|---|---|---|---|---|---|
NCT02736266 (PURE-01) | T2-4a N0M0 | 174 | II | Completed | pembrolizumab | pCR |
NCT03212651 (PANDORE) | T2-4a N0/xM0 | 41 | II | Completed | pembrolizumab | pCR |
NCT03319745 | T2-4a N0M0 | 23 | II | Completed | pembrolizumab | Incidence of adverse events |
NCT02662309 (ABACUS) | T2-4a N0M0 | 96 | II | Completed | atezolizumab | pCR |
NCT04624399 (ABACUS 2) | T2-4a N0M0 | 52 | II | Recruiting | atezolizumab | pCR changes in T cell subpopulations |
NCT02451423 | T2-4a N0M0 | 23 | II | Completed | atezolizumab | pCR, Change in CD3+ T cell count (cells/μm2) |
NCT00362713 | T2-4a N0M0 | 12 | I | Completed | ipilimumab | Safety |
NCT03498196 (BL-AIR) | T2-4a N0M0 | 1 | I–II | Terminated (low accrual) | avelumab | Change in T cell subpopulations |
NCT05226117 (SURE 01) | T2-T4 N0M0 | 56 | II | Unknown | sacituzumab govitecan | pCR |
Trial (NCT) | Clinical Setting | Sample Size | Phase | Status | Experimental Arm | Primary Endpoint |
---|---|---|---|---|---|---|
NCT03387761 (NABUCCO) | T3-4N0M0, T1-T4a N13M0 | 54 | Ib | Completed | nivolumab + ipilimumab | Feasibility |
NCT03520491 (CA209-9DJ) | T2-4a N0M0 | 45 | II | Recruiting | nivolumab + ipilimumab | Patients who proceed to surgery |
NCT02845323 | T2-4a N0M0 | 15 | II | Active, not recruiting | nivolumab + urelumab | CD8+ T cell density at cystectomy |
NCT03532451 | T2-4a N0M0 | 43 | I | Completed | nivolumab + lirilumab | Incidence of adverse events |
NCT04209114 | T2-4a N0M0 | 114 | III | Completed | nivolumab + NKTR-214 | pCR, EFS |
NCT03472274 (DUTRENEO) | T2-4aN0M0, T2-4a N1M0 | 101 | II | Completed | durvalumab + tremelimumab | Antitumor activity |
NCT02812420 | T2-4a N0M0 | 54 | I | Active, not recruiting | durvalumab + tremelimumab | Safety and tolerability |
NCT03234153 (NITIMIB) | T2-4aN0M0, T2-T4a N13M0 | 6 | II | Terminated (low accrual) | durvalumab + tremelimumab | ORR |
NCT03773666 (BLASST-2) | T2-4aN0M0 | 12 | I | Completed | durvalumab + oleclumab | Patients proceeding to surgery without DLT |
NCT04610671 | T2-T4a, N0-N1, M0 | 21 | I | Active, not recruiting | cretostimogene grenadenorepvec + nivolumab | Incidence of adverse events |
NCT03534492 (NEODURVARIB) | T2-4a N0M0 | 29 | II | Completed | durvalumab + olaparib | pCR |
Trial (NCT) | Clinical Setting | Sample Size | Phase | Status | Experimental Arm | Primary Endpoint |
---|---|---|---|---|---|---|
NCT03674424 (AURA) | T2-T4aN0-N2 M0 | 137 | II | Completed | avelumab + gemcitbine/cisplatin | pCR |
NCT03294304 (BLASST-1) | T2-T4a N0 M0 | 43 | II | Completed | nivolumab + gemcitbine/cisplatin | pCR |
NCT03773666 (BLASST-2) | T2-T4a N0 M0 | 12 | I | Completed | durvalumab +/− oleclumab | Safety and tolerability |
NCT04919512 (SUNRISE4) | T2-T4a N0 M0 | 163 | II | Active, not recruiting | cetrelimab +/− gemcitabine (TAR200) | pCR |
NCT03558087 | T2-4a N0M0 | 76 | II | Completed | nivolumab + gemcitabine/cisplatin | pCR |
