Timing of Magnetic Resonance Imaging (MRI) in Moderate and Severe TBI: A Systematic Review
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. MRI in Adult Moderate and Severe TBI
3.1.1. MRI Availability and Use
3.1.2. Role of Early Change Detection
3.1.3. Magnetic Resonance Spectroscopy (MRS) in TBI
3.2. Higher Resolution Increases Lesion Detectability
3.2.1. Susceptibility Weighted Imaging (SWI)
3.2.2. Diffusion Tensor Imaging (DTI)
3.2.3. T2, FLAIR, T2*-GRE, and SWI
3.3. MRI in Pediatric Moderate and Severe TBI
3.4. In-Hospital Safety for Early MRI
3.5. MRI Timing at the Medical University, Innsbruck
4. Limitations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Esterov, D.; Bellamkonda, E.; Mandrekar, J.; Ransom, J.E.; Brown, A.W. Cause of Death after Traumatic Brain Injury: A Population-Based Health Record Review Analysis Referenced for Nonhead Trauma. Neuroepidemiology 2021, 55, 180–187. [Google Scholar] [CrossRef] [PubMed]
- Hawryluk, G.W.J.; Rubiano, A.M.; Totten, A.M.; O’Reilly, C.; Ullman, J.S.; Bratton, S.L.; Chesnut, R.; Harris, O.A.; Kissoon, N.; Shutter, L.; et al. Guidelines for the Management of Severe Traumatic Brain Injury: 2020 Update of the Decompressive Craniectomy Recommendations. Neurosurgery 2020, 87, 427–434. [Google Scholar] [CrossRef]
- Maas, A.I.R.; Menon, D.K.; Manley, G.T.; Abrams, M.; Åkerlund, C.; Andelic, N.; Aries, M.; Bashford, T.; Bell, M.J.; Bodien, Y.G.; et al. Traumatic brain injury: Progress and challenges in prevention, clinical care, and research. Lancet Neurol. 2022, 21, 1004–1060. [Google Scholar] [CrossRef]
- Pease, M.; Arefan, D.; Barber, J.; Yuh, E.; Puccio, A.; Hochberger, K.; Nwachuku, E.; Roy, S.; Casillo, S.; Temkin, N.; et al. Outcome Prediction in Patients with Severe Traumatic Brain Injury Using Deep Learning from Head CT Scans. Radiology 2022, 304, 385–394. [Google Scholar] [CrossRef]
- Fu, T.S.; Jing, R.; McFaull, S.R.; Cusimano, M.D. Health & Economic Burden of Traumatic Brain Injury in the Emergency Department. Can. J. Neurol. Sci. 2016, 43, 238–247. [Google Scholar] [CrossRef] [PubMed]
- Thurman, D.J.; Alverson, C.; Dunn, K.A.; Guerrero, J.; Sniezek, J.E. Traumatic brain injury in the United States: A public health perspective. J. Head Trauma Rehabil. 1999, 14, 602–615. [Google Scholar] [CrossRef]
- Hyder, A.A.; Wunderlich, C.A.; Puvanachandra, P.; Gururaj, G.; Kobusingye, O.C. The impact of traumatic brain injuries: A global perspective. NeuroRehabilitation 2007, 22, 341–353. [Google Scholar] [CrossRef]
- Mauritz, W.; Brazinova, A.; Majdan, M.; Leitgeb, J. Epidemiology of traumatic brain injury in Austria. Wien. Klin. Wochenschr. 2014, 126, 42–52. [Google Scholar] [CrossRef] [PubMed]
- Bergus, K.C.; Patterson, K.N.; Asti, L.; Bricker, J.; Beyene, T.J.; Schulz, L.N.; Schwartz, D.M.; Thakkar, R.K.; Sribnick, E.A. Association of initial assessment variables and mortality in severe pediatric traumatic brain injury. World J. Pediatr. Surg. 2024, 7, e000718. [Google Scholar] [CrossRef]
- Prasad, M.R.; Swank, P.R.; Ewing-Cobbs, L. Long-Term School Outcomes of Children and Adolescents With Traumatic Brain Injury. J. Head Trauma Rehabil. 2017, 32, E24–E32. [Google Scholar] [CrossRef]
