Optimizing TLIF Approach Selection: An Algorithmic Framework with Illustrative Cases
Abstract
:1. Introduction
2. Surgical Approaches
2.1. MIS-TLIF
2.2. TF-TLIF
2.3. PE-TLIF
3. Algorithm for TLIF Approach Selection
3.1. The Role of Significant Deformity
3.2. Decompression
3.3. Measuring Kambin’s Triangle
4. Discussion
Limitations
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
TLIF | transforaminal lumbar interbody fusion |
MIS-TLIF | minimally invasive transforaminal lumbar interbody fusion |
PE-TLIF | percutaneous endoscopic transforaminal lumbar interbody fusion |
TF-TLIF | transfacet transforaminal lumbar interbody fusion |
cMIS | circumferential minimally invasive surgery |
LLIF | lateral lumbar interbody fusion |
ALIF | anterior lumbar interbody fusion |
VAS | Visual Analogue Scale |
ODI | Oswestry Disability Index |
References
- Meng, B.; Bunch, J.; Burton, D.; Wang, J. Lumbar Interbody Fusion: Recent Advances in Surgical Techniques and Bone Healing Strategies. Eur. Spine J. 2021, 30, 22–33. [Google Scholar] [CrossRef] [PubMed]
- Humphreys, S.C.; Hodges, S.D.; Patwardhan, A.G.; Eck, J.C.; Murphy, R.B.; Covington, L.A. Comparison of Posterior and Transforaminal Approaches to Lumbar Interbody Fusion. Spine 2001, 26, 567–571. [Google Scholar] [CrossRef]
- Schwender, J.D.; Holly, L.T.; Rouben, D.P.; Foley, K.T. Minimally Invasive Transforaminal Lumbar Interbody Fusion (TLIF): Technical Feasibility and Initial Results. J. Spinal Disord. Technol. 2005, 18, S1–S6. [Google Scholar] [CrossRef]
- Shunwu, F.; Xing, Z.; Fengdong, Z.; Xiangqian, F. Minimally Invasive Transforaminal Lumbar Interbody Fusion for the Treatment of Degenerative Lumbar Diseases. Spine 2010, 35, 1615–1620. [Google Scholar] [CrossRef]
- Hagan, M.J.; Telfeian, A.E.; Sastry, R.; Ali, R.; Lewandrowski, K.-U.; Konakondla, S.; Barber, S.; Lane, K.; Gokaslan, Z.L. Awake Transforaminal Endoscopic Lumbar Facet Cyst Resection: Technical Note and Case Series. J. Neurosurg. Spine 2022, 37, 843–850. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Zhou, Y.; Zhang, Z.F.; Li, C.Q.; Zheng, W.J.; Liu, J. Minimally Invasive or Open Transforaminal Lumbar Interbody Fusion as Revision Surgery for Patients Previously Treated by Open Discectomy and Decompression of the Lumbar Spine. Eur. Spine J. 2011, 20, 623–628. [Google Scholar] [CrossRef]
- Nagahama, K.; Ito, M.; Abe, Y.; Murota, E.; Hiratsuka, S.; Takahata, M. Early Clinical Results of Percutaneous Endoscopic Transforaminal Lumbar Interbody Fusion: A New Modified Technique for Treating Degenerative Lumbar Spondylolisthesis. Spine Surg. Relat. Res. 2018, 3, 327–334. [Google Scholar] [CrossRef]
- Khalifeh, J.M.; Dibble, C.F.; Stecher, P.; Dorward, I.; Hawasli, A.H.; Ray, W.Z. Transfacet Minimally Invasive Transforaminal Lumbar Interbody Fusion with an Expandable Interbody Device-Part I: 2-Dimensional Operative Video and Technical Report. Oper. Neurosurg. 2020, 19, E473–E479. [Google Scholar] [CrossRef] [PubMed]