NCT02365766 | T2-4a N0M0 | 83 | I–II | Completed | pembrolizumab + gemcitabine/cisplatin | Incidence of adverse events PaIR |
NCT02690558 | T2-4a N0/x M0 | 39 | II | Active, not recruiting | pembrolizumab + gemcitabine/cisplatin | Pathological downstaging to <pT2 |
NCT04383743 | T2-4a N0M0 | 17 | II | Active, not recruiting | pembrolizumab + aMVAC | pCR |
NCT03549715 (NEMIO) | T2-4a N0-1 M0 | 121 | I–II | Active, not recruiting | durvalumab + tremelimumab + MVAC | pCR Toxicity |
NCT02989584 | T2-4a N0/x M0 | 54 | I–II | Active, not recruiting | atezolizumab + gemcitabine/cisplatin | Safety |
NCT06341400 | T2-4a N0M0 | 55 | I–II | Recruiting | RC48-ADC disitamab-vedotin + toripalimab | pCR |
CheckMate274 | IMvigor010 | AMBASSADOR | |
---|---|---|---|
Description | Phase III, multicentre, double-blind, randomized | Phase III, multicentre, open-label, randomized | Phase III, multicentre, open-label, randomized |
Disease setting | 1. MIUC after surgery 2. High risk of recurrence 3. With or without NAC | 1. MIUC after surgery 2. High risk of recurrence | 1. MIUC after surgery 2. High risk of recurrence 3. NAC treatment: cisplatin-treated |
Drug | Randomization 1:1 Nivolumab (anti-PD1): n = 335 Placebo: n = 356 | Randomization 1:1: Atezolizumab (antiPD-L1): n = 406 Placebo: n = 403 | Randomization: 1:1 Pembrolizumab (anti-PD1): n = 354 Placebo: n = 348 |
Median Age (years) | 65 | 66 | 68 |
Prior NAC treatment | 308 (43%) | 385 (46%) | 447 (64%) |
Presence of N+ | 335 (47%) | 420 (52%) | 350 (50%) |
PD-L1 expression | ≥1%: 282 (40%) | IC0-1: 417 (52%) | Score ≥ 10: 404 (58%) |
Median follow up (months) | 21.9 | 20 | 44.8 |
DFS | Improved: 20.8 months nivolumab vs. 10.8 months placebo HR: 0.7 (98% CI 0.55–0.9), p < 0.001 | Not improved: 19.4 months atezolizumab vs. 16.6 months placebo. HR: 0.89 (95% CI 0.74–1.08), p = 0.24 | Improved: 29.6 months pembrolizumab vs. 14.2 months placebo HR: 0.73 (95% CI 0.59–0.9), p = 0.003 |
OS | Improved *: HR:0.72 (95%CI, 0.59–0.89), p < 0.001 | Not improved: HR: 0.85 (85% CI 0.66–1.09) p > 0.5 | Not improved HR: 0.98 (95% CI 0.86–1.26), p > 0.5 |
PD1/PD-L1 status | PD-L1+ had DFS greater benefit: 74.5% with nivolumab vs. 55.7% with placebo. HR = 0.55; (98.72% CI: 0.35–0.85); p < 0.001. | ctDNA analysis showed prognostic and potential benefit in PD-L1+, but not significant | PD-L1+ had DFS greater benefit (36.9 vs. 21 months) [23] |
ctDNA status | Not analyzed | Analyzed | Not analyzed |
Limitations | 1. No specification which groups does not benefit from adjuvant treatment. 2. ctDNA was not analyzed | 1. Did not meet primary endpoints: DFS nor OS. | 1. Did not meet OS endpoint 2. Substantial crossover from placebo to nivolumab (21%) 3. ctDNA was not analyzed |
Key outcomes | 1. FDA approval: MIUC at high risk of recurrence 2. EMA approval: MIUC at high risk of recurrence, expressing PD-L1 ≥ 1%. [23] | 1. ctDNA showed prognostic and predictive value, better than PD-L1. | 1. Adjuvant pembrolizumab demonstrated a significant DFS improvement, even greater in PD-L1+ |