- Nkenguye, W. Impacting lives: The silent crisis of pediatric traumatic brain injury. IJS Global Health 2024, 7, e0427. [Google Scholar] [CrossRef]
- Guan, B.; Anderson, D.B.; Chen, L.; Feng, S.; Zhou, H. Global, regional and national burden of traumatic brain injury and spinal cord injury, 1990–2019: A systematic analysis for the Global Burden of Disease Study 2019. BMJ Open 2023, 13, e075049. [Google Scholar] [CrossRef]
- Miller, G.F.; DePadilla, L.; Xu, L. Costs of Nonfatal Traumatic Brain Injury in the United States, 2016. Med. Care 2021, 59, 451–455. [Google Scholar] [CrossRef] [PubMed]
- Buttram, S.D.; Garcia-Filion, P.; Miller, J.; Youssfi, M.; Brown, S.D.; Dalton, H.J.; Adelson, P.D. Computed tomography vs magnetic resonance imaging for identifying acute lesions in pediatric traumatic brain injury. Hosp. Pediatr. 2015, 5, 79–84. [Google Scholar] [CrossRef]
- Geurts, B.H.; Andriessen, T.M.; Goraj, B.M.; Vos, P.E. The reliability of magnetic resonance imaging in traumatic brain injury lesion detection. Brain Inj. 2012, 26, 1439–1450. [Google Scholar] [CrossRef] [PubMed]
- Lawrence, T.P.; Pretorius, P.M.; Ezra, M.; Cadoux-Hudson, T.; Voets, N.L. Early detection of cerebral microbleeds following traumatic brain injury using MRI in the hyper-acute phase. Neurosci. Lett. 2017, 655, 143–150. [Google Scholar] [CrossRef]
- Garnett, M.R.; Blamire, A.M.; Rajagopalan, B.; Styles, P.; Cadoux-Hudson, T.A. Evidence for cellular damage in normal-appearing white matter correlates with injury severity in patients following traumatic brain injury: A magnetic resonance spectroscopy study. Brain 2000, 123 Pt 7, 1403–1409. [Google Scholar] [CrossRef]
- Bruce, D.A. Imaging after head trauma: Why, when and which. Childs Nerv. Syst. 2000, 16, 755–759. [Google Scholar] [CrossRef]
- Caeyenberghs, K.; Singh, M.; Cobden, A.L.; Ellis, E.G.; Graeme, L.G.; Gates, P.; Burmester, A.; Guarnera, J.; Burnett, J.; Deutscher, E.M.; et al. Magnetic resonance imaging in traumatic brain injury: A survey of clinical practitioners’ experiences and views on current practice and obstacles. Brain Inj. 2025, 39, 427–443. [Google Scholar] [CrossRef]
- Carpentier, A.; Galanaud, D.; Puybasset, L.; Muller, J.C.; Lescot, T.; Boch, A.L.; Riedl, V.; Cornu, P.; Coriat, P.; Dormont, D.; et al. Early morphologic and spectroscopic magnetic resonance in severe traumatic brain injuries can detect “invisible brain stem damage” and predict “vegetative states”. J. Neurotrauma 2006, 23, 674–685. [Google Scholar] [CrossRef]
- Humble, S.S.; Wilson, L.D.; Wang, L.; Long, D.A.; Smith, M.A.; Siktberg, J.C.; Mirhoseini, M.F.; Bhatia, A.; Pruthi, S.; Day, M.A.; et al. Prognosis of diffuse axonal injury with traumatic brain injury. J. Trauma Acute Care Surg. 2018, 85, 155–159. [Google Scholar] [CrossRef] [PubMed]
- Richter, S.; Winzeck, S.; Correia, M.M.; Czeiter, E.; Whitehouse, D.; Kornaropoulos, E.N.; Williams, G.B.; Verheyden, J.; Das, T.; Tenovuo, O.; et al. Predicting recovery in patients with mild traumatic brain injury and a normal CT using serum biomarkers and diffusion tensor imaging (CENTER-TBI): An observational cohort study. EClinicalMedicine 2024, 75, 102751. [Google Scholar] [CrossRef] [PubMed]