- Drossopoulos, P.N.; Ononogbu-Uche, F.C.; Tabarestani, T.Q.; Huang, C.-C.; Paturu, M.; Bardeesi, A.; Ray, W.Z.; Shaffrey, C.I.; Goodwin, C.R.; Erickson, M.; et al. Evolution of the Transforaminal Lumbar Interbody Fusion (TLIF): From Open to Percutaneous to Patient-Specific. J. Clin. Med. 2024, 13, 2271. [Google Scholar] [CrossRef]
- Dada, A.; Saggi, S.; Ambati, V.S.; Patel, A.; Mummaneni, P.V. Evolution of the Minimally Invasive Surgery Transforaminal Lumbar Interbody Fusion: Where Are We Now? Neurosurgery 2025, 96, S33–S41. [Google Scholar] [CrossRef]
- Quek, C.X.; Goh, G.S.; Tay, A.Y.; Soh, R.C.C. Minimally Invasive versus Open Transforaminal Lumbar Interbody Fusion in Obese Patients: A Propensity Score-Matched Study. Spine 2024, 49, 1294–1300. [Google Scholar] [CrossRef] [PubMed]
- Buyuk, A.F.; Shafa, E.; Dawson, J.M.; Schwender, J.D. Complications with Minimally Invasive Transforaminal Lumbar Interbody Fusion for Degenerative Spondylolisthesis in the Obese Population. Spine 2019, 44, E1401–E1408. [Google Scholar] [CrossRef] [PubMed]
- Lee, Y.-S.; Cho, D.-C.; Kim, K.-T. Navigation-Guided/Robot-Assisted Spinal Surgery: A Review Article. Neurospine 2024, 21, 8–17. [Google Scholar] [CrossRef] [PubMed]
- Harrop, J.S.; Mohamed, B.; Bisson, E.F.; Dhall, S.; Dimar, J.; Mummaneni, P.V.; Wang, M.C.; Hoh, D.J. Congress of Neurological Surgeons Systematic Review and Evidence-Based Guidelines for Perioperative Spine: Preoperative Surgical Risk Assessment. Neurosurgery 2021, 89, S9–S18. [Google Scholar] [CrossRef] [PubMed]
- Khalifeh, J.M.; Dibble, C.F.; Stecher, P.; Dorward, I.; Hawasli, A.H.; Ray, W.Z. Transfacet Minimally Invasive Transforaminal Lumbar Interbody Fusion with an Expandable Interbody Device-Part II: Consecutive Case Series. Oper. Neurosurg. 2020, 19, 518–529. [Google Scholar] [CrossRef]
- Macki, M.; Hamilton, T.; Haddad, Y.W.; Chang, V. Expandable Cage Technology-Transforaminal, Anterior, and Lateral Lumbar Interbody Fusion. Oper. Neurosurg. 2021, 21, S69–S80. [Google Scholar] [CrossRef]
- Jha, R.; Chalif, J.I.; Blitz, S.E.; Yearley, A.G.; Chavarro, V.; Lu, Y. Improved Clinical and Radiographic Outcomes with Expandable Cages in Transforaminal Lumbar Interbody Fusion: A Propensity-Matched Cohort Analysis. J. Neurosurg. Spine 2025, 42, 147–157. [Google Scholar] [CrossRef]
- Huang, C.-C.; Brena, K.R.; Tabarestani, T.Q.; Bardeesi, A.; Paturu, M.; Spears, H.; Braxton, E.E.; Abd-El-Barr, M.M. Minimally-Invasive Trans-Facet Lumbar Interbody Fusion Using a Dual-Dimension Expandable Cage: Preliminary Results of a Multi-Institutional Retrospective Study. J. Spine Surg. 2024, 10, 403–415. [Google Scholar] [CrossRef]