IMvigor 011 | TOMBOLA | MODERN | |
---|---|---|---|
Start | 2021 | 2020 | 2024 |
Disease setting | 1. MIUC (>T2) and/or N+ 2. With or without NAC | 1. MIUC (cT2-4a) 2. NAC | 1. MIUC (>T2) and/or N+ after NAC 2. MIUC (>T3) and/or N+ without NAC and cisplatin-ineligible |
Patients(n) | 520 | 282 | 1190 |
Study type | Phase III, randomized, interventional | Phase III, non-randomized, national (Denmark) | Phase II/III, randomized, interventional |
ctDNA method | Tumor informed, 16-plez NGS | Tumor informed, ddPCR | Tumor informed, ddPCR |
Intervention | ctDNA +: randomized to adjuvant atezolizumab or no adjuvant therapy ctDNA-: ctDNA based surveillance | ctDNA +: adjuvant atezolizumab ctDNA-: ctDNA based surveillance | ctDNA+ (cohort A): randomized (a) adjuvant nivolumab (b) nivolumab + relatlimab (LAG-3 inhibitor) ctDNA- (cohort B): randomized (a) adjuvant nivolumab (b) ctDNA based surveillance |
Primary endpoint | DFS | Response rate (defined as ctDNA clearance and absence of radiographic disease) | Cohort A: OS and ctDNA clearance Cohort B: DFS |
NIAGARA | KEYNOTE-866 | ENERGIZE | |
---|---|---|---|
Study design | Phase III, randomized, placebo-controlled | ||
Status (Estimated Primary Completion) | Completed | Ongoing (2025) | Ongoing (2027) |
Patient population | 1. cT2-T4a N0-1 M0, cisplatin-eligible 2. histologic subtypes, divergent differentiation 3. CrCl of ≥40 mL/min. | 1. cT2-T4a N0-1 M0, cisplatin-eligible | 1. cT2-T4a N0 M0, cisplatin-eligible 2. Cr Cl ≥ 50 mL/min 3. Excluded: prior chemotherapy, RT, surgery (other than TURB) |
Immunotherapy | Durvalumab (anti-PD-L1) | Durvalumab (anti-PD-L1) | Nivolumab (anti-PD-1) ± Linrodostat (IDO1 inhibitor) |
Treatment timing | NAC (GC) + durvalumab RC Adjuvant durvalumab | NAC (GC) + pembrolizumab RC Adjuvant pembrolizumab | Arm B: NAC(GC) + Nivolumab + placebo RC Adjuvant Nivolumab + placebo; Arm C: NAC (GC) + Nivolumab + linrodostat RC adjuvant Nivolumab + linrodostat. |
Control arm | NAC (GC)+ placebo RC Adjuvant placebo | NAC (GC)+ placebo RC Adjuvant placebo | Arm A: NAC(GC) alone |
Primary endpoint | EFS, pCR | EFS, pCR | pCR EFS (arms C vs. A; B vs. A) |
Secondary endpoints | OS, downstaging, safety, tolerability | OS, DFS, pathologic downstaging, safety, tolerability | OS, safety, tolerability |
Biomarker integration | Exploratory: PD-L1, mRNA panels, TMB | Exploratory: PD-L1, mutations-FGFR | Exploratory: PD-L1, IDO1 expression, TMB |
Unique features | Potential new treatment for cisplatin-eligible MIBC | Large global trial with pembrolizumab | Adds IDO1 inhibition to PD-1 blockade, targeting tumor immune evasion |
Trial (NCT) | Clinical Setting | Sample Size | Phase | Status | Experimental Arm | Primary Endpoint |
---|---|---|---|---|---|---|
NCT01812369 (VESPER) | T2-4a N0-Nx M0 | 500 | III | Completed | gemcitabine/cisplatin/ddMVAC | PFS |