- Moen, K.G.; Flusund, A.H.; Moe, H.K.; Andelic, N.; Skandsen, T.; Håberg, A.; Kvistad, K.A.; Olsen, Ø.; Saksvoll, E.H.; Abel-Grüner, S.; et al. The prognostic importance of traumatic axonal injury on early MRI: The Trondheim TAI-MRI grading and quantitative models. Eur. Radiol. 2024, 34, 8015–8029. [Google Scholar] [CrossRef] [PubMed]
- Haghbayan, H.; Boutin, A.; Laflamme, M.; Lauzier, F.; Shemilt, M.; Moore, L.; Zarychanski, R.; Douville, V.; Fergusson, D.; Turgeon, A.F. The prognostic value of MRI in moderate and severe traumatic brain injury: A systematic review and meta-analysis. Crit. Care Med. 2017, 45, e1280-8. [Google Scholar] [CrossRef]
- Potapov, A.A.; Danilov, G.V.; Sychev, A.A.; Zakharova, N.E.; Pronin, I.N.; Savin, I.A.; Oshorov, A.V.; Polupan, A.A.; Aleksandrova, E.V.; Strunina, Y.V.; et al. Clinical and MRI predictors of coma duration, intensive care and outcome of traumatic brain injury. Zhurnal Vopr. Neirokhirurgii Im. N.N. Burdenko 2020, 84, 5–16. [Google Scholar] [CrossRef]
- Ferrazzano, P.A.; Rebsamen, S.; Field, A.S.; Broman, A.T.; Mayampurath, A.; Rosario, B.; Buttram, S.; Willyerd, F.A.; Rathouz, P.J.; Bell, M.J.; et al. MRI and Clinical Variables for Prediction of Outcomes After Pediatric Severe Traumatic Brain Injury. JAMA Netw. Open 2024, 7, e2425765. [Google Scholar] [CrossRef]
- Asturias, A.; Knoblauch, T.; Rodriguez, A.; Vanier, C.; Le Tohic, C.; Barrett, B.; Eisenberg, M.; Gibbert, R.; Zimmerman, L.; Parikh, S.; et al. Diffusion in the corpus callosum predicts persistence of clinical symptoms after mild traumatic brain injury, a multi-scanner study. Front. Neuroimaging 2023, 2, 1153115. [Google Scholar] [CrossRef]
- Shakir, A.; Aksoy, D.; Mlynash, M.; Harris, O.A.; Albers, G.W.; Hirsch, K.G. Prognostic Value of Quantitative Diffusion-Weighted MRI in Patients with Traumatic Brain Injury. J. Neuroimaging 2016, 26, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Toth, A.; Kovacs, N.; Tamas, V.; Kornyei, B.; Nagy, M.; Horvath, A.; Rostas, T.; Bogner, P.; Janszky, J.; Doczi, T.; et al. Microbleeds may expand acutely after traumatic brain injury. Neurosci. Lett. 2016, 617, 207–212. [Google Scholar] [CrossRef]
- Gentry, L.R. Imaging of closed head injury. Radiology 1994, 191, 1–17. [Google Scholar] [CrossRef]
- Adams, J.H.; Doyle, D.; Ford, I.; Gennarelli, T.A.; Graham, D.I.; McLellan, D.R. Diffuse axonal injury in head injury: Definition, diagnosis and grading. Histopathology 1989, 15, 49–59. [Google Scholar] [CrossRef] [PubMed]
- Firsching, R.; Woischneck, D.; Klein, S.; Ludwig, K.; Döhring, W. Brain stem lesions after head injury. Neurol. Res. 2002, 24, 145–146. [Google Scholar] [CrossRef] [PubMed]
- Griffin, A.D.; Turtzo, L.C.; Parikh, G.Y.; Tolpygo, A.; Lodato, Z.; Moses, A.D.; Nair, G.; Perl, D.P.; Edwards, N.A.; Dardzinski, B.J.; et al. Traumatic microbleeds suggest vascular injury and predict disability in traumatic brain injury. Brain 2019, 142, 3550–3564. [Google Scholar] [CrossRef] [PubMed]
- Sigmund, G.A.; Tong, K.A.; Nickerson, J.P.; Wall, C.J.; Oyoyo, U.; Ashwal, S. Multimodality comparison of neuroimaging in pediatric traumatic brain injury. Pediatr. Neurol. 2007, 36, 217–226. [Google Scholar] [CrossRef]