- Ono, K.; Fukuhara, D.; Nagahama, K.; Abe, Y.; Takahashi, K.; Majima, T. Percutaneous Endoscopic Transforaminal Lumbar Interbody Fusion (PETLIF): Current Techniques, Clinical Outcomes, and Narrative Review. J. Clin. Med. 2023, 12, 5391. [Google Scholar] [CrossRef]
- Morimoto, M.; Wada, K.; Tamaki, S.; Soeda, S.; Sugiura, K.; Manabe, H.; Tezuka, F.; Yamashita, K.; Sairyo, K. Clinical Outcome of Full Endoscopic Trans Kambin’s Triangle Lumbar Interbody Fusion: A Systematic Review. World Neurosurg. 2023, 178, 317–329. [Google Scholar] [CrossRef]
- Morgenstern, C.; Yue, J.J.; Morgenstern, R. Full Percutaneous Transforaminal Lumbar Interbody Fusion Using the Facet-Sparing, Trans-Kambin Approach. Clin. Spine Surg. 2020, 33, 40. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Yang, J.; Hai, Y.; Yin, P.; Ding, Y.; Xu, C.; Gao, H. Relationship of the Exiting Nerve Root and Superior Articular Process in Kambin’s Triangle: Assessment of Lumbar Anatomy Using Cadavers and Computed Tomography Imaging. World Neurosurg. 2020, 137, e336–e342. [Google Scholar] [CrossRef] [PubMed]
- Mummaneni, P.V.; Park, P.; Shaffrey, C.I.; Wang, M.Y.; Uribe, J.S.; Fessler, R.G.; Chou, D.; Kanter, A.S.; Okonkwo, D.O.; Mundis, G.M.; et al. The MISDEF2 Algorithm: An Updated Algorithm for Patient Selection in Minimally Invasive Deformity Surgery. J. Neurosurg. Spine 2019, 32, 221–228. [Google Scholar] [CrossRef]
- Lak, A.M.; Lamba, N.; Pompilus, F.; Yunusa, I.; King, A.; Sultan, I.; Amamoo, J.; Al-Otaibi, N.M.; Alasmari, M.; Zaghloul, I.; et al. Minimally Invasive versus Open Surgery for the Correction of Adult Degenerative Scoliosis: A Systematic Review. Neurosurg. Rev. 2021, 44, 659–668. [Google Scholar] [CrossRef]
- Haque, R.M.; Mundis, G.M.; Ahmed, Y.; El Ahmadieh, T.Y.; Wang, M.Y.; Mummaneni, P.V.; Uribe, J.S.; Okonkwo, D.O.; Eastlack, R.K.; Anand, N.; et al. Comparison of Radiographic Results after Minimally Invasive, Hybrid, and Open Surgery for Adult Spinal Deformity: A Multicenter Study of 184 Patients. Neurosurg. Focus 2014, 36, E13. [Google Scholar] [CrossRef]
- Chou, D.; Lafage, V.; Chan, A.Y.; Passias, P.; Mundis, G.M.; Eastlack, R.K.; Fu, K.-M.; Fessler, R.G.; Gupta, M.C.; Than, K.D.; et al. Patient Outcomes after Circumferential Minimally Invasive Surgery Compared with Those of Open Correction for Adult Spinal Deformity: Initial Analysis of Prospectively Collected Data. J. Neurosurg. Spine 2022, 36, 203–214. [Google Scholar] [CrossRef]
- Ishihara, M.; Taniguchi, S.; Adachi, T.; Tani, Y.; Paku, M.; Ando, M.; Saito, T. Surgical Approaches and Short-Term Results of Circumferential Minimally Invasive Correction Surgery for Adult Idiopathic Scoliosis. World Neurosurg. 2023, 178, 37–47. [Google Scholar] [CrossRef] [PubMed]
- Passias, P.G.; Ahmad, W.; Williamson, T.K.; Lebovic, J.; Kebaish, K.; Lafage, R.; Lafage, V.; Line, B.; Schoenfeld, A.J.; Diebo, B.G.; et al. Efficacy of Varying Surgical Approaches on Achieving Optimal Alignment in Adult Spinal Deformity Surgery. Spine 2024, 49, 22–28. [Google Scholar] [CrossRef]