NCT02177695 (COXEN) | 237 | II | Completed | gemcitabine/cisplatin/ddMVAC | Predictive value of COXEN score for pCR | |
NCT03732677 (NIAGARA) | T2-4a N0M0 | 1063 | III | Active, not recruiting | durvalumab + gemcitabine/cisplatin | pCR EFS |
NCT05535218 (SURE02) | T2-T3bN0M0 | 48 | II | Active, not recruiting | pembrolizumab+ sacituzumab govitecan | pCR |
NCT03661320 (ENERGIZE) | T2-4a N0M0 | 861 | III | Active, not recruiting | nivolumab + gemcitabine/cisplatin +/− BMS-986205 | pCR EFS |
NCT03924895 (KEYNOTE-905/EV-303) | cT2-T4aN0M0/T1-T4a N1M0 | 595 | III | Active, not recruiting | pembrolizumab+/− enfortumab vedotin | pCR EFS |
NCT03924856 (KEYNOTE-866) | T2-T4aN0M0/T1-T4a N1M0 | 907 | III | Active, not recruiting | pembrolizumab+ gemcitabine/cisplatin | pCR EFS |
NCT03406650 (SAKK 06/17) | T2-T4a N0-1 M0 | 61 | II | Active, not recruiting | durvalumab + gemcitabine/cisplatin | EFS |
NCT04876313 (NURE-Combo) | T2-T4a N0M0 | 29 | II | Recruiting | nivolumab+ nab-paclitaxel | pCR |
NCT04960709 (VOLGA) | T2-T4aN0-1M0 T1N1M0 | 712 | III | Active, not recruiting | durvaluamb + enfortumab vedotin +/− tremelimumab | Safety and tolerability, pCR, EFS |
NCT05297552 (RC48-C017) | cT2-T4a N0-1 M0 | 40 | II | Recruiting | disitamab vedotin + toripalimab | pCR |
NCT04209114 (PIVOT IO 009) | T2-T4aN0M0 T1-T4a N1M0 | 114 | III | Completed | nivolumab + bempegaldesleukin | pCR EFS |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
García-Rayo, C.; Juste-Álvarez, S.; Gómez-Cañizo, C.; Hernández-Arroyo, M.; Velasco, G.; Castellano, D.; Rodríguez-Antolín, A.; Guerrero-Ramos, F. The Dynamic Field of Perioperative Treatment for Localized Muscle-Invasive Bladder Cancer: A Review of the Current Research Landscape. J. Clin. Med. 2025, 14, 5653. https://doi.org/10.3390/jcm14165653
García-Rayo C, Juste-Álvarez S, Gómez-Cañizo C, Hernández-Arroyo M, Velasco G, Castellano D, Rodríguez-Antolín A, Guerrero-Ramos F. The Dynamic Field of Perioperative Treatment for Localized Muscle-Invasive Bladder Cancer: A Review of the Current Research Landscape. Journal of Clinical Medicine. 2025; 14(16):5653. https://doi.org/10.3390/jcm14165653
Chicago/Turabian StyleGarcía-Rayo, Clara, Silvia Juste-Álvarez, Carmen Gómez-Cañizo, Mario Hernández-Arroyo, Guillermo Velasco, Daniel Castellano, Alfredo Rodríguez-Antolín, and Félix Guerrero-Ramos. 2025. "The Dynamic Field of Perioperative Treatment for Localized Muscle-Invasive Bladder Cancer: A Review of the Current Research Landscape" Journal of Clinical Medicine 14, no. 16: 5653. https://doi.org/10.3390/jcm14165653
APA StyleGarcía-Rayo, C., Juste-Álvarez, S., Gómez-Cañizo, C., Hernández-Arroyo, M., Velasco, G., Castellano, D., Rodríguez-Antolín, A., & Guerrero-Ramos, F. (2025). The Dynamic Field of Perioperative Treatment for Localized Muscle-Invasive Bladder Cancer: A Review of the Current Research Landscape. Journal of Clinical Medicine, 14(16), 5653. https://doi.org/10.3390/jcm14165653