- Pinggera, D.; Luger, M.; Bürgler, I.; Bauer, M.; Thomé, C.; Petr, O. Safety of Early MRI Examinations in Severe TBI: A Test Battery for Proper Patient Selection. Front. Neurol. 2020, 11, 219. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.; Aran, S. A Review of Magnetic Resonance (MR) Safety: The Essentials to Patient Safety. Cureus 2023, 15, e47345. [Google Scholar] [CrossRef]
Author | Year | Type of Article | Patients Included | Time to MRI | TBI Grade | |
---|---|---|---|---|---|---|
1 | Carpentier et al. [20] | 2006 | Scientific Article | 40 | Day 17.5 (6.4) | Severe |
2 | Humble et al. [21] | 2018 | Scientific Article | 311 | In the subacute phase (within 2 weeks after injury) | Mild, moderate, and severe |
3 | Richter et al. [22] | 2022 | Scientific Article | 65 | Subacute phase (<30 days) | Moderate and severe |
4 | Moen et al. [23] | 2024 | Scientific Article | 463 | Within the acute phase (1 week) | Mild, moderate, and severe |
5 | Haghbayan et al. [24] | 2017 | Review | N/A | Median time < 29 days | Moderate and severe |
6 | Potapov et al. [25] | 2014 | Scientific Article | 278 | Within 21 days | Moderate and severe |
7 | Ferrazzano et al. [26] | 2024 | Scientific Article | 1000 pediatric patients | Within 30 days | Severe |
8 | Asturias et al. [27] | 2023 | Scientific Article | 446 | <100 days | Mild |
9 | Shakir et al. [28] | 2016 | Scientific Article | 76 | <48 h | Moderate and severe |
10 | Caeyenberghs et al. [19] | 2025 | Questionnaire Study | 81 respondents | <1 month | Mild, moderate, and severe |
11 | Toth et al. [29] | 2016 | Scientific Article | 5 | <24 h | Moderate and severe |
12 | Lawrence et al. [16] | 2017 | Scientific Article | 13 patients; 10 healthy controls | <24 h | Mild, moderate, and severe |
13 | Geurts et al. [15] | 2012 | Scientific Article | 56 | 6.7 weeks | Mild, moderate, and severe |
Patient Number | TBI Grade | Age | Days to MRI | Outcome at Discharge (mRS) |
---|---|---|---|---|
1 | 3 | 21 | 25 | 1 |
2 | 3 | 44 | 10 | 4 |
3 | 3 | 58 | 13 | 3 |
4 | 3 | 67 | 12 | 6 |
5 | 3 | 23 | 11 | 0 |
6 | 3 | 25 | 29 | 4 |
7 | 3 | 79 | 60 | 4 |
8 | 3 | 50 | 13 | 3 |
9 | 3 | 58 | 13 | 2 |
10 | 3 | 33 | 1 | 0 |
11 | 3 | 53 | 2 | 5 |
12 | 3 | 58 | 8 | 2 |
13 | 3 | 71 | 18 | 3 |
14 | 3 | 59 | 15 | 2 |
15 | 3 | 25 | 3 | 3 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geiger, P.; Gmeiner, R.; Schön, V.; Petr, O.; Thomé, C.; Pinggera, D. Timing of Magnetic Resonance Imaging (MRI) in Moderate and Severe TBI: A Systematic Review. J. Clin. Med. 2025, 14, 4078. https://doi.org/10.3390/jcm14124078
Geiger P, Gmeiner R, Schön V, Petr O, Thomé C, Pinggera D. Timing of Magnetic Resonance Imaging (MRI) in Moderate and Severe TBI: A Systematic Review. Journal of Clinical Medicine. 2025; 14(12):4078. https://doi.org/10.3390/jcm14124078
Chicago/Turabian StyleGeiger, Philipp, Raphael Gmeiner, Victoria Schön, Ondra Petr, Claudius Thomé, and Daniel Pinggera. 2025. "Timing of Magnetic Resonance Imaging (MRI) in Moderate and Severe TBI: A Systematic Review" Journal of Clinical Medicine 14, no. 12: 4078. https://doi.org/10.3390/jcm14124078
APA StyleGeiger, P., Gmeiner, R., Schön, V., Petr, O., Thomé, C., & Pinggera, D. (2025). Timing of Magnetic Resonance Imaging (MRI) in Moderate and Severe TBI: A Systematic Review. Journal of Clinical Medicine, 14(12), 4078. https://doi.org/10.3390/jcm14124078