- Smith, J.S.; Sansur, C.A.; Donaldson, W.F.; Perra, J.H.; Mudiyam, R.; Choma, T.J.; Zeller, R.D.; Knapp, D.R.; Noordeen, H.H.; Berven, S.H.; et al. Short-Term Morbidity and Mortality Associated with Correction of Thoracolumbar Fixed Sagittal Plane Deformity: A Report from the Scoliosis Research Society Morbidity and Mortality Committee. Spine 2011, 36, 958–964. [Google Scholar] [CrossRef]
- Walker, C.T.; Xu, D.S.; Cole, T.S.; Alhilali, L.M.; Godzik, J.; Angel Estrada, S.; Pedro Giraldo, J.; Wewel, J.T.; Morgan, C.D.; Zhou, J.J.; et al. Predictors of Indirect Neural Decompression in Minimally Invasive Transpsoas Lateral Lumbar Interbody Fusion. J. Neurosurg. Spine 2021, 35, 80–90. [Google Scholar] [CrossRef]
- Yao, Y.-C.; Chou, P.-H.; Lin, H.-H.; Wang, S.-T.; Liu, C.-L.; Chang, M.-C. Risk Factors of Cage Subsidence in Patients Received Minimally Invasive Transforaminal Lumbar Interbody Fusion. Spine 2020, 45, E1279–E1285. [Google Scholar] [CrossRef] [PubMed]
- Jaiswal, N.K.; Kumar, V.; Puvanesarajah, V.; Dagar, A.; Prakash, M.; Dhillon, M.; Dhatt, S.S. Necessity of Direct Decompression for Thoracolumbar Junction Burst Fractures with Neurological Compromise. World Neurosurg. 2020, 142, e413–e419. [Google Scholar] [CrossRef]
- Wang, T.Y.; Nayar, G.; Brown, C.R.; Pimenta, L.; Karikari, I.O.; Isaacs, R.E. Bony Lateral Recess Stenosis and Other Radiographic Predictors of Failed Indirect Decompression via Extreme Lateral Interbody Fusion: Multi-Institutional Analysis of 101 Consecutive Spinal Levels. World Neurosurg. 2017, 106, 819–826. [Google Scholar] [CrossRef]
- Fanous, A.A.; Tumialán, L.M.; Wang, M.Y. Kambin’s Triangle: Definition and New Classification Schema. J. Neurosurg. Spine 2019, 32, 390–398. [Google Scholar] [CrossRef]
- Kouam, R.W.; Tabarestani, T.Q.; Sykes, D.A.W.; Gupta, N.; Futch, B.G.; Kakmou, E.; Goodwin, C.R.; Foster, N.A.; Than, K.D.; Wiggins, W.F.; et al. How Dimensions Can Guide Surgical Planning and Training: A Systematic Review of Kambin’s Triangle. Neurosurg. Focus 2023, 54, E6. [Google Scholar] [CrossRef]
- Tabarestani, T.Q.; Salven, D.S.; Sykes, D.A.W.; Bardeesi, A.M.; Bartlett, A.M.; Wang, T.Y.; Paturu, M.R.; Dibble, C.F.; Shaffrey, C.I.; Ray, W.Z.; et al. Using Novel Segmentation Technology to Define Safe Corridors for Minimally Invasive Posterior Lumbar Interbody Fusion. Oper. Neurosurg. 2023, 27, 14–22. [Google Scholar] [CrossRef] [PubMed]
- Tabarestani, T.Q.; Drossopoulos, P.N.; Huang, C.-C.; Bartlett, A.M.; Paturu, M.R.; Shaffrey, C.I.; Chi, J.H.; Ray, W.Z.; Goodwin, C.R.; Amrhein, T.J.; et al. The Importance of Planning Ahead: A Three-Dimensional Analysis of the Novel Trans-Facet Corridor for Posterior Lumbar Interbody Fusion Using Segmentation Technology. World Neurosurg. 2024, 188, e247–e258. [Google Scholar] [CrossRef] [PubMed]
- Tabarestani, T.Q.; Sykes, D.A.W.; Kouam, R.W.; Salven, D.S.; Wang, T.Y.; Mehta, V.A.; Shaffrey, C.I.; Wiggins, W.F.; Chi, J.H.; Abd-El-Barr, M.M. Novel Approach to Percutaneous Lumbar Surgeries via Kambin’s Triangle-Radiographic and Surgical Planning Analysis with Nerve Segmentation Technology. World Neurosurg. 2023, 177, e385–e396. [Google Scholar] [CrossRef]
- Bardeesi, A.; Tabarestani, T.Q.; Bergin, S.M.; Huang, C.-C.; Shaffrey, C.I.; Wiggins, W.F.; Abd-El-Barr, M.M. Using Augmented Reality Technology to Optimize Transfacet Lumbar Interbody Fusion: A Case Report. J. Clin. Med. 2024, 13, 1513. [Google Scholar] [CrossRef]
- Ovens, J.M.; Williams, H.G. Intervertebral Spine Fusion with Removal of Herniated Intervertebral Disk. Am. J. Surg. 1945, 70, 24–26. [Google Scholar] [CrossRef]
- Fan, S.; Hu, Z.; Fang, X.; Zhao, F.; Huang, Y.; Yu, H. Comparison of Paraspinal Muscle Injury in One-level Lumbar Posterior Inter-body Fusion: Modified Minimally Invasive and Traditional Open Approaches. Orthop. Surg. 2010, 2, 194–200. [Google Scholar] [CrossRef] [PubMed]
- Lan, T.; Hu, S.-Y.; Zhang, Y.-T.; Zheng, Y.-C.; Zhang, R.; Shen, Z.; Yang, X.-J. Comparison Between Posterior Lumbar Interbody Fusion and Transforaminal Lumbar Interbody Fusion for the Treatment of Lumbar Degenerative Diseases: A Systematic Review and Meta-Analysis. World Neurosurg. 2018, 112, 86–93. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Tang, H.; Guan, X.; Jiang, F.; Xu, N.; Ju, W.; Zhu, X.; Zhang, X.; Zhang, Q.; Li, M. Biomechanical Comparison of Posterior Lumbar Interbody Fusion and Transforaminal Lumbar Interbody Fusion by Finite Element Analysis. Neurosurgery 2013, 72, 21–26. [Google Scholar] [CrossRef]
- de Kunder, S.L.; van Kuijk, S.M.J.; Rijkers, K.; Caelers, I.J.M.H.; van Hemert, W.L.W.; de Bie, R.A.; van Santbrink, H. Transforaminal Lumbar Interbody Fusion (TLIF) versus Posterior Lumbar Interbody Fusion (PLIF) in Lumbar Spondylolisthesis: A Systematic Review and Meta-Analysis. Spine J. 2017, 17, 1712–1721. [Google Scholar] [CrossRef] [PubMed]
- Seng, C.; Siddiqui, M.A.; Wong, K.P.L.; Zhang, K.; Yeo, W.; Tan, S.B.; Yue, W.-M. Five-Year Outcomes of Minimally Invasive versus Open Transforaminal Lumbar Interbody Fusion: A Matched-Pair Comparison Study. Spine 2013, 38, 2049–2055. [Google Scholar] [CrossRef]
- Wong, A.P.; Smith, Z.A.; Nixon, A.T.; Lawton, C.D.; Dahdaleh, N.S.; Wong, R.H.; Auffinger, B.; Lam, S.; Song, J.K.; Liu, J.C.; et al. Intraoperative and Perioperative Complications in Minimally Invasive Transforaminal Lumbar Interbody Fusion: A Review of 513 Patients. J. Neurosurg. Spine 2015, 22, 487–495. [Google Scholar] [CrossRef]
- Hiyama, A.; Katoh, H.; Sakai, D.; Sato, M.; Watanabe, M. Early Radiological Assessment of Static and Expandable Cages in Lateral Single Position for Indirect Decompression- Lateral Lumbar Interbody Fusion. World Neurosurg. 2023, 178, e453–e464. [Google Scholar] [CrossRef]
- Sousa, J.M.; Ribeiro, H.; Silva, J.L.; Nogueira, P.; Consciência, J.G. Clinical Outcomes, Complications and Fusion Rates in Endoscopic Assisted Intraforaminal Lumbar Interbody Fusion (iLIF) versus Minimally Invasive Transforaminal Lumbar Interbody Fusion (MI-TLIF): Systematic Review and Meta-Analysis. Sci. Rep. 2022, 12, 2101. [Google Scholar] [CrossRef]
- Cheng, J.S.; Park, P.; Le, H.; Reisner, L.; Chou, D.; Mummaneni, P.V. Short-Term and Long-Term Outcomes of Minimally Invasive and Open Transforaminal Lumbar Interbody Fusions: Is There a Difference? Neurosurg. Focus 2013, 35, E6. [Google Scholar] [CrossRef]
- Ozer, A.F.; Suzer, T.; Can, H.; Falsafi, M.; Aydin, M.; Sasani, M.; Oktenoglu, T. Anatomic Assessment of Variations in Kambin’s Triangle: A Surgical and Cadaver Study. World Neurosurg. 2017, 100, 498–503. [Google Scholar] [CrossRef]
- Sakane, M. Anatomical Relationship between Kambin’s Triangle and Exiting Nerve Root. Mini-Invasive Surg. 2017, 1, 99–102. [Google Scholar] [CrossRef]
- Dourthe, B.; Shaikh, N.; Pai S., A.; Fels, S.; Brown, S.H.M.; Wilson, D.R.; Street, J.; Oxland, T.R. Automated Segmentation of Spinal Muscles from Upright Open MRI Using a Multiscale Pyramid 2D Convolutional Neural Network. Spine 2022, 47, 1179–1186. [Google Scholar] [CrossRef] [PubMed]
- Saeed, M.U.; Dikaios, N.; Dastgir, A.; Ali, G.; Hamid, M.; Hajjej, F. An Automated Deep Learning Approach for Spine Segmentation and Vertebrae Recognition Using Computed Tomography Images. Diagnostics 2023, 13, 2658. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bartlett, A.M.; Shabana, S.; Folz, C.C.; Paturu, M.; Shaffrey, C.I.; Quist, P.; Danisa, O.; Than, K.D.; Passias, P.; Abd-El-Barr, M.M. Optimizing TLIF Approach Selection: An Algorithmic Framework with Illustrative Cases. J. Clin. Med. 2025, 14, 4209. https://doi.org/10.3390/jcm14124209
Bartlett AM, Shabana S, Folz CC, Paturu M, Shaffrey CI, Quist P, Danisa O, Than KD, Passias P, Abd-El-Barr MM. Optimizing TLIF Approach Selection: An Algorithmic Framework with Illustrative Cases. Journal of Clinical Medicine. 2025; 14(12):4209. https://doi.org/10.3390/jcm14124209
Chicago/Turabian StyleBartlett, Alyssa M., Summer Shabana, Caroline C. Folz, Mounica Paturu, Christoper I. Shaffrey, Parastou Quist, Olumide Danisa, Khoi D. Than, Peter Passias, and Muhammad M. Abd-El-Barr. 2025. "Optimizing TLIF Approach Selection: An Algorithmic Framework with Illustrative Cases" Journal of Clinical Medicine 14, no. 12: 4209. https://doi.org/10.3390/jcm14124209
APA StyleBartlett, A. M., Shabana, S., Folz, C. C., Paturu, M., Shaffrey, C. I., Quist, P., Danisa, O., Than, K. D., Passias, P., & Abd-El-Barr, M. M. (2025). Optimizing TLIF Approach Selection: An Algorithmic Framework with Illustrative Cases. Journal of Clinical Medicine, 14(12), 4209. https://doi.org/10.3390/jcm14124209